客运专线圆端形桥墩的抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
客运专线以高速、安全、准时、方便、舒适的综合优势在世界得到了广泛发展,我国铁路也掀起了建设客运专线的新高潮。现行铁路抗震设计规范在桥梁抗震的设防标准、地震作用计算方法、抗震设计方法及抗震构造措施等方面,都比旧规范大大提高,但是该规范是针对普通铁路桥梁研究制定的,并不能直接适用于客运专线桥梁的抗震设计,这是由客运专线桥梁的质量大、刚度大、采用延性设计及高耐久性等设计特点所决定的。我国虽对客运专线设计进行了多年的前期研究,并已具有建成秦沈客运专线的成功经验,但对客运专线桥梁的抗震设防标准、性能目标、设计方法以及抗震性能等关键问题仍缺乏系统的理论和试验研究。因此,本文结合目前我国客运专线抗震设计中存在的不足,就客运专线低矮桥墩的墩顶反应系数、桥墩的弹塑性分析、桥墩实用简化延性抗震设计方法、桥墩抗震设防标准等问题进行了系统研究。主要研究工作如下:
     (1)介绍了本课题的选题背景和意义,从国内外高速铁路的发展状况、国内外高速铁路的结构形式,以及我国客运专线设计中存在的问题等方面,综合性地进行了论述,提出了客运专线桥梁抗震设计中存在的主要问题,并就某些亟需解决的问题进行课题研究。
     (2)对客运专线的桥梁来说,由于基础均为群桩基础,客运专线的桥梁基础不能按刚性地基来计算,必须考虑结构与地基的相互作用对结构地震反应的影响。对于剪跨比较小的低矮桥墩,建立了桩-土-结构的实体单元计算模型;对于中等高度桥墩,通过对实体单元计算模型与梁单元计算模型的计算比较,认为梁单元能满足计算精度,且能大大降低工作量,所以建立了桩-土-结构的二维梁单元计算简化模型。选用了地基弹簧模拟土对桩基的实际约束功能;模型中考虑了土的附加质量、阻尼系数、地基系数等影响因素。
     (3)提出适合客运专线桥梁的静力法抗震设计判定标准。本文以高度在4m以下剪跨比较小的圆端形低矮墩为研究对象,梁跨度为20m、24m、32m,选取Ⅰ、Ⅱ、Ⅲ、Ⅳ类场地各40条典型的地震波作为激励,考虑了不同的地基系数的影响,通过大量的弹塑性时程计算及数理统计分析,当频率在4.7~9.8Hz时,墩顶反应系数在1.0~1.2之间,变化不大,可以视为刚体考虑,直接按静力法进行计算。建立了客运专线刚性桥墩的计算简化模型,并通过算例证明了该方法的精确性。
     (4)以4~20m中等高度的圆端形桥墩为研究对象,对地基条件、地震波及跨度等影响桥梁弹塑性地震反应特性的主要因素进行了比较分析,给出了这些因素对桥梁反应特性、屈服和破坏情况的影响规律;当基础先于桥墩屈服时,在满足运营要求条件下,选择空心截面以降低桥墩的屈服强度。经过对空心桥墩大量的分析研究,当0.3≤D_i/D≤0.7时,能够使桥墩的屈服强度降低,保证塑性铰出现在桥墩底部,桩基不屈服,解决了墩身和基础设计的不协调问题;对于桥墩先于基础屈服的情况,提出了延性设计原则及构造措施。
     (5)针对桥墩先于基础屈服的情况,建立了这类桥墩的简化延性抗震计算模型,用简化计算方法来求出结构地震反应特征参数,并与时程分析方法计算结果进行比较,证明该模型在墩高15m以下时具有足够的工程抗震计算精度。
     (6)给出了客运专线桥梁抗震设计的地震设防水准、性能目标,以及适用于客运专线桥梁抗震设计的分析方法及设计流程。设计过程分为四个基本步骤:概念设计、常遇地震下强度设计、罕遇地震下的位移设计和抗震构造措施设计。通过一座桥梁的抗震设计实例,给出了本文方法的具体操作过程和可行性。
Because of the synthesis advantages in high speed,safety,punctuality, convenience,comfortability,passenger railway has been widely developed all over the world,and a new peak to built passenger railway is being formed.Current executed Seismic Design Code for Railway in fortification criteria,earthquake action calculated method,earthquake design method and seismic constructional measures of bridge seismic has been updated on the basis of old code,but the new code is made for common railway bridge and can not be directly used in passenger railway bridge design, which is determined by the factors characterizing the design of passenger railway bridge of big mass,big rigidity,ductile design and high durability.Although passenger railway design had been researched for many years,as well as we had gained lots of successful experience,systemic theory and test research on the key problems of passenger railway seismic fortification criteria,performance aims,design method,analysis method and seismic performance is still deficient.As to the current shortages in the seismic design for passenger railway in china,some important problems are systematically studied in present paper,including response factor at top of low pier,elastic-plastic analysis of pier, simply ductile seismic design method of pier,pier seismic fortification criterion.The principal contents are as follows:
     (1)Fist of all,the background and significance of the present subject are introduced. Comprehensive discuss proceed from development of domestic and overseas high railway and structure types to current problem of passenger railway in china.Main questions in the seismic design of passenger railway are put forward,and problems to be solved urgently are researched.
     (2)The foundation of passenger railway can't be regarded as rigidity foundation because of the pile group,so the interaction between structure and foundation for influences of earthquake reaction must be taken into account.An analytical solid model of pile-soil-pier is established for short bridge piers of ratio of shear span.A simplified analytical model of pile-soil-pier of beam unit is established for middle bridge because beam units can satisfy calculated accuracy and decrease work time by comparing solid unit model with beam unit model.Real restraint function is simulated by subgrade spring in model.Influent factors,such as soil additional mass,damp coefficient and base factor, are considered in models.
     (3)Judge criterion that is suitable for static seismic design of passenger railway is presented.The research subjects in this paper are low shear-span round-ended pier, which height is below four meters and spans are twenty meters,twenty-four meters,and thirty-two meters,respectively.The results by elastic-plastic time history analysis are counted and analyzed,which the influence of different base coefficient and every forty earthquake waves of four types of site as excitation have been taken into consideration. When frequency is from 4.7Hz to 9.8Hz,structural response factor at top of pier range from 1.0 to 1.2 and change very small,structure may be taken as rigidity and direct analyze as static method.A computed simplified model of rigidity pier of passenger railway is established,and the method is more accuracy by the example proof.
     (4)The research subjects in this paper are round-ended pier whose height is four meters to twenty meters.Main factors of base condition,earthquake wave and span for influencing elastic-plastic earthquake response characteristic are analyze,influence laws of bridge response characteristic,yield and damage from are obtained.As foundation yield prior to bridge pier,yield intensity of bridge pier is reduced by selected hollow section under meet operational requirements.When D_i/D is greater than equal 0.3 and less than equal 0.7,yield intensity of bridge pier is reduced,plastic hinge appear in pier bottom and pile group do not yield,which solved inconsistent design problem between piers and foundation.When bridge pier yield prior to foundation,the ductile design principle and construct measures are presented.
     (5)Simply ductile seismic model that solved the earthquake response parameters of the structure in simply way was established,and calculated results between in the simply way and in history time analysis way were compared.The model is enough calculated accuracy under 15 meters high in engineering seismic.
     (6)Seismic hazard level,performance objectives,seismic analysis,and design method of passenger railway bridges are given.Four main steps are:conceptual design, force/strength based design under occasional earthquake,displacement-based design under rare earthquake and detailing constructional measures design.A design example is given also.
引文
[1]世界高速铁路的发展概述[J].铁道勘测与设计,2006,1:54-56.
    [21王晓刚.国外高速铁路建设及发展趋势[J].建筑机械,2007,3:30-36.
    [3]刘统畏.铁路跨越式发展的建设重点和进展[J].铁道知识,2005,5:11-13.
    [4]王毅.我国中长期铁路网规划解读[J].交通发展,2004,7:12-14.
    [5]国家发展和改革委员会交通运输司.国家《中长期铁路网规划》内容简介[J].交通运输系统工程与信息,2005,5(4):14.
    [6]王宝歧.铁路掀起建设新高潮[J].铁道货运,2005,2:47.
    [7]赵振辉,秦四平.试论中国发展高速铁路的必然性[J].黑龙江科技信息,2007,04S:182.
    [8]卢祖文.树立全新建设理念,建设一流客运专线[J].铁道工程学报,2005,85(1):1-9.
    [9]周长江.高速铁路发展概况及展望[J].科技交流,2005,2:38-42.
    [10]吴强.日本高速铁路考察报告[J].铁道经济研究,2006,2:17-21.
    [11]冈田宏.日本新干线的现状和未来的发展[J].中国铁道科学,2002,23(2):21-25.
    [12]郑天池.法国高速铁路的成功经验[J].世界铁路,2005,6:14-17.
    [13]彭月新.高速铁路设计特点[J].桥梁建设,1999(3):18-22.
    [14]苏春纪.高速铁路桥涵特点[J].山西建筑,2005,31(7):221-222.
    [15]乔健,王召祜.秦沈客运专线的桥式方案[J].桥梁建设,2000,3:41-43.
    [16]辛学忠.秦沈客运专线桥梁结构技术分析[J].铁道建筑,2001,8:9-11:9-11.
    [17]张立江.秦沈客运专线桥梁设计及对《暂规》的认识[J].铁道标准设计,1999,4:15-20.
    [18]王喜军.秦沈客运专线桥梁结构及设计、施工技术研究[D].西南交通大学硕士学位论文,2002.
    [19]王喜军,申全增.秦沈客运专线桥梁新结构综述[J].铁道标准设计,2002,1-8.
    [20]白小昆.京沪高速铁路中小跨度桥梁结构选型初探[J].铁道标准设计,2002,6:35-39.
    [21]新建铁路桥上无缝线路设计暂行规定[S].北京:铁道科学研究院,2003.
    [22]刘春彦,雷慧锋,陈良江.秦沈客运专线桥梁技术特点及高速条件下桥梁建设展望[J].铁道标准设计,2001,21(9):1-3.
    [23]邓运清.高速铁路简支箱梁设计研究[J].铁道标准设计,2004,7:125-129.
    [24]郭福安.客运专线无碴轨道结构[J].铁道标准设计,2006,4:7-10.
    [25]京沪高速铁路设计暂行规定[S].北京:中国铁道出版社,2005.
    [26]李义兵.客运专线桥梁设计研究[J].铁道标准设计,2006,6:22-24.
    [27]甄津津.客运专线铁路常用跨度桥梁桥墩设计[J].铁道标准设计,2007,2:32-35.
    [28]彭岚平.秦沈可以专线连续结合梁设计[J].铁道标准设计,2001,21(9):18-20.
    [29]铁路工程抗震设计规范(GB50111-2006)[S].北京:中国铁道出版社,2006.
    [30]铁路混凝土结构耐久性设计暂行规定[S].北京:中国铁道出版社,2005.
    [31]M.J.Pender,Aseismic.Pile Foundation Design Analysis[J].Bulletin of The New Zealand National Society for Earthquake Engineering,1993,26:149-160.
    [32]J.Ertrique luco.A Simple Model for Structural Control Including Soil-Structure Interaction Effects[J].Earthquake Engineering and Structural Dynamics,1998,27(3):225-242.
    [33]H.Allison Smith.Effective Optimal Structural Control of Soil-Structure Interaction Systems[J].Earthquake Engineering and Structural Dynamics,1997,26(5):549-570.
    [34]J.Penzien,C.F.Scneffey and R.A.Parmelee(1964).Seismic Analysis of Bridges on Long Piles[J].Proceedings of the American Society of Civil Engineers,Journal of the Engineering Mechanics Division,1964,3:223-254.
    [35]杨昌众.桩基础桥梁的场地判别和地震反应计算的实用简化方法[D].上海同济大学博士学位论文,1987.
    [36]严士超,杜一平.电视塔-桩-土相互作用地展反应分析[J].土木工程学报,1991,24(3):71-79.
    [37]王霓,严士超.土-群桩-结构系统动力特性及相互作用地震反应分析[J].建筑结构学报,1990,11(3):61-79
    [38]林皋,架茂田,陈怀海.土-结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报,1993,26(4):1-13.
    [39]T.Nogami and M.Novak.Resistance of Soil to A Horizontally Vibrating Pile[J].Earthquake Engineering and Structural Dynamics,1977,15:249-261.
    [40]M.Novak and T.Nogami.Soil-Pile Interaction in horizontal Vibration[J].Earthquake Engineering and Structural Dynamics,1977,15:263-281.
    [41]M.H.El Naggar & Milos.Novak,Nonlinear Axial Interaction in Pile Dynamics[J].Journal of Geotechnical Engineering,1994,20:57-62.
    [42]M.H.El Naggar & M.Novak:Nonlinear lateral interaction in pile dynamics[J].Soil Dynamics and Earthquake Engineering,1995,14:141-157.
    [43]横山幸满.桩结构物的计算方法和计算实例[M].北京:中国铁道出版社,1984.
    [44]GBJ111-87.铁路工程抗震设计规范[S].北京:中国计划出版社,1989.
    [45]朱金龙,孙力彤.软土地基桩基础使用 m 法计算的验证[J].同济大学学报,2003,31(8):902-905.
    [46]R.W.Clough,K.L.Benuska,E.L.Wilson.Inelastic earthquake response of tall buildings[M].Proceedings of 3rd WCEE,1965.
    [47]T.Takeda,M.A.Sozen,N.N.Nielson.Reinforced concrete response to simulated earthquake[J]. Journal of Structural Divisions,ASCE,1970,1(96):2557-2573.
    [48]刘庆华.钢筋混凝土桥墩抗震设计中滞回模型与损伤模型的试验与理论研究[D].北方交通大学博士学位论文,1994.
    [49]刘庆华.钢筋混凝土桥墩的延性分析[J].同济大学学报,1998,26(3):245-249.
    [50]李杰,李国强.地震工程学导论[M].地震出版社,1992.
    [51]J.Penzien,S-C Liu.Nondeterministic analysis of nonlinear structures subjected to earthquake excitations[M].Proceedings of 4th WCEE,1969.
    [52]袁万城,胡勃等译,M.J.N 普瑞斯特雷等著.桥梁抗震设计与加固[M].北京:人民交通出版社,1999.
    [53]R.W.Clough,J.Penzien.Dynamics of structures[M].MC.Graw Hill Inc.,1993.
    [54]范立础.卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [55]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [56]李国豪主编.桥梁稳定与振动(修订版)[M].中国铁道出版社,1996
    [57]T.鲍雷,M.J.N 普瑞斯特雷.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社,1999.
    [58]李国豪主编.工程结构抗震力学[M].上海科学技术出版社,1980.
    [59]卓卫东.桥梁延性抗震设计研究[M].同济大学博士学位论文,2000.
    [60]Applied Technology Council.Seismic evaluation and retrofit of concrete building[R].Report ATC-40.
    [61]Building Seismic Safety Council.NEHRP Guidelines for the Seismic Rehabilitation of Buildings[S],FEMA356.Washington DC:Federal Emergency Management Agency,2000.
    [62]R.W.克拉夫,J.彭津著,王光远等译.结构动力学[M].科学出版社,1981.
    [63]钟万勰.计算结构力学微机程序设计[M].水利电力出版社,1986.
    [64]江见鲸,贺小岗.工程结构计算机仿真分析[M].清华大学出版社,1996.
    [65]王勖成,邵敏.有限元法基本原理和数值方法[M].清华大学出版社,1997
    [66]蒋龙琼.非线性有限元法[M].北京工业学院出版社,1985.
    [67]谢贻权,何福保.弹性和塑性力学中的有限单元法[M].机械工业出版社,1981.
    [68]吕和祥,蒋和洋.非线性有限元[M].化学工业出版社,1992.
    [69]钟万勰.计算结构力学微机程序设计[M].水利电力出版社,1981.
    [70]江见鲸,贺小岗.工程结构计算机仿真分析[M].清华大学出版社,1996.
    [71]过镇海.钢筋混凝土原理.清华大学出版社[S].北京:1999.3.
    [72]陈惠发著,余天庆等译.土木工程材料的本构方程(第一、二卷)[M].华中科技大学出版社,武汉:2001.5.
    [73]Bresler B,Pister K S.Strength of Concrete under Combined Stresses[J].ACI,Sept 1958: 321-346.
    [74]Willam K J,Warke E P.Constitutive Models for Triaxial Behavior of Concrete[J].IABSE Proceeding,1975,19:1-30.
    [75]徐积善.强度理论及其应用[S].北京:电水利出版社,1985.
    [76]俞茂宏等.混凝土强度理论及其应用[S].北京:高等教育出版社,2002年1月.
    [77]Romstad K M,et al.Numerical Biaxial Characterization for Concrete[J].ASCE,1974,100(EM5):935-948.
    [78]Darwin D,Pecknold D A.Nonlinear Biaxial Stress Strain Law for Concrete[J].Journal of Engineering Mechanics,1977,103(2):229-241.
    [79]Kupfer H,Gerstle K H.Behavior of Concrete under Biaxial Stresses[J].ASCE,1973,99(EM4).
    [80]Ottosen N S.Constitutive Model for Short-Time Loading of Concrete[J].Journal of Engineering Mechanics,1979,105(1):127-141.
    [81]徐焱.混凝土三轴拉压强度与变形的试验研究[D].清华大学硕士论文,1991年6月.
    [82]江见鲸,贺小岗.混凝土本构关系的现状与展望[J].工程力学增刊(第二届全国结构工程学术会议论文集),1993年5月.
    [83]Yalcin C,Saatcioglu M.Inelastic Analysis of Reinforced Concrete Columns[J].Computers and Structures,2000,77(5):539-555.
    [84]Priestley M J N,Seible F and Calvi G M.Seismic Design and Retrofit of Bridges[J].New York:John Wiley & Sons,1996.
    [85]过镇海,王传志,张秀琴等.混凝土的多轴强度试验和破坏准则研究[S].清华大学抗震抗爆工程研究室科学研究报告第六集 混凝土力学性能的试验研究.清华大学出版社,1996:1-51.
    [86]宋玉普,赵国藩.应变空间混凝土的破坏准则[J].大连理工大学学报.1991,31(4):455-462.
    [87]严宗达.塑性力学[M].天津:天津大学出版社,1988.
    [88]Ottosen N S.A Failure Criterion for Concrete[J].ASCE,1977,103(4):527-535.
    [89]美国强震地面运动峰值汇编[S].中国科学院工程力学研究所情报资料室,1980.
    [90]Kent D C,Park R.Flexural Members with Confined Concrete[J].J.Struct.Div.,ASCE,1971,97(7):1969-1990.
    [91]Park R,Priestley M J N and Gill W D.Ductility of Square-Confined Concrete Columns.[J]J.Struct.Div.,ASCE,1982,108(4):929-950.
    [92]Muguruma H,Watanabe S,Katsuta S and Tanaka S.A Stress-Strain Model of Confined Concrete[J].Proc.JCA Cement and Concrete,Japan Cement Association,Tokyo,Vol.34,429-432(in Japanese).
    [93]Sheikh S A,Uzumeri S M.Analytical Model for Concrete Confinement in Tied Columns[J].J.Struct.Div.,ASCE,1982,108(ST12):2703-2722.
    [94]Fujii M,Kobayashi K,Miyagawa T,Inoue S,and Matsumoto T.A Study on the Application of a Stress-Strain Relation of Confined Concrete[J].Proc.JCA Cement and Concrete,Japan Cement.Association,Tokyo,42:311-314(in Japanese).
    [95]Saatcioglu M,Razvi S.Strength and Ductility of Confined Concrete[J].J.Struct.Eng.,ASCE,1992,118(6):1590-1607.
    [96]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力-应变全曲线方程[J].建筑结构学报,1982,(9):16-20.
    [97]Mander J B,Priestly M J N and Park R.Theoretical Stress-Swain Model for Confined Concrete [J].J.Struct.Eng.,ASCE,1988,114(8):1804-1826.
    [98]Mander J B,Priestley M J N and Park R.Observed Stress-Swain Behavior of Confined Concrete[J].J.Struct.Eng.,ASCE,1988,114(8):1827-1849.
    [99]程海根,董明,李睿.约束混凝土墩柱截面曲率延性分析[J].云南交通科技,2000,16(2):39-42.
    [100]弓俊青,朱唏.钢筋混凝土空心圆端墩柱截面弯曲承载力和延性的分析研究[J].土木工程学报,2001,34(2):11-16.
    [101]鞠彦忠,阎贵平等.少筋钢筋混凝土桥墩 M-(?)曲线的计算[J].中国安全科学学报,2003,13(10):63-65.
    [102]Seismic Design Criteria,Version 1.2.California Department of Transportation(Caltrans)[S].Division of Structures,Sacramento,California,2001.
    [103]TNZ:Bridge Manual[S].Wellington:Transit New Zealand(TNZ),1994.
    [104]Eurocode 8:Design Provisions for earthquake Resistance of Structures,Part Ⅴ Bridges[S].Brussels:Committe European de Normalization(CEN),1994.
    [105]AASHTO:Standard Specifications for Highway Bridges,16th Edition,Division I-A:Seismic Design[S].Washington:American Association of State Highway and Transportation Officials (AASHTO),Inc.,1995.
    [106]沈聚敏,翁义军.钢筋混凝土构件的刚度和延性.见:清华大学抗震抗暴工程研究室.科学研究报告集,第三集,钢筋混凝土结构的抗震性能[S].北京:清华大学出版社,1981:54-71.
    [107]Park,R.,Paulay,T.Reinforced Concrete Structures[S].New York:John Wiley &Sons,1975.
    [108]Elgjada,so.F.E.,Mohraz,B.Inelastic Earthquake Spectra[R].EESD,1987,Vol.15.
    [109]Fajfar,P.Elastic and Inelastic Design Spectra[R].In:10th European Conf.On Earthquake Eng.,Balkema,Rotterdam:Duma(Ed/),1996.
    [110]Fischinger,M.,Fajfar,P.On the Response Modification Factors for Reinforced Concrete Buildings[R].In:Proc.4th U.S.Nat.Conf.Earthquake Eng.,Palm Springs,California:EERI,1990,Vol.2.
    [111]Fischinger,M.,Fajfar,P.Seismic Force Reduction Factors[J].In:Earthquake Eng.,Rutenberg(Ed.),Rotterdam:Balkema,1994.
    [112]Hosni,S.,Heidebrecht,A.C.Influence of Site Effects and Period-Dependent Force Modification Factors on the Seismic Response of Ductile Structures[J].Can.J.Civil Eng.,1994Vol.21.
    [113]Iwan,W.D.Estimating Inelastic Response Spectra from Elastic Spectra[R].EESD,1980,Vol.8.
    [114]Lai,S.S.,P.,Biggs,J.M.Inelastic Response Spectra for A seismic Building Design[J],.J.Struc.Div.,Proc.ASCE,1980,106(ST6).
    [115]Mahin,S.A.Berto,V.V.An Evaluation of Inelastic Seismic Design Spectra[J].J.Struc.Div.,Proc.ASCE,1981,Vol.107.
    [116]Riddell,R.Inelastic Design Spectra Accounting for Soil Conditions[J].EESD,1995,Vol.24.
    [117]Riddell,R.Use and Knowledge of Design Spectra[R].In:Proc.11th WCEE,Acapulco,Mexico:Elsevier Science Ltd.,1996,Paper No.2126.
    [118]Tso,W.K.,Naumoski,N.Period-Dependent Seismic Force Reduction Factors for Short-Period Structures[J].Can.J.Civil Eng.1991,Vol.18.
    [119]Uang,C.M.Establishing R and Cd Factirs fir Building Seismic Provisions[J],J.Structural Eng.,ASCE,1991,Vol.117.
    [120]Vidic,T.,Fajfar,P.and fischinger,M.Consistent Inelastic Design Spectra:Strength and Displacement[J].EESD,1994,Vol.23.
    [121]Wu,J.,Hanson,R.D.Study of Inelastic Spectra with High Damping[J].J.Structural Eng.,ASCE,1989,Vol.115.
    [122]Zahn,F.A.,Park,R.and Priestley,M.J.N.et al.Development of Design Procedures for the Flexural Strength and Ductility of Reinforced Concrete Bridge Columns[J].Bulletin of the New Zealand National Society for Earthquake Engineering,1986,19(3).
    [123]阎贵平.梁式桥弹塑性地震反应与应用延性抗震设计方法的基础研究[D].上海同济大学博士学位论文,1989.
    [124]阎贵平,项海帆.具有单排桩基梁式桥墩的实用延性抗震验算方法研究[J].土木工程学报,1993,26(2):48-56.
    [125]杨新宝.钢筋混凝土桥梁抗震性能评估与加固[D].上海同济大学博士学位论文,2000.
    [126]孙卓.铁路桥梁二阶段抗震设计方法及抗震设计参数研究[D].北方交通大学博士论文, 2002.
    [127]孙卓,阎贵平.钢筋混凝土桥墩抗震性能的试验研究之一[J].中国安全学报,2003,13(1):59-62
    [128]孙卓,阎贵平,钟铁毅.钢筋混凝土桥墩抗震性能的试验研究之二[J].中国安全学报,2003,13(3):46-49.
    [129]孙卓,李建中,阎贵平,范立础.钢筋混凝土单柱式桥墩抗震性能试验研究[J].同济大学学报,2006,34(2):160-164.
    [130]鞠彦忠.低配筋圆端型铁路桥墩的抗震性能研究[D].北京交通大学博士学位论文,2004.
    [131]鞠彦忠,阎贵平,李永哲.低配筋铁路桥墩抗震性能的试验研究[J].铁道学报,2004,26(5):91-95.
    [132]F.A.Zahn,R..Park,and M.J.N.Priestley.Flexural Strength and Ductility of Circular Hollow Reinforced Concrete Columns without Confinement on Inside face[J].ACI Structure Journal,1990,87(12).
    [133]J.B.Mander,M.J.N.Priestley,and R.Park.Theoretical Stress-Strain Model for Confined Concrete[J].Journal of structural Engineering,1986,14(8).
    [134]过镇海.混凝土的强度和变形(试验研究与本构关系)[S].北京:清华大学出版社,1997.
    [135]Caltrans:Seismic Design Criteria,Version 1.1.Sacramento[S].California:California Department of Transportation(CALTRANS),Division of Structions,1999.
    [136]ATC-32.Seismic Evaluation and Retrofit of Concrete Buildings[R].Applied Technology Council.Red Wood City,California,1996.
    [137]JSCE:Standard Specification for Design and Construction of Concrete Structures[S].Tokyo:Japan Society of Civil Eng.(JSCE),1996.
    [138]日本铁道构筑物耐震设计规范[S].东京:铁路综合技术研究室,2000.
    [139]廖庆隆,徐雨义.混凝土耐震结构应用角隅补强箍筋及头型端锚加强钢筋细部及设计[J].结构工程,2000,15(2):57-69.
    [140]M.J.N.普瑞斯特雷等.桥梁抗震设计与加固[S].北京:人民交通出版社,1999.
    [141]L.S.Jacobsen.Steady Forced Vibration as Influenced by Damping.Transactions of ASME,Vol.52,Part1,1930.
    [142]Guide Specification for Seismic Isolation Design[S].American Association of State Highway and Transportation Officials,Washington,D.C.,1991.
    [143]Manual for Menshin Design of Highway Bridges[S].Public Works Research Institute,Tsukuba City,Japan,1992.
    [144]Design of Leak-Rubber Bridge Bearings[S].Civil Division Publication 818/A,New Zealand Ministry of Works and Development,Wellington,New Zealand,1983.
    [145]建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001.
    [146]公路桥梁抗震设计规范(JTJ004-89)[S].北京:人民交通出版社,1989.
    [147]谢旭.桥梁结构地震响应分析与抗震设计[S].北京:人们交通出版社,2006.
    [148]Rosenblueth E,Herrera I.On a kind of hysteretic damping[J].Journal of Engineering Mechanics Division,ASCE,1964:37-48.
    [149]lwan WD,Gates N C.Estimating Earthquake Response of Simple Hysteretic Structures[J].Journal of the Engineering Mechanics Diversion.ASCE,1979,105(3):391-405.
    [150]欧进萍,吴斌,龙旭.耗能减振结构的抗震设计方法[J].地震工程与工程振动,1998,18(2):98-107.
    [151]Eduardo Miranda and Jorge Ruiz-Garcia.Evaluation of approximate meth-ods to estimate maximum inelastic displacement demands[J].Earthquake Engineering and Structural Dynamics,2002:539-560.
    [152]Hwang J S.Evaluation of Equivalent Linear Analysis Methods of Bridge Isolation[J].Journal of Structural Engineering,ASCE,1996,122(8):872-976.
    [153]李研,吴斌,欧进萍.弹塑性结构等效线性化方法的对比研究[J].工程抗震与加固改造,2005,27(1):1-6.
    [154]李妍.弹塑性结构抗震设计的简化方法[D].哈尔滨工业大学硕士学位论文,2003.
    [155]NCHRP Report 472:Comprehensive Specification for Seismic Design of Bridges.National Academic Press,Washington,2002.
    [156]LRFD Bridge Design Specifications,3rd Edition Draft.American Association of State Highway and Transportation Officials(AASHTO),Washington,2001.
    [157]铁道构造物等设计标准.同解说,耐震设计.东京:日本铁道综合技术研究所,1999.
    [158]Freeman S A,Nicoletti J P and Tyrell J V.Evaluations Of Existing Buildings for Seismic Risk?A Case Study of Puget Sound Naval Shipyard,Bremerton,Washington,Proc.1 st US NationalConference on Earthquake Engineering,1975,Berkeley,CA,pp.113-122.
    [159]FEMA.NEHRP Guidelines for the Seismic Rehabilitation of Buildings.FEMA 274,Federal Emergency Management Agency,1996.
    [160]Priestley M J N,Seible F and Calvi G M.Seismic Design and Retrofit of Bridges.New York:John Wiley & Sons,1996
    [161]潘龙.基于推导分析方法的桥梁结构地震损伤分析与性能设计[D].上海:同济大学,2001.
    [162]潘龙,孙利民,范立础.基于推到分析的桥梁地震损伤评估模型与方法[J].同济大学学报,2001,29(1):10-14.
    [163]徐欣国,唐光武,郑罡.Push-over 分析方法在双柱桥墩抗震性能评价上的应用[J].公路 交通技术,2005,3:88-93.
    [164]汪梦浦,周锡元.关于结构静力弹塑性分析(Pushover)方法中的几个问题[J].结构工程师,2002(4):17-22.
    [165]叶燎原,潘文.结构静力弹塑性分析(pushover)的原理和计算实例[J].建筑结构学报,2000,21(1):37-45.
    [166]汪大绥,贺军利,张凤新.静力弹塑性分析的基本原理和计算实例[J].世界地震工程,2004,20(1):45-53.
    [167]钱稼茹,邹积麟.静力弹塑性分析在工程中的应用研究.国家自然科学基金重大项目专题年度研究报告,1999.
    [168]冯峻辉,闫贵平等.地震工程中的静力弹塑性(Pushover)分析法[J].贵州工业大学报,2003,23(2):89-102.
    [169]Saski K.K.,Freeman S.A.Multi-Mode Pushover Procedure(MMP)-A Method to Identify the Effect of Higher Modes in A Pushover Analysis.Proceedings of the 6th U.S.National Conference on Earthquake Engineering,1997.
    [170]Fajfar P.,Gaspersic P.,Drobnic D.A Simplified Nonlinear Method for Seismic Damage Analysis of Structures.Seismic Design Methodologies for the Next Generation of Codes,Rotterdam:AABalkema,1996.
    [171]候爽,欧进萍.结构 Pushover 分析的侧向力分布及高阶振型影响[J].地震工程与工程振动,2004,24(3):89-97.
    [172]Fajfar P.Capacity Spectrum Method Based on Inelastic Demand Spectra.Earthquake Enineering& Structural Dynamics,1999,21:979-993.
    [173]Freeman S.A.Development and Use of Capacity Spectrum Method.Proceedings of the 6th U.S.National Conference on Earthquake Engineering,Seattle,1998.
    [174]Chopra A.K.,Goel R.K.Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Structures:SDF Systems.PEER-1999/02,Pacific Earthquake Engineering Research Center(PEER),University of California,Berkeley,1999.
    [175]Fajfar P.A Nonlinear Analysis Method for Performance-Based Seismic Design.Earthquake Spectra,2000,16(3):573-592.
    [176]周定松,吕西林.延性需求谱在基于性能的抗震设计中的应用[J].地震工程与工程振动,2004,4(1):30-38.
    [177]Krawinkler H,Seneviratna G.Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation.Engineering Structures,1998,20(4-6):452-464.
    [178]赵冠远.钢筋混凝土桥梁非线性分析与基于性能的抗震设计[D].北京交通大学博士学位论文,2006.
    [179]铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-2005)[S].中国铁道出版社,2005.
    [180]王东升,郭恩栋,柳春光,翟桐.钢筋混凝土圆形截面柱式桥墩抗震性能评价[J].世界地震工程,2001,17(1):98-102.
    [181]赵冠远,阎贵平.对美国桥梁抗震规范中桥墩抗剪强度计算公式的评价[J].世界地震工程,2002,18(4):85-90.
    [182]胡永.美国桥梁抗震规范中各桥墩抗剪强度计算公式的差异[J].中外公路,2007,2(27):92-96
    [183]刘林.高墩大跨铁路桥梁抗震设计与减震控制研究[D].北京交通大学博士学位论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700