Bi_(3.15)Nd_(0.85)Ti_3O_(12)铁电薄膜晶粒形貌与取向研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,含铋层钙钛矿结构的铁电薄膜(BLSF)引起了人们的极大兴趣。其中,稀土元素Nd掺杂的钛酸铋Bi3.15Nd0.85Ti3O12(BNT)薄膜是应用于铁电存储器的最热点材料之一。
     本文采用化学溶液沉积方法,分别在Pt(111)/Ti/SiO2/Si(001)和TiO2(101)/ Pt(111)/Ti/SiO2/Si(001)衬底上制备了BNT薄膜,研究了前驱体溶液浓度、退火条件和衬底材料对薄膜晶粒形貌和取向,以及铁电性能的影响,并对这些影响,从物理机制上进行了讨论。在大量实验的基础上,本论文确认了一种制备较大剩余极化强度的BNT薄膜的优化工艺为:使用TiO2种子层,在750℃条件下快速退火。
     本论文首次开展了对BNT薄膜的晶粒形貌和取向的深入探讨。其中,晶粒形貌主要受成核机制的影响。对于生长在Pt电极上的BNT薄膜,当结晶温度较低时,体成核、界面成核同时发生,薄膜由细小晶粒组成;当结晶温度较高时,成核势垒低的界面成核成为主要的成核方式,薄膜晶粒呈柱状。而对于生长在TiO2种子层上的BNT薄膜,由于其界面处的成核势垒较高,不利于界面成核成为主要的成核方式,因而不利于柱状晶粒的形成。
     BNT薄膜的晶粒取向同时受成核机制和晶粒生长的影响。对于直接生长在Pt电极上的BNT薄膜,它受三方竞争的影响:界面成核——利于c轴取向的晶粒、晶粒生长——利于a轴取向的晶粒,以及体内成核——利于随机取向的晶粒。但对于生长在TiO2种子层上的BNT薄膜,其晶粒取向只受两方面竞争的影响:界面成核和晶粒生长——利于a轴取向的晶粒,以及体内成核——利于随机取向的晶粒。
     同时,本论文的研究还表明,BNT薄膜的铁电性能,尤其是剩余极化强度,主要随其a轴取向度的增大而增强,但同时也受其他因素,如晶粒大小的影响。晶粒尺寸较小的BNT薄膜,其剩余极化强度较小,矫顽场较大。
     总之,要获得剩余极化强度较大的BNT薄膜,应一方面提高薄膜、衬底界面处的a轴取向晶粒的成核,另一方面促进薄膜晶粒的柱状生长。
     最后,本论文还提出了反铁电耦合的铁电双层膜和相应超晶格系统的模型,其特点是考虑了组成薄膜体内的极化梯度和表面效应,并且组成材料是一级相变材料。基于该模型,我们在Landau-Ginzburg热力学理论的框架下,研究了铁电双层膜和相应超晶格系统的电滞回线和尺寸驱动相变行为。结果表明,铁电双层膜和相应的超晶格系统的组分膜的性质和厚度比,以及组分膜之间的反铁电耦合强度,都会影响其电滞回线的形状,同时,组分膜之间的反铁电耦合的强度,还会对系统的尺寸驱动相变行为产生重大的影响。当耦合较弱时,系统具有尺寸驱动相变行为,而当耦合较强时,该行为消失。
     总而言之,本论文研究的创新之处在于:
     1、首次系统研究了BNT薄膜的晶粒形貌,尤其是发现了TiO2种子层的使用不利于柱状晶粒的形成;
     2、首次系统研究了BNT薄膜的晶粒取向,发现晶粒取向是成核机制和晶粒生长机制竞争的结果;
     3、发现BNT薄膜的铁电性能同时受薄膜取向和晶粒尺寸的影响;
     4、提出了反铁电耦合的铁电双层膜和相应超晶格系统的模型,其特点是组成材料为一级相变材料,考虑了组分膜内的极化梯度和表面效应。随后,在Landau- Giznburg热力学理论的框架下,研究了系统的电滞回线和尺寸驱动相变行为。这一研究,提出了一种新型的材料设计,具有一定的应用前景。
Bismuth layered structure ferroelectrics (BLSFs) thin films have been widely investigated recently. Among them, Bi3.15Nd0.85Ti3O12 (BNT),as a typical kind of layer-structured ferroelectrics, has attracted much attention due to its potential applications in nonvolatile ferroelectric random access memory (NvFRAM) devices.
     In this thesis, we fabricated BNT thin films by chemical solution deposition method on both Pt(111)/Ti/SiO2/Si(001) and TiO2(101)/ Pt(111)/Ti/SiO2/Si(001) substrates. The effects of the precursor solution concentration, annealing conditions and the propertiy of substrates on the morphology and orientation of grains in those films were addressed, based on the classical nucleation theory. And using Landau-Ginzburg thermadynamics theory, the hysteresis loops of first-order ferroelectric superlattices are simulated, by taking into acount the graded polarization and the surface effect. Moreover, the effects of the antiferroelectric coupling on the size effect of the system were investegated. The main results are as follows:
     The grain morphology of BNT thin films is mainly determined by the characteristics of the nucleation event; when crystallization occurs at a low temperature, thus the barrier heights for both the interface nucleation and the bulk nucleation can be surmounted, and the film displays microstructure with fine grains. In the opposite case, lower energy interface nucleation events dominate the thin film microstructure and the film is mainly columnar in nature.
     The grain orientation of BNT thin films are decided by both the nucleation and the grain growth. On the one hand, the c-axis-oriented-grain nucleation is favored due to its lower surface energy and the better mismatch with Pt. But the grains are randomly orientated when the nucleation is occurred in the bulk of films. On the other hand, the a-axis-oriented grains are favored owing to their fasted grain growth speed along the film normal. Anyway, a competition exists between the nucleation and grain growth in determining the film orientation. But for films grown on the seeding layer of TiO2, the low degree of c-aixs-orientation is obtained because the a-axis-oriented grains are favored in both the nucleation and the growth. While, a high degree of (117)-orientation is still obtained even when annealed under 700℃using the rapidly thermal annealing. This results from the fact that the TiO2 seeding layer helps the occurance of bulk nucleation, which favors the randomly oriented grains. Until the annealing with high temperature of 750℃and rapidly thermal annealing is adopted, BNT thin films with a high degree of a-axis-orientation can be obtained.
     The ferroelectric properties of BNT thin films, especially their ramnent polarization, has close relation with their orientation, i.e., the higher degree of a-axis-orientation, the stronger the remnant polarization. But at the same time, the property is also affected by the grain size, because it is more difficult to reorientate the polarization in the smaller grains by the applied electric field, and so the coercive field increases. For first-order ferroelectric superlattices, their loop patterns vary between typically antiferroelectric and typically ferroelectric depending on the thickness ratio, coupling constant, thickness and extrapolation length. The antiferroelectric coupling has a great effect on the phase transition of a bilayer. It is shown that the size-driven phase transition can’t be observed in a ferroelectric bilayer in the case of strong antiferroelectric coupling.
     The innovations of the thesis are as follows:
     1. Study systematically the effects of fabrication conditions on the morphology of grains in BNT thin films;
     2. Study systematically the effects of fabrication conditions on the orientation of grains in BNT thin films and address the mechanism ;
     3. Put forward the opitimized fabrication conditions to get BNT thin films with excellent properties;
     4. Simulate the hysetesis loops of first-order ferroelectric bilayers or superlattices and their size effect, by taking into account the surface effect and polarization variation in component films.
引文
[1] Scott J.F..铁电存储器.北京:清华大学出版社, 2004, p2-6
    [2] Lines M.E. Glass A.M. Principles and Applications of Ferroelectric and Related Materials. Oxford, UK: Clarendon Press, 2001, p3-16
    [3]李恒德.现代材料科学与工程辞典.山东:山东科学技术出版社, 2002, p444
    [4]殷之文.电介质物理学.北京:科学出版社, 2003, p9-25
    [5]钟维烈.铁电体物理学.北京:科学出版社, 2000, p1-18
    [6] M.E.莱因斯, A.M.格拉斯.铁电体及有关材料的原理和应用.北京:科学出版社, 1989, p593-639
    [7]许煜寰.铁电与压电材料.北京:科学出版社, 1978, p1-8
    [8] Jona F S. G. Ferroelectric Crystals. New York: Dover Publ, 1993, p3-6
    [9] Nalwa HS. Ferroelectric Polymers. New York: Marcel Dekker, 1995, p2-9
    [10] Sessler G. M. Electrets. New York: Springer-Verlag, 1987, p83-86
    [11] Dawber M. R. K. M., Scott J. F. Physics of thin-film ferroelectric oxides. Review of modern physics, 2005, 77: 1083-1131
    [12] Chapman D. W. Some thin film properties of a new ferroelectric composition. Journal of Applied Physics, 1969, 40: 2381-2385
    [13] Francombe M. H. Ferroelectric films and their device applications. Thin Solid Films, 1972, 13: 413-433
    [14] Sharma B. S., Vogel S. F., Prentky P. I. Retention in thin ferroelectric films. Ferroelectrics, 1973, 5: 69-75
    [15] Eaton S. S., Butler D. B., Parris M. et al. Ferroelectric nonvolatile memory, San Francisco, CA, USA, 1988. 130-31
    [16] Ramesh R. Thin Film Ferroelectric Materials and Devices. Dordrecht: Kluwer Academinc, 1997, p56-78
    [17] Setter N. Electroceramic Based MEMS. New York: Springer, 2005, p96
    [18] Baginsky I. L. K. E. G. a. S. L. N. Electronic devices based on niobate barium-strontium thin film. IEEE 7th International Symposium on Applications of Ferroelectrics, 1990: 302-305
    [19] F. Y. Chen Y. K. F., C. Y. Shu et al. Numerical analysis of a PbTiO3 ferroelectric thin-film infrared optical diode. IEEE Transactions on Electron Devices, 1997, 44: 937-942
    [20] P. M. Piezoelectric and pyroelectric microsystems based on ferroelectric thin films. Ferroelectrics, 1996, 1: 145-151
    [21] Quaddari M. D. S., Vidal F. et al. Microwave characterization of ferroelectric thin film materials. IEEE Transactions on Microwave Theory and Techniques, 2005, 53: 1390-1397
    [22] Sakamoto T., Kawanishi T., Izutsu M. Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation. Optics Letters, 2006, 31: 811-813
    [23] Gallo K., Codemard C., Gawith C. B. E. et al. Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal. Optics Letters, 2006, 31: 1232-1234
    [24] Zhu D., Xu J., Qiao H. et al. Ultraviolet photorefractive effect in Mg-doped near-stoichiometric LiNbO3. Optics Communications, 2006, 266: 582-585
    [25] Ren Z., Heard P. J., Hallam K. R. et al. Fabrication and characterizations of proton-exchanged LiNbO3 waveguides fabricated by inductively coupled plasma technique. Applied Physics Letters, 2006, 88: 142905-142908
    [26] Baginsky I. L., Kostsov E. G. Linear electrostatic micromotor on the basis of ferroelectric ceramics. Ferroelectrics, 2005, 320: 141-148
    [27] Baginsky I. L., Kostsov E. G. Electrostatic micromotor based on ferroelectric ceramics. Journal of Micromechanics and Microengineering, 2004, 14:1569-1575
    [28] Dyatlov V. L., Kostsov E. G. Planar electrostatic micromotors on the basis of the ferroelectric films. Integrated Ferroelectrics, 1999, 23: 149-160
    [29] Baginsky I. L., Kostsov E. G. High-energy capacitance electrostatic micromotors. Journal of Micromechanics and Microengineering, 2003, 13: 190-200
    [30] Watts B. E., Leccabue F., Fanciulli M. et al. The effects of baking cycles on the properties of ferroelectric thin films. Materials Science in Semiconductor Processing, 2002, 5: 147-152
    [31] Madeswaran S., Giridharan N. V., Jayavel R. Sol-gel synthesis and property studies of layered perovskite bismuth titanate thin films. Materials Chemistry and Physics, 2003, 80: 23-28
    [32] Yu Y. J., Chan H. L. W., Wang F. P. et al. Effects of rare earth Eu doping on ferroelectric properties of PbZr0.52Ti0.48O3 thin films by sol-gel methods, The 8th IUMRS International Conference on Electronic Materials, Xi an, China, 2003. p. 726-732
    [33] Kim K.-T., Kim C.-I. The effects of drying temperature on the crystallization of YMnO3 thin films prepared by sol-gel method using alkoxides. Journal of the European Ceramic Society, 2004, 24: 2613-2617
    [34] Kobune M., Fukushima K., Yamaji T. et al. Growth of ferroelectric bismuth lanthanum nickel titanate thin films by rf magnetron sputtering. Journal of Applied Physics, 2007, 101: 074110-074116
    [35] Zheng R. Y., Gao X. S., Zhou Z. H. et al. Multiferroic BiFeO3 thin films deposited on SrRuO3 buffer layer by rf sputtering. Journal of Applied Physics, 2007, 101: 054104-054110
    [36] Hiramatsu H., Orita M., Hirano M. et al. Electrical conductivity control in transparent p-type (LaO)CuS thin films prepared by rf sputtering. Journal of Applied Physics, 2002, 91: 9177-9180
    [37] Miller M. S., Stageberg F. E., Chow Y. M. et al. Influence of rf magnetron sputtering conditions on the magnetic, crystalline, and electrical properties of thin nickel films. Journal of Applied Physics, 1994, 75: 5779-5785
    [38] Liu J. M., Wang Y., Zhu C. et al. Temperature-dependent fatigue behaviors of ferroelectric PbZr0.52Ti0.48O3 and Pb0.75La0.25TiO3 thin films. Applied Physics Letters, 2005, 87: 042904-042907
    [39] Yuan G. L., Liu J. M., Zhang S. T. et al. Low-temperature switching fatigue behavior of ferroelectric SrBi2Ta2O9 thin films. Applied Physics Letters, 2004, 84: 954-956
    [40] Ma W., Harnagea C., Hesse D. et al. Well-ordered arrays of pyramid-shaped ferroelectric BaTiO3 nanostructures. Applied Physics Letters, 2003, 83: 3770-3772
    [41] Joseph M., Tabata H., Kawai T. Ferroelectric behavior of Li-doped ZnO thin films on Si(100) by pulsed laser deposition. Applied Physics Letters, 1999, 74: 2534-2536
    [42] Liu K.-S., Chen Y.-J., Jamn G. et al. (Pb1-xLax) (Zr1-yTiy)O3 patterns on Pt-coated silicon prepared by pulsed laser deposition process. Applied Physics Letters, 1999, 75: 2647-2649
    [43] Shimizu M., Fujisawa H., Shiosaki T. MOCVD of Pb-based ferroelectric oxide thin films. Journal of Crystal Growth, 1997, 174: 464-472
    [44] Erbil A., Braun W., Kwak B. S. et al. Oxide ferroelectric materials grown by metalorganic chemical vapor deposition. Journal of Crystal Growth, 1992, 124: 684-689
    [45] Shimizu M., Nonomura H., Fujisawa H. et al. Preparation of PbZrxTi1-xO3 nanostructures on various substrates by MOCVD, Abs. of 13th Int. Symp. on Integrated Ferroelectrics, 2005. 2433-2438
    [46] Lu P., Li H., Wang Y.-M. et al. Growth characteristics of PbTiO3 andPb(ZrxTi1-x)O3 thin films by novel single-solid-source metalorganic chemical vapor processing. Journal of Crystal Growth, 1997, 181: 374-381
    [47] Funakubo H., Oikawa T., Higashi N. et al. Metal organic chemical vapor deposition growth of epitaxial SrRuO3 and CaRuO3 thin films with different orientations as the bottom electrode for epitaxial ferroelectric thin film. Journal of Crystal Growth, 2002, 235: 401-406
    [48] Wakiya N., Bao D., Shinozaki K. et al. Preparation and properties of novel ferroelectric and ferromagnetic array structure thin film. Ferroelectrics, 2002, 273: 149-154
    [49] Schlom D. G., Haeni J. H., Lettieri J. et al. Oxide nano-engineering using MBE. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 87: 282-291
    [50] Izyumskaya N., Avrutin V., Gu X. et al. Growth of high-quality Pb(ZrxTi1-x)O3 films by peroxide MBE and their optical and structural characteristics, Boston, MA, United States, 2006. p. 204-09
    [51] Theis C. D., Schlom D. G. Epitaxial lead titanate grown by MBE. Journal of Crystal Growth, 1997, 174: 473-479
    [52] Yoneda Y., Sakaue K., Terauchi H. RHEED observation of BaTiO3 thin films grown by MBE. Surface Science, 2003, 529: 283-287
    [53] Womack R., Tolsch D. 16 kb ferroelectric nonvolatile memory with a bit parallel architecture, New York, NY, USA, 1989. p. 242-243
    [54] Kang H.-B., Lee J.-J., Hong S.-K. et al. A dual-gate cell (DGC) FeRAM with NDRO and random access scheme for nanoscale and terabit non-volatile memory. Integrated Ferroelectrics, 2006, 81: 141-148
    [55] Thakoor S., Olson E., Nixon R. H. Optically addressed ferroelectric memory and its applications. Integrated Ferroelectrics, 1994, 4: 257-269
    [56] Choi M.-K., Jeon B.-G., Jang N. et al. A 0.25-μm 3.0-V 1T1C 32-Mbnonvolatile ferroelectric RAM with address transition detector and current forcing latch sense amplifier scheme. IEEE Journal of Solid-State Circuits, 2002, 37: 1472-1478
    [57] Jia Z., Ren T.-L., Liu L.-T. A novel scheme of cross bitlines for FeRAM array. Integrated Ferroelectrics, 2006, 81: 131-140
    [58] Rosenwaks Y., Dahan D., Molotskii M. et al. Ferroelectric domain engineering using atomic force microscopy tip arrays in the domain breakdown regime. Applied Physics Letters, 2005, 86: 012909-012911
    [59] Molotskii M., Agronin A., Urenski P. et al. Ferroelectric domain breakdown. Physical Review Letters, 2003, 90: 107601-107611
    [60] Scott J. F. Dielectric breakdown, negative resistivity, depletion widths and the role of Bi in strontium bismuth tantalate (SBT) devices. Integrated Ferroelectrics, 1998, 19: 85-93
    [61] Stolichnov I., Tagantsev A., Setter N. et al. Constant-Current study of dielectric breakdown of Pb(Zr,Ti)O3 ferroelectric film capacitors, Aachen, 2001. p. 737-745
    [62] Finder J., Melnick B. M., Abrokwah J. et al. Statistical investigation of dielectric breakdown of strontium bismuth tantalate thin film capacitors. Integrated Ferroelectrics, 1997, 15: 145-154
    [63] Lou X., Hu X., Zhang M. et al. Mechanisms of nano-shorts in the electrical breakdown of ferroelectric thin films, Integrated Ferroelectrics, 2005, 73, 93-98
    [64] Chen X., Kingon A. I., Al-Shreef H. et al. Electrical transport and dielectric breakdown in Pb(Zr,Ti)O3 thin films. Ferroelectrics, 1994, 151: 133-138
    [65] Schorn P., Ellerkmann U., Bolten D. et al. Non-linear imprint behavior of PZT thin films. Integrated Ferroelectrics, 2003, 53: 361-369
    [66] Zhou Y., Chan H. K., Lam C. H. et al. Mechanisms of imprint effect on ferroelectric thin films. Journal of Applied Physics, 2005, 98: 024111-024117
    [67] Ye Z., Tang M. H., Zhou Y. C. et al. Modeling of imprint in hysteresis loop offerroelectric thin films with top and bottom interface layers. Applied Physics Letters, 2007, 90: 042902-042905
    [68] Sun M., Zhong C., Chen F. et al. The imprint rate of Pb(Zr0.55,Ti0.45)O3 ferroelectric thin films. Integrated Ferroelectrics, 2006, 78: 53-57
    [69] Grossmann M., Lohse O., Bolten D. et al. Lifetime estimation due to imprint failure in ferroelectric SrBi2Ta2O9 thin films. Applied Physics Letters, 2000, 76: 363-365
    [70] Anbusathaiah V., Nagarajan V., Aggarwal S. High-resolution piezoresponse force microscopy investigation of imprint in ferroelectric thin films. Applied Physics Letters, 2006, 89: 132912-132915
    [71] Zhang Z., Xie D., Zhu J. et al. Characterization of imprint behavior for the SrBi2Ta2O9 thin films. Integrated Ferroelectrics, 2006, 79: 245-251
    [72] Yadlovker D., Berger S. Nano-ferroelectric domains grown inside alumina nano-pores. Ferroelectrics, 2006, 336: 219-229
    [73] Saad M. M., Baxter P., Bowman R. M. et al. Intrinsic dielectric response in ferroelectric nano-capacitors. Journal of Physics Condensed Matter, 2004, 16: 451-456
    [74] Morozovska A. N., Eliseev E. A. Modeling of micro- and nano-scale domain recording by high-voltage atomic force microscopy in ferroelectric semiconductors. Physica B: Condensed Matter, 2006, 373: 54-63
    [75] Watanabe Y., Masuda A. Nano-scale theory of ferroelectric surface predicting skin-deep quantized 2D electron gas. Ferroelectrics, 2002, 267: 379-384.
    [76] Dawber M., Gruverman A., Scott J. F. Skyrmion model of nano-domain nucleation in ferroelectrics and ferromagnets. Journal of Physics Condensed Matter, 2006, 18: 71-79
    [77] Fernandes J. R. A., Joanni E., Savu R. Optimization of the fabrication parameters of PZT 52/48 thin films by pulsed laser ablation, Materials science forum, 2006,514:1353-1357
    [78] Doi H., Atsuki T. Influence of buffer layers and excess Pb/Zr+Ti ratios on fatigue characteristics of sol-gel derived Pb(Zr, Ti)O3 thin films. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1995, 34: 5105-5112
    [79] Choo W. K., Kim K. Y., Kim H. J. et al. Microstructural rearrangement in PZT(52/48) thin films prepared by reactive cosputtering on pt on Si(100), Boston, MA, USA, 1993, 513-518
    [80] Wang Z.-J., Karibe I., Yan L. J. et al. Effect of Zr/Ti ratio in targets on electrical properties of lead zirconate titanate thin films derived by pulsed laser deposition on template layer. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2002, 41: 6658-6663
    [81] Wang Z. J., Aoki Y., Yan L. J. et al. Crystal structure and microstructure of lead zirconate titanate (PZT) thin films with various Zr/Ti ratios grown by hybrid processing. Journal of Crystal Growth, 2004, 267: 92-99
    [82] Wang C., Fang Q. F., Zhu Z. G. Internal friction study of Pb(Zr, Ti)O3 ceramics with various Zr/Ti ratios and dopants. Journal of Physics D: Applied Physics, 2002, 35: 1545-1549
    [83] Haccart T., Soyer C., Cattan E. et al. Piezoelectric properties of PZT: Influence of (Zr/Ti) ratio and niobium substitution, Materials Science in Semiconductor Processing, 2001, 185-195
    [84] Zhu W., Vest R. W., Tse M. S. et al. Characteristics of ferroelectric 60/40 PZT films deposited by metallo-organic decomposition technology for memory applications. Journal of Materials Science: Materials in Electronics, 1994, 5: 173-179
    [85] Lee S.-G. Preparation and electrical properties of sol infiltrated Pb(Zr0.7Ti0.3)O3 ferroelectric thick films. Journal of Alloys and Compounds, 2008, 454: 406-409
    [86] Park B. H., Kang B. S., Bu S. D. et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999, 401: 682-684
    [87] Yao Y. Y., Song C. H., Bao P. et al. Doping effect on the dielectric property in bismuth titanate. Journal of Applied Physics, 2004, 95: 3126-3130
    [88] Garg A., Snedden A., Lightfoot P. et al. Investigation of structural and ferroelectric properties of pulsed-laser-ablated epitaxial Nd-doped bismuth titanate films. Journal of Applied Physics, 2004, 96: 3408-3412
    [89] Cheng Z., Kannan C. V., Ozawa K. et al. Orientation dependent ferroelectric properties in samarium doped bismuth titanate thin films grown by the pulsed-laser-ablation method. Applied Physics Letters, 2006, 89: 032901-032903
    [90] Simoes A. Z., Quinelato C., Ries A. et al. Preparation of lanthanum doped Bi4Ti3O12 ceramics by the polymeric precursor method. Materials Chemistry and Physics, 2006, 98: 481-485
    [91] Liu W. L., Xia H. R., Han H. et al. Electrical properties of Sm-doped bismuth titanate thin films prepared on Si (100) by metalorganic decomposition. Materials Research Bulletin, 2004, 39: 1215-1221
    [92] Kim J.-P., Cho C.-R., Jang M.-S. et al. Physical properties of Mn-doped Bi3.65La0.47Ti3O12 crystals. Integrated Ferroelectrics, 2006, 79: 55-62
    [93] Chon U., Jang H. M., Kim M. G. et al. Layered perovskites with giant spontaneous polarizations for nonvolatile memories. Physical Review Letters, 2002, 89: 087601-087611
    [94] Hou F., Shen M., Cao W. Ferroelectric properties of neodymium-doped Bi4Ti3O12 thin films crystallized in different environments. Thin Solid Films, 2005, 471: 35-39
    [95] Garg A., Barber Z. H., Dawber M. et al. Orientation dependence of ferroelectric properties of pulsed-laser-ablated Bi4Ti3O12 films. Applied Physics Letters, 2003, 83: 2414-2416
    [96] Matsuda H., Ito S., Iijima T. Design and ferroelectric properties of polar-axis-oriented polycrystalline Bi4-xPrxTi3O12 thick films on Ir/Si substrates. Applied Physics Letters, 2003, 83: 5023-5025
    [97] Chon U., Shim J. S., Jang H. M. Ferroelectric properties and crystal structure of praseodymium-modified bismuth titanate. Journal of Applied Physics, 2003, 93: 4769-4775
    [98] Chen M., Liu Z. L., Wang Y. et al. Ferroelectric properties of Pr6O11-doped Bi4Ti3O12. Solid State Communications, 2004, 130: 735-739
    [99] Kim W.-J., Kim S. S., Jang K. et al. Ferroelectric Bi3.4Eu0.6Ti3O12 thin films deposited on Si(1 0 0) and Pt/Ti/SiO2/Si(1 0 0) substrates by a sol-gel process. Journal of Crystal Growth, 2004, 262: 327-333
    [100] Chon U., Kim K.-B., Jang H. M. et al. Fatigue-free samarium-modified bismuth titanate (Bi4-xSmxTi3O12) film capacitors having large spontaneous polarizations. Applied Physics Letters, 2001, 79: 3137-3139
    [101] Kim S. S., Bae J. C., Kim W.-J. Fabrication and ferroelectric studies of Bi4-xGdxTi3O12 thin films grown on Pt/Ti/SiO2/Si and p-type Si substrates. Journal of Crystal Growth, 2005, 274: 394-401
    [102] de Araujo C. A. P., Cuchiaro J. D., McMillan L. D. et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 1995, 374: 627-629
    [103] Chu M. W., Caldes M. T., Piffard Y. et al. Evidence for a monoclinic distortion in the ferroelectric Aurivillius phase Bi3LaTi3O12. Journal of Solid State Chemistry, 2003, 172: 389-395
    [104] Lee J.-K., Kim C.-H., Suh H.-S. et al. Correlation between internal stress and ferroelectric fatigue in Bi4-xLaxTi3O12 thin films. Applied Physics Letters, 2002, 80: 3593-3595
    [105] Dimos D., Al-Shareef H. N., Warren W. L. et al. Photoinduced changes in the fatigue behavior of SrBi2Ta2O9 and Pb(Zr,Ti)O3 thin films. Journal of AppliedPhysics, 1996, 80: 1682-1687
    [106] Tagantsev A. K., Stolichnov I., Colla E. L. et al. Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. Journal of Applied Physics, 2001, 90: 1387-1396
    [107] Ding Y., Liu J. S., Qin H. S. et al. Why lanthanum-substituted bismuth titanate becomes fatigue free in a ferroelectric capacitor with platinum electrodes. Applied Physics Letters, 2001, 78: 4175-4177
    [108] Aki M., Ogura T., Shinzawa-Itoh K. et al. New measurement system for UV resonance Raman spectra of large proteins and its application to cytochrome c oxidase. Journal of Physical Chemistry B, 2000, 104: 10765-10774
    [109] Nakamoto K., McKinney M. A. Application of the correlation method to vibrational spectra of C60 and other fullerenes: Predicting the number of IR- and Raman-active bands. Journal of Chemical Education, 2000, 77: 775-780
    [110] Chen Y.-C., Hsiung C.-P., Chen C.-Y. et al. Crystallinity and electrical properties of neodymium-substituted bismuth titanate thin films. Thin Solid Films, 2006, 513: 331-337
    [111] Ling Z. C., Xia H. R., Liu W. L. et al. Lattice vibration of bismuth titanate nanocrystals prepared by metalorganic decomposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 128: 156-160
    [112] Du X., Xu Y., Ma H. et al. Synthesis and characterization of bismuth titanate by an aqueous sol-gel method. Journal of the American Ceramic Society, 2007, 90: 1382-1385
    [113] Du Y. L., Zhang M. S., Chen Q. et al. Investigation of size-driven phase transition in bismuth titanate nanocrystals by Raman spectroscopy. Applied Physics A: Materials Science and Processing, 2003, 76: 1099-1103
    [114] Yamada M., Iizawa N., Yamaguchi T. et al. Processing and Properties of RareEarth Ion-Doped Bismuth Titanate Thin Films by Chemical Solution Deposition method. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2003, 42: 5222-5226
    [115] A. Hushur J. H. K., S. Kojima, S.S. Lee, M.S. Jang. Raman scattering study of A - and B- site substitutions in ferroelecltric Bi4Ti3O12 Journal of the Korean Physical Society, 2002, 41: 763-768
    [116] Zhang N., Yang Y., Ren T. et al. Non-columnar grained microstructure in ferroelectric PZT thin films via concentration graded CSD. Integrated Ferroelectrics, 2006, 80: 273-280
    [117] Xie D., Pan W., Ren T.-L. et al. The influence of precursor on the microstructure and characterization for Sr0.5Ba0.5Bi4Ti4O15 thin films. Key Engineering Materials, 2007, 336-338 I: 136-139
    [118] Kumar V., Ohya Y., Takahashi Y. Sol-gel processing of ferroelectric PbTiO3 and Pb(Zr0.5Ti0.5)O3 thin films. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1998, 37: 4477-4481
    [119] Stoupin S., Chattopadhyay S., Bolin T. et al. High concentration manganese doping of ferroelectric PbTiO3. Solid State Communications, 2007, 144: 46-49
    [120] Shimooka H., Yamada K.-I., Takahashi S. et al. Preparation of transparent, partially-crystallized BaTiO3 monolithic xerogels by sol-gel processing. Journal of Sol-Gel Science and Technology, 1998, 13: 873-876
    [121] Jiwei Z., Xi Y., Liangying Z. et al. Orientation control and dielectric properties of sol-gel deposited Ba (Ti, Zr)O3 thin films. Journal of Crystal Growth, 2004, 262: 341-347
    [122] Lu C. J., Liu X. L., Chen X. Q. et al. Anisotropic ferro- And piezoelectric properties of sol-gel-grown Bi3.15Nd0.85Ti3O12 films with two different orientations on Pt/Ti/SiO2/Si. Applied Physics Letters, 2006, 89: 062905-062908
    [123] Lu C. J., Qiao Y., Qi Y. J. et al. Large anisotropy of ferroelectric and dielectricproperties for Bi3.15Nd0.85Ti3O12 thin films deposited on Pt/Ti/SiO2/Si. Applied Physics Letters, 2005, 87: 222901-222903
    [124] Yau C. Y., Palan R., Tran K. et al. Mechanism of polarization enhancement in La-doped Bi4Ti3O12 films. Applied Physics Letters, 2005, 86: 032907-032909
    [125] Bae J. C., Kim S. S., Choi E. K. et al. Ferroelectric properties of lanthanum-doped bismuth titanate thin films grown by a sol-gel method. Thin Solid Films, 2005, 472: 90-95
    [126] Li J., Yu J., Peng G. et al. The influence of the thickness of TiO2 seeding layer on structural and electrical properties of Bi3.15Nd0.85Ti3O12 thin films. Journal of Physics D: Applied Physics, 2007, 40: 3788-3792
    [127] Sun Y.-M., Chen Y.-C., Gan J.-Y. et al. Orientation-dependent grain growth in La-doped bismuth titanate thin films prepared by chemical solution deposition. Japanese Journal of Applied Physics, Part 2: Letters, 2002, 41: 892-894
    [128] Qi Y. J., Xiao X., Lu C. J. et al. Microstructural, ferroelectric, and dielectric properties of Bi3.15Nd0.85Ti3O12 ceramics. Journal of Applied Physics, 2005, 98: 094101-094107
    [129] Sun N. X., Lu K., Jiang Q. Grain-boundary enthalpy of nanocrystalline materials crystallized from the amorphous state. Physical Review B: Condensed Matter, 1997, 56: 5885-5892
    [130] Ren S. B., Lu C. J., Shen H. M. et al. In situ study of the evolution of domain structure in free-standing polycrystalline PbTiO3 thin films under external stress. Physical Review B: Condensed Matter, 1997, 55: 3485-3492
    [131] Chen Y.-C., Sun Y.-M., Lin C. P. et al. Enhanced a-axis-oriented crystal growth of Nd-substituted bismuth titanate thin films with layer-by-layer crystallization. Journal of Crystal Growth, 2004, 268: 210-214
    [132] Schwartz R. W., Clem P. G., Voigt J. A. et al. Control of microstructure and orientation in solution-deposited BaTiO3 and SrTiO3 thin films. Journal of theAmerican Ceramic Society, 1999, 82: 2359-2367
    [133] Iijima R. Factors controlling the a-axis orientation of strontium bismuth tantalate thin films fabricated by chemical solution deposition. Applied Physics Letters, 2001, 79: 2240-2242
    [134] Hu G. D., Wilson I. H., Xu J. B. et al. Structure control and characterization of SrBi2Ta2O9 thin films by a modified annealing method. Applied Physics Letters, 1999, 74: 1221-1223
    [135] Shimakawa Y., Kubo Y., Tauchi Y. et al. Crystal and electronic structures of Bi4-xLaxTi3O12 ferroelectric materials. Applied Physics Letters, 2001, 79: 2791-2793
    [136] Chiou T.-Y., Kuo D.-H. Pure Bi4Ti3O12 thin films with improved ferroelectric properties. Applied Physics Letters, 2004, 85: 3196-3198
    [137] Schwartz R. W., Voigt J. A., Tuttle B. A. et al. Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films. Journal of Materials Research, 1997, 12: 444-456
    [138] Tuttle B. A., Schwartz R. W. Solution deposition of ferroelectric thin films. MRS Bulletin, 1996, 21: 49-54
    [139]吴自勤,王兵.薄膜生长.北京:科学出版社, 2001, p88
    [140] Desu S. B., Vijay D. P. c-Axis oriented ferroelectric SrBi2 (TaxNb2-x)O9 thin films. Materials Science & Engineering B: Solid-State Materials for Advanced Technology, 1995, B32: 83-88
    [141] Vijay D. P., Desu S. B., Nagata M. et al. Layered structure oxides for fatigue free ferroelectric applications, Boston, MA, USA, 1995. p. 3-13
    [142] Desu S. B., Vijay D. P. Novel fatigue-free layered structure ferroelectric thin films. Materials Science & Engineering B: Solid-State Materials for Advanced Technology, 1995, B32: 75-81
    [143] Zhai J., Shen B., Yao X. et al. Growth and ferroelectric study of Bi3.25La0.75Ti3O12 thin films on different substrates. Journal of Crystal Growth, 2004, 267: 110-116
    [144] Wu S. Y., Takei W. J., Francombe M. H. et al. Domain strucutre and polarization reversal in fims of ferroelectric bismuth titanate. Ferroelectrics, 1972, 3: 217-224
    [145] Takei W. J., Formigoni N. P., Francombe M. H. Preparation and properties of epitaxial films of ferroelectric Bi4Ti3O12. Applied Physics Letters, 1969, 15: 256-258
    [146] Asayama G., Lettieri J., Zurbuchen M. A. et al. Growth of (103) fiber-textured SrBi2Nb2O9 films on Pt-coated silicon. Applied Physics Letters, 2002, 80: 2371-2373
    [147] Lettieri J., Zurbuchen M. A., Jia Y. et al. Epitaxial growth of non-c-oriented SrBi2Nb2O9 on (111) SrTiO3. Applied Physics Letters, 2000, 76: 2937-2939
    [148] Lettieri J., Zurbuchen M. A., Jia Y. et al. Epitaxial growth of SrBi2Nb2O9 on (110) SrTiO3 and the establishment of a lower bound on the spontaneous polarization of SrBi2Nb2O9. Applied Physics Letters, 2000, 77: 3090-3092.
    [149] Lee H. N., Hesse D., Zakharov N. et al. Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrates. Science, 2002, 296: 2006-2009
    [150] Watanabe T., Funakubo H., Saito K. et al. Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching. Applied Physics Letters, 2002, 81: 1660-1662
    [151] Muralt P., Maeder T., Sagalowicz L. et al. Texture control of PbTiO3 and Pb(Zr,Ti)O3 thin films with TiO2 seeding. Journal of Applied Physics, 1998, 83: 3835-3840
    [152] R. Ramesh D. G. S. Orienting ferroelectric films. Science, 2002, 296: 1975-1976
    [153] Bose S., Krupanidhi S. B. Improved ferroelectric and leakage properties in symmetric BiFeO3 SrTiO3 superlattice. Applied Physics Letters, 2007, 90: 212902-212904
    [154] Murugavel P., Singh M. P., Prellier W. et al. The role of ferroelectric-ferromagnetic layers on the properties of superlattice-based multiferroics. Journal of Applied Physics, 2005, 97: 103914-103920
    [155] Sarkar A., Krupanidhi S. B. Ferroelectric interaction and polarization studies in BaTiO3/SrTiO3 superlattice. Journal of Applied Physics, 2007, 101: 104113-104119
    [156] O'Neill D., Bowman R. M., Gregg J. M. Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Applied Physics Letters, 2000, 77: 1520-1522
    [157] Lu Y.-l., Lu Y.-q., Cheng X.-f. et al. Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice. Applied Physics Letters, 1996, 68: 2642-2644
    [158] O'Neill D., Bowman R. M., Gregg J. M. Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Applied Physics Letters, 2000, 77: 1520-1522
    [159] Stephanovich V. A., Luk'yanchuk I. A., Karkut M. G. Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices. Physical Review Letters, 2005, 94: 047601-047608
    [160] Dawber M., Lichtensteiger C., Cantoni M. et al. Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices. Physical Review Letters, 2005, 95: 177601-177608.
    [161] Shimuta T., Nakagawara O., Makino T. et al. Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with "asymmetric" structure. Journal of Applied Physics, 2002, 91: 2290-2296
    [162] Neaton J. B., Rabe K. M. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Applied Physics Letters, 2003, 82: 1586-1588
    [163] Roytburd A. L., Zhong S., Alpay S. P. Dielectric anomaly due to electrostaticcoupling in ferroelectric- paraelectric bilayers and multilayers. Applied Physics Letters, 2005, 87: 092902-092904
    [164] Ye Z., Tang M. H., Cheng C. P. et al. Simulation of polarization and butterfly hysteresis loops in bismuth layer-structured ferroelectric thin films. Journal of Applied Physics, 2006, 100: 094101-094106
    [165] Yang F., Tang M. H., Zhou Y. C. et al. A model for the polarization hysteresis loops of the perovskite-type ferroelectric thin films. Applied Physics Letters, 2007, 91: 142902-142904
    [166] Tan E. K., Osman J., Tilley D. R. Calculation of intrinsic hysteresis loops of ferroelectric thin films. Solid State Communications, 2000, 117: 59-64
    [167] Chew K.-H., Ong L.-H., Osman J. et al. Hysteresis loops of ferroelectric bilayers and superlattices. Applied Physics Letters, 2000, 77: 2755-2757
    [168] Comstock R. L. Introduction to Magnetism and Magnetic Recording. New York: Wiley, 1999, p106-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700