光照、氮素、水分对油松光合固碳能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油松(Pinus tabulaeformis)具有喜光、耐旱、耐瘠薄土壤、适应性强、生长快等优点,是北方地区的主要造林树种。随着林业碳汇成为国际社会关注的热点,作为暖温带地区的主要造林树种,油松的固碳机制也越来越受到关注。本研究以暖温带地区主要造林树种油松为研究对象,通过设置四个光照梯度[L1(全光照)、L2(25%遮阴)、L3(50%遮阴)、L4(75%遮阴)],四个氮素梯度[N0(0.0)、N1(0.5)、N2(1.5)、N3(2.5)g/kg土],和四个土壤含水量的水分梯度[W1(10%)、W2(30%)、W3(60%)、W4(90%)]探讨了不同光照强度以及光氮互作和光水互作对油松幼苗光合生理特性及固碳能力的影响,以期为暖温带地区主要造林树种的增碳技术提供理论依据。主要研究结果如下:
     遮阴有助于油松幼苗Pn的提高,导致PSⅡ光化学效率(Fv/Fm)小幅度增加。适度遮阴能够提高油松的生长量和生物量。说明油松幼苗耐遮阴,对弱光的适应能力较强,能高效的利用弱光增加其光合速率,提高生长量及生物量。
     在同一光照水平下,氮素营养不仅明显增加了油松幼苗的净光合速率,而且还增强了油松幼苗在全光照下对光抑制的抵抗性。这种趋势表明,要想最大化油松幼苗的固碳量,高光强和高氮量的投入是必要的。并且油松幼苗表现出了能够适应高光强的生理生态可塑性。
     遮光和浇水处理在一定程度上缓解了水分亏缺和强光的胁迫影响,进而提高了油松幼苗的净光合速率和固碳效率。但过度的遮阴和浇水反而会降低油松幼苗的净光合速率和固碳量。这说明油松幼苗在一定程度上具有耐阴性,是耐旱型植物。
Pinus tabulaeformis, by virtues of light favorite, drought resistance, barren soil resistance, strong adaptability and fast-growing, is the main afforestation tree species of northern region. With forestry carbon sinks become the focus of the international community, as the main afforestation tree species of warm temperate regions, carbon sequestration mechanism of Pinus tabulaeformis is also received increasing concern.
     In this study, regarding the warm temperate zone afforestation P. tabulaeformis as the main study target, by setting four light gradient [LI (full sun), L2(25%shade), L3(50%shade), L4(75%shade)], four nitrogen gradient [NO (0.0), Nl (0.5), N2(1.5), and N3(2.5) g/kg soil], and four soil moisture water gradient [W1(10%),W2(30%), W3(60%), W4(90%)], explored the effects of different light intensities, light*nitrogen interaction and light*water interaction on photo synthetic physiological characteristics and the carbon sequestration capacity of Pinus tabulaeformis seedlings, expecting to provide a theoretical basis for carbon increase technologies of warm temperate main afforestation tree. We obtained the following conclusions:
     Shade was conducive to the improve of Pn in Pinus tabulaeformis seedlings, and resulted in a little increase in PS II photochemical efficiency (Fv/Fm). Moderate shade can increase the growth and biomass of P. tabulaeformis compared to that exposed to full sunlight. This indicates that P. tabulaeformis Seedling is resistant shade, has the ability to adapt to weak light, could efficiently take use of low light to increase its photosynthetic rate, consequently improved growth and biomass.
     In the same light levels, Nitrogen nutrition not only increased the net photosynthetic rate of Pinus tabulaeformis seedlings significantly, but also enhanced photoinhibition resistance of seedlings in full sunlight. This trend shows that, in order to maximize the amount of carbon sequestration of Pinus tabulaeformis, high light intensity and high nitrogen invest is necessary. This pattern indicates that high light intensity energetic and nutritional cost was necessary to reach PNmax and P. tabulaeformis seedlings showed physiological plasticity which enables the adaptation to higher energy uptake.
     To some extent, Shading and watering treatment alleviated drought and high light stress, thus improving net photosynthetic rate and carbon sequestration efficiency of P.tabulaefonnis seedlings. But excessive shade and watering it reduced net photosynthetic rate and carbon sequestration efficiency of P.tabulaeformis seedlings. This shows, in a certain extent. P.tabulaeformis seedlings has shade resistance, and is drought-tolerant plants.
引文
[1]北京市计划委员会国土环保处.北京国土资源[M].北京:北京科技出版社,1988:38-39.
    [2]陈国菊,吴筱颖,陈日远等.遮阴与露地栽培对小鸟花(Heliconia Psittacorum)生长及细胞组织结构的影响[J].华南农业大学学报,2000,(1):93-94.
    [3]崔晓阳.植物对有机氮源的利用及其在自然生态系统中的意义[J].生态学报,2007,27(8):3500-3512.
    [4]丁磊,胡万良,王伟,等.遮阴对天女木兰光合特性及生长的影响[J].林业资源管理,2009,(3):61-65.
    [5]范叶萍,余让才,郭志华.遮阴对匙叶天南星生长及光合特性的影响[J].园艺学报,1998,(3):270-274.
    [6]关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳氮代谢的影响[J].作物学报,2000,26(6):806-812.
    [7]关义新,林葆,凌碧莹.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响[J].植物营养与肥料学报,2000,6(2):52-55.
    [8]郭志华,王伯荪,张宏达.银杏的蒸腾特性及其对遮阴的响应[J].植物学报,1998,(6):567-572.
    [9]何平,高荣孚,汪振儒.光状况对油松苗生长和光合特性的影响[J].生态学报,1993,13(1):92-95.
    [10]黄娟,夏汉平,蔡锡安.遮光处理对三种钝叶草的生长习性与光合特性的影响[J].生态学杂志,2006,25(7):759-764.
    [11]侯芳梅,李月华,工红利,等.遮光对3种室内植物生长及光合特性影响初探[J].北京农学院学报,2001,(4):5-53.
    [12]江明艳,潘远智.不同光质对盆栽一品红光合特性及生长的影响[J].园艺学报,2006,3(2):338-343.
    [13]荆家海.植物生理学[M].陕西:陕西农业科学技术出版社,1994:243-248.
    [14]李辉,赵卫智.北京5种草坪地被植物生态效益的研究[J].中国园林,1998,14(4):36-38.
    [15]李晓征,郝日明,任燕.遮阴处理对不同苗龄交让木的生长和光合特性的影响[J].广西植物,2006,26(5):499-502.
    [16]刘俊英,姚延祷.油松多元素专用肥的实验研究[J].山西农业大学学报,2009,29(6):562-566.
    [17]吕景辉,任天忠,闫德仁.国内森林碳汇研究概述[J].内蒙古林业科技,2008,34(2):43-47.
    [18]马飞,姬明飞,陈立同,等.油松幼苗对干旱胁迫的生理生态响应[J].西北植物学报,2009,29(3):548-554.
    [19]彭尽晖.遮阴对四季桂光合特性的影响[J].湖南农业大学学报,2002,(3):218-219.
    [20]王春梅,王汝南,蔺照兰.提高碳汇潜力:量化树种和造林模式对碳储量的影响[J].生态环境学报,2010,19(10):2501-2505.
    [21]王精明,柴素芬.遮光处理对金叶假连翘生长的影响[J].仲恺农业技术学院学报,2002,(2):20-23.
    [22]王绍辉,郝翠玲,张振贤.植物遮阴效应的研究与进展[J].山东农业大学学报,1998,(1):130-133.
    [23]吴春芳,贾小明,许晓英.磷营养对侧柏、樟子松、油松抗旱性的影响[J].西北林学院学报,2005,20(1):53-56.
    [24]魏守兴,王家保,陈翔.不同光照强度对番石榴幼苗叶片生长发育的影响初报[J].华南热带农业大学学报,2000,(4):10-13.
    [25]武来成,陶丹,张思维,等.林业碳汇的发展趋势[J].江西林业科,2007,(5):45-47.
    [26]夏江宝,张光灿,刘京涛,等.遮光处理对山杏幼苗光合特性的影响[J].西北植物学报,2010,30(11):2279-2285.
    [27]许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15(3):511-516.
    [28]杨建伟,梁宗锁,韩蕊莲,等.不同土壤水分下刺槐和油松幼苗的生理特征[J].植物资源与环境学报,2004,13(3):12-17.
    [29]张立才,臧德奎,韩瑞超.遮光处理对金森女贞生长和光合特性的影响[J].北方园艺,2010,(19):108~110.
    [30]张艳丽,张启翔,潘会堂,等.光照条件对小报春生长及光合特性的影响[J].中南林学院学报,2003,(5):22-26.
    [31]张振贤,郭延奎,邹奇.遮阴对生姜叶片显微结构及叶绿体超微结构的影响[J].园艺学报,1999,(4):96-100.
    [32]赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述[J].西北林学院学报,2008,23(1):59-63.
    [33]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37-42.
    [34]种培芳,陈年来.光照强度对园艺植物光合作用影响的研究进展[J].甘肃农业大学学报,2008,43(5):104-109.
    [35]郑淑霞,上官周平.8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J].生态学报,2006,26(4):1080-1087.
    [36]曾希柏,侯光炯,青长乐,等.土壤-植物系统中光照与氮素的相互关系研究[J].土壤学报,2000,20(1):102-108.
    [37]曾希柏,青长乐,谢德体,等.作物生长中光照和氮肥施用量的相互关系研究[J],土壤学报,2000,37(3):380-386.
    [38]曾希柏,青长乐,谢德体,等.光照条件对土壤-植物系统氮素状况影响的研究[J].应用生态学报,1998,9(2):139-144.
    [39]Aleric K M, Kirkman K. Growth and photosynthetic responses of the federally endangered shrub, Lindera melissifolia (Lauraceae), to varied light environments[J].-Amer. J. Bot,2005, (92):682-689.
    [40]Barth C, Krause G H, Winter K. Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves [J].-Plant Cell Environ,2001,(24):163-176.
    [41]Baker N R. Chlorophyll fluorescence:a probe of photosynthesis in vivo[J].-Annu. Rev. Plant Biol,2008, (59):89-113.
    [42]Baligar V C, Bunce J A, Machado R C R, et al. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings[J]. Photosynthetica,2008,46(2):216-221.
    [43]Berry J A, Dowtonw J S. Environment regulation of photosynthesis[M]. In: Govind J. Photosynthesis (vol. Ⅱ). New York:Academic Press,1982:263-342.
    [44]Chapin F S, Schulze E, Mooney H A. The ecology and economics of storage in plants[J]. Annual Review of Ecological Systems,1975, (21):423-447.
    [45]Cannell M G. Environmental impacts of forest monocultures:water use, acidification, wildlife conservation, and carbon storage [J]. New Forests,1999, (17): 239-262.
    [46]Chen, H Y, Klinka K. Light availability and photosynthesis of Pseudotsuga menziesii seedlings grown in the open and in the forest understory[J].-Tree Physiol, 1997, (17):23-29.
    [47]Chen H Y. Klinka K. Light availability and photosynthesis of Pseudotsuga menziesii seedlings grown in the open and in the forest understory[J].-Tree Physiol, 1997,(17):23-29.
    [48]Dubinsky Z, Fertelson J, Mauzerall D C. Listening to phytoplankton: measuring biomass and photosynthesis by photoacoustics[J]. Phyol,1998,34(5): 888-892.
    [49]Engel, V L, Poggiani F. Study of foliar chlorophyll concentration and its light absorption spectrum as related to shading at the juvenile phase of four native forest tree species[J]. Rev Bras Fisiol Veg,1991, (3):39-45.
    [50]Farquhar G D, Sharkoy T D. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol,1982, (33):317-345.
    [51]Fryer M J, Andrews J R, Oxborough K, et al. Relationship between CO2 assimilation, photosynthetic electron transport, and active CO2 metabolism in leaves of maize in the field during periods of low temperature [J]. Plant Physiology,1998, (116):571-580.
    [52]Fay P A, Knapp A K. Photosynthetic and stomatal responses of a vena sativa to avariable light environmentfJ]. Am J Bot,1993, (80):136-1373.
    [53]Gamper R. Mayr S, Bauer H. Similar susceptibility to excess irradiance in sun and shade acclimated saplings of Norway spruce [Picea abies (L.) Karst.] and stone pine (Pinus cembra L.)[J]. Photosynthesis,2000, (38):373-378.
    [54]Genty B, Briantais J M, Baker N R. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochem Biophys Acta,1989, (990):87-92.
    [55]Gulmon S L and Chu C C. The Effects of Light and Nitrogen on Photosynthesis, Leaf Characteristics, and Dry Matter Allocation in the Chaparral Shrub, Diplacus aurantiacus[J]. Oecologia,1981, (49):207-212.
    [56]Hikosaka K, Terashima I. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use[J]. Plant Cell Environment,1995,(18):755-618.
    [57]Hikosaka k and Terashima I. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use[J]. Plant, Cell and Environment,1995,(18):755-618.
    [58]Resh S C, Binkley D, Parrotta J A. Greater soil carbon sequestration under nitrogen-fixing trees compared with eucalyptus species [J]. Ecosystems,2002, (5): 217-231.
    [59]Pearcy R W. Sunfiecks and photosynthesis in plant canopies[J]. Annu Rev Plant Physiol Plant Mol Biol,1990,(41):421-453
    [60]Leverenz J W. Shade shoot structure of conifers and the photosynthetic response to light at two CO2 partial pressures[J]. Funct Ecol,1995, (9):413-421.
    [61]Laing W A, Greer D H, Schnell T. Photoinhibition of photosynthesis causes a reduction in vegetative growth rates of dwarf bean (Phaseolus vulgaris) plants [J]. Aust J Plant Physiol,1995, (22):511-520.
    [62]Johnson Z, Richard T. The low light reduction in the quantum yield of photosynthesis:potential errors and biases when calculating the maximum quantum yield[J]. Photosynthesis Research,2003, (75):85-95.
    [63]Kate M and Giles N J. Chlorophyll fluorescence--a practical guide[J]. Journal of Experimental Botany,2000,345(51):659-668.
    [64]Kobe R K. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth[J]. Nordic Society Oikos,1997, (80): 226-233.
    [65]Kobata T. Sugawara S, Takatu S. Shading during the early grain filling period does not affect Potential grain dry matter increase in rice[J]. Agron,2000, (92): 411-417.
    [66]Larcher W. Physiological Plant Ecology [M]. New York:Spring Berlin Heidelberg,1975:244-265.
    [67]Lambers H, Chapin F S, Pons T L. Plant Physiological Ecology[M]. New York:Springer Verlag,2008:112-144.
    [68]Mooney H A, Ehleringer J, Berry J A. High photosynthetic capacity of a winter annual in Death Valley[J]. Science,1976, (194):322-324.
    [69]Munne B S, Nogues S, Alegre L. Diurnal of variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field conditions[J]. New Phytologist,1999.144(1):109-119.
    [70]Mandal K J, Sinha A C. Nutrient management effects on light interception, photosynthesis, growth, dry-matter production and yield of Indian mustard (Brassica juncea)[J]. Journal of Agronomy and Crop Science,2004.175(2):119-129.
    [71]Nijs I, Ferris R, Blu M H. Stomatal regulation in a changing climate:A field study using free air temperature increase (FATI) and free air CO2 enrichment[J]. Plant, Cell and Environment,1997, (20):1041-1050.
    [72]Newmans E, Flooett M W. Irrigation frequency and shading influences on water relations and growth of container grown Euonymus japonica'Aureo marginata'[J]. Journal of Environmental Horticulture,1988, (6):96-100.
    [73]Pires M V, Almeida A A F, Figueiredo A L, Gomes F P, and Souza M M. Photosynthetic characteristics of ornamental passion flowers grown under different light intensities[J]. Photosynthetica,2011,49(4):593-752.
    [74]Palmqvist K, Sundberg B. Light use efficiency of dry matter gain in five macro-lichens:relative impact if microclimate conditions and species 2 specific traits[J]. Plant, Cell& Environment,2000,23(1):1-14.
    [75]Reddy Y A N, Prasad T G, Kumar M U. Effect of low light on Photosynthetic characters in high and low NAR types of rice varieties [J]. Mysour Journal of Agricultural Science,1995,29(3):199-203.
    [76]Zhang S, Ma K, Chen L. Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments [J]. Environ Exp Bot,2003,(49):121-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700