分布式GPS/SINS超紧组合架构下的信号处理和信息融合技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星导航和惯性导航具有互补的优势,二者的组合可以有效地克服GPS信号易受工作环境干扰,以及捷联惯性导航系统(Strapdown Inertial Navigation System,SINS)误差随时间累积的缺点,因此组合GPS/SINS系统被认为是实现连续、实时、精确定位的有效技术途径之一。随着软件接收机技术和组合数据融合技术的发展,GPS和SINS的组合系统历经了松散组合、紧组合和超紧组合三个阶段。与松散组合、紧组合不同,超紧组合系统一改以往仅以SINS为主导的局面,增加了利用SINS信息对GPS信号处理的辅助,即实现GPS的I,Q信号(或GPS信号跟踪参数)和SINS位置、速度之间的信息融合。尤其是分布式的GPS/SINS超紧组合方式,在实现辅助SINS初始对准和误差修正的基础上,应用SINS的输出推算多普勒频移信息,进而辅助接收机的信号捕获和跟踪,使得复杂环境下组合系统具有较强的抗干扰和抗动态能力。
     分布形式的超紧组合系统充分利用SINS的位置、速度和GPS信号跟踪参数之间的关系,且易于工程化实现,逐渐成为组合导航领域的研究热点和发展方向。本课题根据组合系统的框架特点,分别对组合的理论基础,惯性信息辅助的信号捕获和跟踪处理,以及组合信息融合等关键技术进行研究。
     在对GPS和SINS子系统的工作机理进行数学描述的基础上,分别推导伪距、伪距率,I、Q信号,和位置、速度之间的对应关系,为松散组合、紧组合,以及超紧组合建立完备的理论依据。同时,分析I,Q信号层次的集中式超紧组合框架和SINS辅助接收机跟踪环路的分布式超紧组合框架,并验证了不同超紧组合架构在相同条件下的趋同等价性。根据组合系统的需求,设计了基于GPS射频前端和惯性测量单元(InertialMeasurement Unit,IMU)的数据采集平台。
     研究接收机信号捕获技术,考虑其中制约捕获性能的相关因素,提出利用离散小波实现信号捕获预处理的方法,实现兼顾最大化降低数据率和最小化影响信噪比的预处理目的。在基于快速傅里叶变换(Fast Fourier Transformation,FFT)的信号捕获流程中,提出综合利用分裂基算法和素因子算法的优化FFT方法,并将该优化方法应用于信号捕获中的相关运算,进而提高运算效率,适应高动态和高速率的捕获需求。同时,在分析差分相干捕获技术和频率误差修正技术的基础上,提出了综合以上方法的高灵敏度信号捕获方案。引入惯性信息的辅助,分析SINS辅助的GPS接收机信号初始捕获和重捕获的性能。综合测试结果显示引入惯性辅助的差分捕获的信噪比较标准差分提高1dB,频率修正的差分捕获较标准差分提高0.5dB,而标准差分较非相干捕获提高1.5dB。
     剖析接收机信号跟踪环路的误差模型和相关控制理论,将载波相位锁定环(PhaseLocked Loop,PLL)近似为PI(Proportion and Integration)控制模型。在验证加入辅助信息能够保证环路稳定的前提下,采用惯性信息和时钟误差信息估计的多普勒频率及其变化率作为引入项,提出增加类微分控制项的SINS辅助接收机载波跟踪环路设计方案。同时,针对辅助信息中存在的随机多普勒误差进行建模,进一步提高多普勒频移估计的准确性,增强辅助环路性能。综合仿真结果表明应用精确信息辅助的接收机可跟踪载噪比更低的信号,同等带宽条件下,在动态适应性和系统稳定性方面显著提高。
     信号跟踪环路制约着GPS接收机的工作性能,针对其易受高动态和弱信号等环境干扰的缺陷,借助环路鉴相器、滤波器和跟踪环路参数之间的关系,利用滤波估计方法实现GPS接收机的载波信号跟踪和码信号跟踪,综合数据融合的主滤波器构建了一种基于分布UKF(Unscented Kalman Filter)滤波形式的GPS/SINS超紧组合方案。对其中的跟踪从滤波、数据融合主滤波设计、数据融合算法,以及交互信息辅助等问题进行深入分析。构建相应的仿真系统,测试结果表明所提方案相对于单独GPS子系统在基带信号处理层面上具有更强的抗干扰和抗动态性能,相对于各子系统在数据融合层面上具有更高的定位精度。
There are complementary advantages between satellite navigation and inertial navigation.The integration of them will effectively improve the vulnerability to environmentaldisturbance for satellite signals and overcome the shortage of error accumulated over time forstrapdown inertial navigation system (SINS). Therefore, the coupled system of GPS and SINSis considered as one of the best ways to achieve continuous, real-time and accuratepositioning. With the development of software GPS receiver technology and data fusiontechnology, the integration has three stages, that is, loose integration, tight integration andultra-tight integration. In loose integration and tight integration, SINS with GPS informationaiding take the dominant position, but SINS information is utilized to improve GPS signalprocessing in ultra-tight integration, namely, the data fusion between GPS I-branch, Q-branchsignal (or parameters of signal tracking) and the position and speed of SINS. Especially in thedistributed ultra-tight GPS/SINS system, the GPS information is applied to aid initialalignment and errors correction for SINS; meanwhile, the Doppler shift information obtainedby SINS output is introduced to GPS signal acquisition and tracking loop, which improves thecapabilities to resist the jamming and dynamic in complex environments for the coupledsystem. Distributed ultra-tight GPS/SINS system makes full use of relations between positionand speed for SINS and tracking parameters for GPS, which would be apt to engineeringimplementation and generally be central issue and development direction for couplednavigation areas.
     According to the characters of ultra-tight structure, the theoretical basis of the integration,the signal acquisition and tracking with aiding, and data fusion technologies are researchedrepectively in this subject.
     On the basis of mathematical derivation for GPS and SINS subsystem, the correspondingrelationships among pseudorange and pseudorangerate, I-branch, Q-branch signals, andposition and speed are established, which will provide the detailed foundations of differentlevels’ integration. Meanwhile, the ultra-tight structures with centralized I-branch, Q-branchsignal fusion and distributed information aiding are analyzed respectively. Then, thetraditional tracking schemes based on phase locked loop (PLL) and delay locked loop (DLL)are alternatived by Kalman filters, and the ultra-tight structure with the form of distributedfilters are constructed. Using the relations between centralized filtering and federated filering,the equivalence of different ultra-tight coupled structures is proved. According to the requirements of coupled navigation system, raw data collection platform based on GPS radiofrequency front-end and inertial measurement unit (IMU) is developed.
     The signal acquisition technologies in GPS receivers are researched. Considering therelevant factors constrainting capture performance, the signal pre-processing utilizing discretewavelet is proposed, which will minimize data rate and cause less influence to signal to noiseratio. In the process of GPS signal acquisition based on fast Fourier transformation (FFT),split-radix algorithm and prime factor algorithm are utilized to improve the FFT processing incorrelation operations, which will improve the efficiency of operation and satisfy the needs inhigh dynamic and high data ratio environments. Based on the analysis of differentialcoherention acquisition and frequency error correction, a high sensitive signal acquisitionmethod for weak signal is verified. And then the inertial information is introduced to aid gpssignal initial acquisition and re-acquisition. Test results indicate that signal to noise ratio(SNR) of differential acquisition method with inertial information aiding is1dB higher thanstandard differential acquisition, and SNR of differential acquisition with frequency errorscorrection is0.5dB higher than standard differential acquisition. Compared with the standarddifferential acquisition, the SNR is1.5dB higher than non-coherent acquisition.
     The error models and related control theories of signal tracking loops in GPS receiver areanalyzed, and the carrier tracking PLL is approximated to the form of proportion andintegratio (PI) control. With the verification of loop stability in auxiliary information exsiting,the inertial information and clock error information are utilized to estimate the Dopplerfrequency shift and futherly a GPS carrier tracking aiding method is proposed with the formof different control item. Meanwhile, aiming at the random Doppler modeling errors inauxiliary information estimation, auto regressive and moving average (ARMA) model isutilized in Doppler frequency accuracy estimation to enhance the tracking performance.Simulation results indicate that the signal with lower SNR could be tracked in the receiverswith accuracy information aiding. Under the condition of same bandwidth, the dynamicadaptability and system stability could be improved significantly.
     The performance of GPS receiver is affected by tracking loop in high dynamic and weaksignal environments. By means of the corresponding relations between PLL, DLL andtracking parameters, utilize the optimal estimation theories to achieve the carrier tracking inGPS receiver. Considering the data fusion filter, an ultra-tight GPS/SINS coupled methodbased on distributed unscented Kalman filters (UKF) is designed. Futher analyze the trackingloop filter, the data fusion filter and the interactive information correction. To construct thecorresponding integrated structure, simulation results indicate that the performance of proposed scheme is significant in both signal processing level and navigation informationfusion level.
引文
[1] Bradford W. Parkinson, James J. Spilker. Global Positioning System: Theory andApplications, Volume I[D]. American Institute of Aeronautics and Astronautics,1996,29-54.
    [2] Ahmed El-Rabbany. Introduction to GPS: The Global Positioning System, SecondEdition[D]. Artech House Publishers,2006,1-20.
    [3]游新兆,黄立人,任金卫等.全球卫星导航系统的进展[J].大地测量与地球动力学,2003,23(3),116-119.
    [4] Iqbal Asim, Mahmood Hassan, Farooq Umar, et al. An overview of the factorsresponsible for GPS signal error: Origin and solution[C]. International Conference onWireless Networks and Information Systems, WNIS2009, Shanghai, China,2009.
    [5]丁继成.弱信号条件下GPS接收机关键技术研究[D].哈尔滨工程大学,2009.
    [6] Chung Dohyoung Lee Jang Gyu, Park Chan Gook, et al. Strapdown INS error modelfor multiposition alignment[J]. IEEE Transactions on Aerospace and ElectronicSystems,1996,32(4):1362-1366.
    [7]李荣冰,刘建业,曾庆化等.基于MEMS技术的微型惯性导航系统的发展现状[J].中国惯性技术学报,2004,12(6),88-94.
    [8]王养柱,崔中兴.捷联式惯性导航系统算法研究[J].中国惯性技术学报,2000,8(2),31-35.
    [9] C. E. Schultz. INS and GPS integration[D]. Denmark: Technical University ofDenmark,2006.
    [10] D. B. Cox. Integration of GPS with inertial navigation systems[J]. Navigation,1979,1(1),144-53.
    [11]方靖,顾启泰,刘学斌等. MINS/GPS组合导航系统设计与实验[J].清华大学学报(自然科学版),2007,47(8),1316-1319.
    [12]黄晓瑞,崔平远.一种基于信息融合的滤波算法及其应用[J].电子学报,2001,29(9),1225-1227.
    [13] H. David, L. John. Strapdown Inertial Navigation Technology,2nd Edition[M]. TheInstitution of Electrical Engineerings,2004,377-420.
    [14] Chen Cheng, Iba ez Guzmán Javier, Le-Marchand Olivier. Pattern recognition forloosely-coupled GPS/odometer fusion[C].2008IEEE/RSJ International Conferenceon Intelligent Robots and Systems, Nice, France,2008.
    [15] C. Chen, J. Iba ez-Guzm á n, O. Le-Marchand. Low-cost loosely-coupled GPS/odometer fusion: A pattern recognition aided approach[C]. Proceedings of the11thInternational Conference on Information Fusion, Cologne, Germany,2008.
    [16]于洁,王新龙. SINS/GPS紧密组合导航系统仿真研究[J].航空兵器,2008,(6),8-13.
    [17] Soloviev Andrey. Tight coupling of GPS and INS for urban navigation[J]. IEEETransactions on Aerospace and Electronic Systems,2010,46(4),1731-1746.
    [18] J. Elchynski, J.Kirkland. Development and test results of a precision approach andlanding capability for military aircraft using an embedded GPS/INS (EGI) system[C].IEEE Position Location and Navigation Symposium, Palm Springs, USA,1998.
    [19] D. Gustafson, J. Dowdle, K. Flueckiger. A Deeply Integrated Adaptive GPS-BasedNavigator with Extended Range Code Tracking[C]. IEEE Position Location andNavigation Symposium, San Diego, USA,2000.
    [20] M.G. Petovello, C. O’Driscoll, G. Lachapelle. Carrier Phase Tracking of WeakSignals Using Different Receiver Architectures[C]. ION International TechnicalMeeting, San Diego, USA,2008.
    [21] G. Schmidt, R. Phillips. INS/GPS Integration Architectures[R]. Draper LaboratoryReport,2003.
    [22] E. M. Copps, G. J. Geier, W. J. Fidler. Optimal Processing of GPS Signal[J].Navigation: journal of the Institute of Navigation,1980,27(3),171-182.
    [23] Donald Gustafson, John Dowdle, Karl Flueckiger. A Deeply Integrated AdaptiveGPS-Based Navigator with Extended Range Code Tracking[EB/OL]. Charles StarkDraper Laboratory,2000.
    [24] J. D. Gautier, B. W. Parkinson, D. Gebre-Egziabher. Using the GPS/INS Generalizedevaluation Tool(GIGET)for the Comparison of Loosely Coupled, Tightly Coupled andUltra-Tightly Coupled Integrated Navigation Systems[C]. Proceedings of ION59thAnnual Meeting, Albuquerque, New Mexico,2003.
    [25] R. Babu, J. Wang. Improving the Quality of IMU-Derived Doppler Estimates forUltra-Tight GPS/INS Integration[C]. The2004European Navigation Conference onGlobal Navigation Satellite Systems. Rotterdam, Netherlands,2004.
    [26] R. Babu, J. Wang, G. Rao. Algorithms for prediction of INS estimated Doppler inultra-tight integration[C]. International Symposium on GPS/GNSS. Tokyo, Japan,2008.
    [27] G. Gao. INS-Assisted High Sensitivity GPS Receivers for Degraded SignalNavigation[D]. University of Calgary,2007.
    [28] R. Babu, J. Wang. Analysis of INS-derived Doppler effects on carrier tracking loop[J].The Journal of Navigation,2005,58(3),493-507.
    [29]于洁,王新龙. SINS辅助GPS跟踪环路超紧耦合系统设计[J].北京航空航天大学学报,2010,36(5),606-609.
    [30]袁赣南,张涛.四元数UKF超紧密组合导航滤波方法[J].北京航空航天大学学报,2010,36(7),762-766.
    [31]段笑菊,薛晓中. UKF与EKF在GPS/INS超紧组合导航中的应用比较[J].火力与指挥控制,2010,35(6),60-63.
    [32] M. G. Petovello, C. O’Driscoll, G. Lachapelle. Ultra-Tight GPS/INS for Carrier PhasePositioning In Weak-Signal Environments[C]. Proceedings of NATO RTO SET-104Symposium on Military Capabilities Enabled by Advances in Navigation Sensors,Antalya, Turkey,2007.
    [33] M. G. Petovello, C. O'Driscoll, G. Lachapelle. Weak Signal Carrier Tracking UsingExtended Coherent Integration with an Ultra-Tight GNSS/IMU Receiver[C].Proceedings of European Navigation Conference, Toulouse, France,2008.
    [34] Ernest J. Ohlmeyer. Analysis of an Ultra-Tightly Coupled GPS/INS System inJamming[C]. IEEE/ION Position, Location, and Navigation Symposium, San Diego,USA,2006.
    [35] D. Gustafson, J. Dowdle. K. Flueckiger. A High Anti-Jam GPS based Navigator[C].Proceedings of ION National Technical Meeting, Anaheim, USA,2000.
    [36] J. D. Gautier, B. W. Parkinson, D. Gebre-Egziabher. Using the GPS/INS Generalizedevaluation Tool (GIGET) for the Comparison of Loosely Coupled, Tightly Coupledand Ultra-Tightly Coupled Integrated Navigation Systems[C]. Proceedings of ION59th Annual Meeting, Albuquerque, USA,2003.
    [37] R. Babu. Ultra-tight integration of GPS/peesuolites/INS: system design andperformance analysis[D]. School of Surveying and Spatial Information Systems,University of New South Wales,2006.
    [38] M. G. Petovello, Lachapelle. Comparison of Vector-Based Software ReceiverImplementations With Application to Ultra-Tight GPS/INS Integration[C].Proceedings of ION GNSS, USA,2006.
    [39] D. Benson. Interference Benefits of a Vector Delay Lock Loop (VDLL) GPSReceiver[C]. Proceedings of the63rd Annual Meeting of the Institute of Navigation,Cambridge, USA,2007.
    [40] T. Lin, C. O′Driscoll, G. Lachapelle. Development of a Context-Aware Vector BasedHigh-Sensitivity GNSS Software Receiver[C]. Proceedings of International TechnicalMeeting, Institute of Navigation, San Diego, USA,2011.
    [41]高帅和,赵琳.不同GPS/SINS超紧组合框架的分析与等价性推导[C].中国惯性技术学报,2011,19(5),211-214.
    [42]赵琳,高帅和,丁继成等.超紧GPS/SINS组合导航系统研究综述[C].第二届中国卫星导航学术年会,上海,2011.
    [43] D. Gebre-Egziabher. What is the difference between’loose’,’tight’,’ultra-tight’,and’deep’ integration strategies for INS and GNSS?[J]. Inside GNSS,2007,2(1),28-33.
    [44] Lashley Matthew, M. Bevly David, Y.Hung John. Analysis of deeply integrated andtightly coupled architectures[C].2010IEEE/ION Position Location and NavigationSymposium, California, USA,2010.
    [45] S. Godha, M. E. Cannon. Integration of DGPS with a Low Cost MEMS-BasedInertial Measurement Unit (IMU) for Land Vehicle Navigation Application[C]. IONGPS2005, Long Beach, USA,2005.
    [46] G. Gao, G. Lachapelle. A Novel Architecture for Ultra-Tight HSGPS-INSIntegration[J]. Journal of Global Positioning Systems,2008,7(1),46-61.
    [47]王新龙,于洁.基于矢量跟踪SINS/GPS深组合导航方法[J].中国惯性技术学报,2009,17(6),710-717.
    [48] M. Petovello, C. O’Driscoll, G. Lachapelle. Ultra-Tight Integration of an IMU withGPS/GLONASS[C]. Proceedings of13th International Association of Institutes ofNavigation, Stockholm, Sweden,2009.
    [49] M.G. Petovello, D. Sun, G. Lachapelle, M.E. Cannon. Performance Analysis of anUltra-Tightly Integrated GPS and Reduced IMU System[C]. Proceedings of IONGNSS, Fort Worth, Texas,2007.
    [50] Debo Sun. Ultra-Tight GPS/Reduced IMU for Land Vehicle Navigation[D].Department of Geomatics Engineering, University of Calgary,2010.
    [51] T. Li, G. Petovello, G. Lachapelle. Ultra-tightly Coupled GPS/Vehicle SensorIntegration for Land Vehicle Navigation[J]. Navigation,2010,57(3),1-34.
    [52] Kenn Gold, Alison Brown. A Software GPS Receiver Application for Embedding inSoftware Definable Radios[C]. Proceedings of ION GPS2003, Portland, Oregon,2003.
    [53] ZHAO Lin, GAO Shuaihe, LI Pengfei, et al. The Design and Validation of RFFront-end Platform for GPS Receiver[C]. The2010IEEE International Conference onInformation and Automation, Jeju, Korea,2010.
    [54] Lishu Guo, Xuyou Li, Shuaihe Gao. Platform Design and Preliminary FunctionVerification for Software GPS Receiver.2011SECOND ETP/IITA CONFERENCEON TELECOMMUNICATION AND INFORMATION, Phuket, Thailand,2011.
    [55] Kenn Gold, Alison Brown. Architecture and Performance Testing of a Software GPSReceiver for Space-based Applications[C]. Proceedings of IEEE AerospaceConference, Big Sky, Montana,2004.
    [56] Alexander Fridman, Serguei Semenov. Architectures of Software GPS Receivers[J].GPS Solutions,1999,3(4),58-64.
    [57] N. Gerein, A. Brown. Modular GPS Software Radio Architecture[C]. Proceedings ofION GPS2001, Salt Lake City, Utah,2001.
    [58] Vasu Chakravarthy, James Tsui, David Lin, et al. Software GPS Receiver[J]. GPSSolutions,2001,5(2),63-70.
    [59] S Murali Krishna, B. R. Madhukar, Ashok Kamath. Digital Signal Processors in GPSReceivers[J]. GPS Solutions,2000,4(1),67-71.
    [60] Ko Sunjun, Won Jonghoon, Lee Ja-sung. FFT and PLL based GPS signal processingfor Software GPS Receiver[J]. Wuhan University Journal of Natural Sciences,2003,8(2),719-724.
    [61]罗大成,王仕成,曾洪贵等.一种GPS软件接收机的设计[J].仪器仪表学报,2008,29(9),1856-1861.
    [62]张伯川,张其善.高动态接收机的关键问题研究[J].电子学报,2003,31(12),1844-1846.
    [63]薛文芳.高动态GPS接收机设计中几个关键问题的研究[D].北京航空航天大学,2002.
    [64]梁坤.高灵敏度GPS接收技术中几个关键问题的研究[D].中国科学院国家天文台,2007.
    [65]覃新贤.高灵敏度GPS软件接收机关键技术及开发平台研究[D].中国科学院计算技术研究所,2009.
    [66] D. Akopian. Fast FFT based GPS satellite acquisition methods[J]. IEE ProceedingsRadar, Sonar and Navigation,2005,152(4),277-286.
    [67] D. J. R. Van Nee, A. J. Coenen. New fast GPS code-acquisition technique usingFFT[J]. Electronic Letters,1991,27(4),158-160.
    [68] J. Jin, S. Wu, J. Li. Implementation of a new fast PN code-acquisition using radix-2FFT[J]. Journal of Systems Engineering and Electronics,2005,27(11),1957-1960.
    [69] JAMES B Y T.Fundamentals of global positioning system receivers:a softwareapproach,2nd Edition[M]. John Wiley&Sons Inc.,2004,235-236.
    [70] Mohammad H. Zarrabizadeh, S. Sousa Elvino. A differentially coherent PN codeacquisition receiver for CDMA systems[J].IEEE Transactions on communications,1997,45(11),1456-1465.
    [71] Heung Choi, Sang Hyun Park, Deuk Jae Cho, et al. A novel weak signal acquisitionscheme for assisted GPS[C]. Proceedings of the15th International Technical Meetingof the Satellite Division of ION, Portland, USA,2002.
    [72] Sang Hyun Park, Il Heung Choi, Sang Jeong Lee, et al.A Novel GPS InitialSynchronization Scheme using Decomposed Differential Matched Filter[C].Proceedings of the National Technical Meeting of ION, San Diego,USA,2002.
    [73]焦瑞祥,茅旭初.基于DBZP方法的微弱GPS信号快速捕获[J].电子学报,2008,36(12),2285-2289.
    [74] W. L. Mao, W. H. Lin, Y. F. Tseng, et al. New Acquisition Method in GPS SoftwareReceiver with Split-Radix FFT Technique[C].9th International Conference onAdvanced Communication Technology, Phoenix Park, Korea,2007.
    [75] C. S. Nagaraj, G. D. Andrew, R. Chris. Application of Mixed-radix FFT Algorithmsin Multi-band GNSS Signal Acquisition Engines[J]. Journal of Global PositioningSystems,2009,8(2),174-186.
    [76]于海亮,胡小平,唐康华.惯性信息辅助高动态接收机捕获问题的研究[J].航天控制,2008,26(5),50-54.
    [77]张敏虎,任章,华春红.惯性信息辅助的高动态弱GPS信号快速捕获[J].系统工程与电子技术,2011,33(2),366-369.
    [78] Kai Borre, Dennis M. Akos. A Software-Defined GPS and Galileo Receiver: ASingle-Frequency Approach[M]. Birkh user Boston,2006,69-100.
    [79]唐斌,喻夏琼,董绪荣等.智能GPS软件接收机载波跟踪环路设计[J].北京航空航天大学学报,2007,33(7),807-810.
    [80] Ahmed M. Kamel. Design and Testing of an Intelligent GPS Tracking Loop for NoiseReduction and High Dynamics Applications[C]. Proceeding of the ION GNSS,Portland, USA,2010.
    [81] M. L. Psiaki. Smoother-Based GPS Signal Tracking in a Software Receiver[C].Proceeding of ION GPS, Salt Lake City, USA,2001.
    [82] M. L. Psiaki, H. Jung. Extended Kalman Filter Methods for Tracking Weak GPSSignal[C]. Proceeding of ION GPS2002, Portland, USA,2002.
    [83] M. Lashley, D. M. Bevly, J. Y. Hung. Performance analysis of vector trackingalgorithms for weak GPS signals in high dynamics[J]. Selected Topics in SignalProcessing,2009,3(4),661-673.
    [84]刘苑伊,赵昀,耿生群. INS辅助GPS接收机跟踪环算法研究[C]//第一届中国卫星导航学术年会,北京,2010.
    [85] R. Babu, J. Wang. Ultra-tight GPS/INS/PL Integration: A System Concept andPerformance Analysis[J]. GPS Solutions,2010,13(1),75-82.
    [86]赵琳,高帅和,丁继成.应用ARMA模型的辅助载波多普勒精确估计[J].系统工程与电子技术,2011,33(5),1085-1088.
    [87] D. Li, J. Wang, S. Babu. Nonlinear Stochastic Modeling for INS Derived DopplerEstimates in Ultra-Tight GPS/PL/INS Integration[C]. The2005InternationalSymposium on GPS/GNSS, Hong Kong, China,2005.
    [88] R. Babu, J. Wang. Ultra-Tight GPS/INS/PL integration: Kalman Filter PerformanceAnalysis[C]. The2005International Symposium on GPS/GNSS, Hong Kong, China,2005.
    [89] Hyun-Soo Kim, Sung-Chun Bu, Gyu-In Jee, et al. An Ultra-tightly coupled GPS/INSIntegration using Federated Kalman Filter[C]. Proceeding of ION GPS/GNSS2003,Portland, USA,2003.
    [90] D. Li, J. Wang, S. Babu. Enhancing the Performance of Ultra-tight Integration ofGPS/PL/INS: A Federated Filter Approach[J]. Journal of Global Positioning Systems,2006,5(1),96-104.
    [91] D. Li, J. Wang. Kalman filter design strategies for code tracking loop in Ultra-TightGPS/INS/PL integration[C]. ION National Technical Meeting, Monterey, California,2006.
    [92] D. Li, J. Wang. System Design and Performance Analysis of Extended KalmanFilter-Based Ultra-Tight GPS/INS Integration[C]. IEEE/ION Symposium on Position,Location, and Navigation, San Diego, California,2006.
    [93] W. Ding. Optimal Integration of GPS with Inertial Sensors: Modelling andImplementation[D]. University of New South Wales,2008.
    [94] L. Yu, X. Chen. Application of Extended Kalman Filter in Ultra-Tight GPS/IINSIntegration Based on GPS Software Receiver[C].2010International Conference onGreen Circuits and Systems, Shanghai, China,2010.
    [95]张敏虎,任章,华春红. UKF在深组合GPS/INS导航系统中的应用[J].中国惯性技术学报,2009,17(6),697-700.
    [96] Gustafson D., Dowdle J., Flueckiger K. A High Anti-Jam GPS-Based Navigator[C].Proceeding of ION NTM2000, Anaheim, USA,2000.
    [97] D. Zhou, Q. Wang. Strong tracking filtering of nonlinear systems with colorednoise[J]. Journal of Beijing Institute of Technology,1997,17(3),321-326.
    [98] C. Fernández-Prades, P. Closas, J. Vila-Valls. Nonlinear Filtering for Ultra-TightGNSS/INS Integration[C].2010IEEE International Conference on Communications,Cape Town, South Africa,2010.
    [99] Bernal David. Particle Filtering Algorithm for Ultra-tight GNSS/INS Integration[C].Proceeding of ION GNSS, Savannah, USA,2008.
    [100] W. Ding, J. Wang, C. Rizos. Improving Adaptive Kalman Estimation in GPS/INSIntegration[J]. The Journal of Navigation,2007,60(1),517–529.
    [101]张涛. GPS、SINS超紧密组合导航系统的关键技术研究[D].哈尔滨工程大学自动化学院,2010.
    [102]王小旭.非线性SPKF滤波算法研究及在组合导航中的应用[D].哈尔滨工程大学自动化学院,2010.
    [103]何晓峰,胡小平,吴美平等.基于MEMS-IMU辅助的高动态GPS选星方法设计[J].中国惯性技术学报,2007,15(6),716-719.
    [104]黄昆,胡小毛,李士心等. SINS/GPS组合导航系统选星算法[J].中国惯性技术学报,2009,17(6),718-722.
    [105]刘海颖,冯成涛,王惠南.一种惯性辅助卫星导航系统及其完好性检测方法[J].宇航学报,2011,32(4),775-780.
    [106] Yu Ding, Jim Sennott. Ultra-Tight Coupling (UTC) Technique in GPS RAIM[C].Proceedings of the17th International Technical Meeting of the Satellite Division ofION, Long Beach, USA,2004.
    [107] A. Soloviev, T. J. Dickman. Deeply integrated GPS for indoor navigation[C].2010International Conference on Indoor Positioning and Indoor Navigation, Zurich,Switzerland,2010.
    [108] Glenn MacGougan, Kyle O'Keefe, Richard Klukas. Tightly-coupled GPS/UWBIntegration[J]. Journal of Navigation,2010,63(1),1-22.
    [109] G. MacGougan, R. Klukas. Method and apparatus for high precision GNSS/UWBsurveying[J]. Proceedings of ION GNSS, Savannah, USA,2009.
    [110]高帅和,赵琳. GPS接收机中的信号处理技术分析[C].2011年中国全球定位系统技术应用协会年会暨专家论坛,北京,2011.
    [111] Markus Dillinger, Kambiz Madani, Nancy Alonistioti. Software defined radio:architectures, systems, and functions[M]. John Wiley&Sons,2003,1-17.
    [112]李成军,陆明泉,冯振明. GPS中频信号模拟器的数学模型及实现[J].清华大学学报(自然科学版),2008,48(10),1582-1585.
    [113] DING Jicheng, ZHAO Lin, GAO Shuaihe, et al. The Design and Implementation ofRF Front-end for GPS Receivers Based on Discrete Components[C].2010International Conference on Frontiers of Manufacturing and Design Science,Chongqing, China,2010.
    [114] R. G. Vaughan, N. L. Scott, D.R. White. The Theory of Bandpass Sampling[J]. IEEETransaction on signal processing,1991,39(9),1973-1984.
    [115]刘俊成. GPS软件接收机关键技术研究[D].国防科学技术大学,2006.
    [116]刘晓莉,李云.一种基于FFT的高动态GPS信号快速捕获方法[J].系统仿真学报,2009,19(10),2151-2155.
    [117]赵琳,丁继成,马雪飞.卫星导航原理及应用[M].西北工业大学出版社,2011,78-110.
    [118] M. Kokkonen, S. Pietila. A new bit synchronization method for a GPS receiver[C].2002IEEE Position Location and Navigation Symposium, Palm Springs, California,2002.
    [119]闫超.超紧SINS/GPS组合导航系统技术研究[D].哈尔滨工程大学,2010.
    [120] Pratap Misra, Per Enge. Global Positioning System: Signals, Measurements, andPerformance[M]. Ganga-Jamuna Press,2001,153-178.
    [121]汪平,郝金明,沈国康等. GPS单点定位观测值的精度分析与改进[J].大地测量与地球动力学,2009,29(3),141-144.
    [122]赵琳,程建华,赵玉新.船舶导航定位系统[M].哈尔滨工程大学出版社,2011,173-185.
    [123] J. E. Bortz. A new mathematical formulation for stapdown inertial navigation[J].IEEE Transactions on Aerospace and Electronic Systems,197l,7(1),61-66.
    [124]刘婧. GPS/INS紧耦合组合导航系统研究[D].西安电子科技大学,2010.
    [125]吕艳梅,井荣华,吴国庆等.基于UKF的高动态GPS信号参数估计研究[J].系统仿真学报,2008,20(1),169-172.
    [126] C. Kreye, B. Eissfeller, G. Ameres. Architectures of GNSS/INS Integrations-Theoretical Approach and Practical Tests[C]. Inertial Sensors andSystems-Symposium Gyro Technology, Stuttgart, Germany,2004.
    [127]秦永元,牛惠芳.联邦滤波理论在组合导航系统设计中的应用[J].中国惯性技术学报,1997,5(3),1-5.
    [128]顾启泰,王颂.联邦滤波器理论研究[J].中国惯性技术学报,2002,10(6),34-40.
    [129] Nesreen I. Ziedan. GNSS receivers for Weak Signals[M]. Artech House Inc,2006,1-42.
    [130] Xiaoming Han, Guangyu Zheng, Shusheng Peng. High Dynamic GPS Signal Analysisand Acquisition Algorithm[J]. Lecture Notes in Electrical Engineering,2011,100(4),773-779,
    [131] S. M. Deshpande. Study of interference effects on GPS signal acquisition[D].Department of Geomatics Engineering, University of Calgary,2004.
    [132]张博,杨春,解楠等. FFT快速捕获算法在GPS C/A码与P(Y)码中的应用[J].电讯技术,2008,48(12),34-38.
    [133] G. Amara. An introduction to wavelets[J]. IEEE Computational Science andEngineering,1995,2(2),1-18.
    [134]徐庆,王开华,徐继麟.基于小波处理的P码直捕及实现研究[J].系统工程与电子技术,2007,29(4),536-539.
    [135]孙蕾,谷德蜂,罗建书.基于迭代方法的软阈值估计小波去噪[J].系统工程与电子技术,2009,31(1),36-40.
    [136]赵琳,高帅和,丁继成.基于FFT的高动态GPS信号捕获方法优化[J].系统工程与电子技术,2011,33(1),151-156.
    [137] P. Duhamel, M. Vetterli. Fast Fourier transforms: a tutorial review and a state of theart[J]. Signal Processing,1990,4(19),259-299.
    [138]程佩青.数字信号处理教程(第二版)[M].清华大学出版社,2001,138-201.
    [139] Lin Zhao, Shuaihe Gao, Jicheng Ding, et al. Optimized FFT Algorithm and itsApplication to Fast GPS Signal Acquisition, Fourier Transforms-Approach toScientific Principles[M]. InTech Publisher,2011,157-174.
    [140] C. S. Burrus, P. W. Eschenbacher. An In-Place, In-Order Prime Factor FFTAlgorithm[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1981,29(4),806-817.
    [141] Lin Zhao, Shuaihe Gao, Yong Hao. Improved Fast Fourier Transform Processing onFast Acquisition Algorithms for GPS Signals[C]. IEEE9th International Conferenceon Electronic Measurement&Instruments, Beijing, China,2009.
    [142]金俊坤,吴嗣亮,李菊.基于基2-FFT的伪码快速捕获实现新算法[J].系统工程与电子技术,2005,27(11),1957-1960.
    [143]刘彬,张立杰,张春杰.一种改进的FFT算法[J].东北重型机械学院学报,1997,21(4),791-795.
    [144]丁继成,赵琳,余小辉.应用频率误差修正的高灵敏度GPS信号捕获技术[J].哈尔滨工程大学学报,2009,30(8),887-892.
    [145] J. A. Avila-Rodriguez, T. Pany, B. Eissfeller. A Theoretical Analysis Of AcquisitionAlgorithms For Indoor Positioning[C].5th ESA Workshop on Satellite NavigationTechnologies, Noordwijk, Netherlands,2004.
    [146] Yu W, Zheng B, Watson R, et al. Differential combining for acquiring weak GPSsignals[J]. Signal Processing,2007,87(5),824-840.
    [147]莫建文,欧阳缮,孙希延等.一种新的高灵敏度GPS信号捕获方法[J].电路与系统学报,2011,16(4),54-57.
    [148]侯维玮.高灵敏度GNSS捕获技术研究[D].浙江大学信息与电子工程学系,2010.
    [149] James Bao-Yen Tsui. Fundamentals of Global Positioning System Receiver[M].Wiley Interscience,2000,30-49.
    [150]张婧,茅旭初.基于平淡卡尔曼滤波的微弱GPS信号跟踪算法[J].上海交通大学学报,2007,41(11),1834-1838.
    [151] H. U. Uyanik, N. Tarim. PID-Controlled PLL for fast frequency-hopped systems[C].6th IEEE Dallas Circuits and Systems Workshop on System-on-Chip, Dallas, USA2007.
    [152] Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews. Global PositioningSystems, Inertial Navigation, and Integration,2nd Edition[M]. Wiley-IntersciencePublisher,2007,30-78.
    [153]寇艳红,张其善. GPS接收机中晶振误差的模拟方法[J].电子与信息学报,2004,26(8),1319-1324.
    [154] Y. Yang. Tightly Coupled MEMS INS/GPS Integration with INS Aided ReceiverTracking Loops[D]. University of Calgary,2008.
    [155]宋成.辅助型GPS定位系统关键技术[D].国防科技大学电子科学与工程学院卫星导航研发中心,2009.
    [156] Y. Grenier. Time-dependent ARMA modeling of nonstationary signals[J]. IEEETransactions on Acoustics Speech and Signal Processing,1983,31(4),899–911.
    [157]朱奎宝,张春熹,宋凝芳.光纤陀螺随机漂移模型[J].北京航空航天大学学报,2006,32(11),1354-1357.
    [158]吕鹏,陆明泉,冯振明. SNS/GPS紧耦合接收机载波跟踪环路分析[C].第二届中国卫星导航学术年会,上海,2011.
    [159] S. Alban, D.M. Akos, S.M. Rock. Performance Analysis and Architectures forINS-Aided GPS Tracking Loops[C]. Proceedings of the2003National TechnicalMeeting of The Institute of Navigation, Anaheim, California,2003.
    [160]于海亮.基于INS辅助的GPS接收机捕获和跟踪技术研究[D].国防科学技术大学机电工程与自动化学院,2007.
    [161]高帅和.联邦UKF架构下的GPS/SINS超紧组合系统设计[C].中国全球定位系统技术应用协会2011年会暨专家论坛,北京,2011.
    [162]林敏敏,房建成,高国江. GPS/SINS组合导航系统混合校正卡尔曼滤波方法[J].中国惯性技术学报,2003,11(3),29-33.
    [163] Xi Chen, Wenjing Wang, Weixiao Meng, et al. A novel UKF based scheme for GPSsignal tracking in high dynamic environment[C].20103rd International Symposiumon Systems and Control in Aeronautics and Astronautics, Harbin, China,2010.
    [164] Simon J. Julier, Jeffrey K. Uhlmann. A New Extension of the Kalman Filter toNonlinear Systems[C].Int. Symp. Aerospace/Defense Sensing, Simul. and Controls,Orlando, USA,1997.
    [165] E. A. Wan, R. Van Der Merwe. The unscented Kalman filter for nonlinearestimation[C]. The IEEE2000Adaptive Systems for Signal Processing,Communications, and Control Symposium, Lake Louise, Canada,2000.
    [166]卞鸿巍,李安,覃方君等.现代信息融合技术在组合导航中的应用[M].国防工业出版社,2011,144-149.
    [167]王新龙,于洁.一种SINS/GPS超紧致组合导航系统及实现方法[P].中国专利,200910093000.X,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700