用户名: 密码: 验证码:
微纳米含能材料分形特征对其感度的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含能材料的感度研究是一个既传统又富有挑战性的课题,长期以来受到了国内外同行学者的广泛重视。总体来说,影响含能材料感度的因素大致可归纳为内外两种。其中,内因是指含能材料自身分子结构所决定的化学性质,如猛炸药TATB的分子结构中存在三个C-NO_2、三个C-NH_2和一个苯环等不活泼基团,导致它的感度非常低,有“木头炸药”之称。而硝胺类炸药如RDX、HMX和HNIW等,由于其分子结构中含有强致爆基团N-NO_2,导致其感度显著高于TATB。这种分子结构对炸药感度的影响通常是难以改变的。然而,除上述内因外,含能材料的粒度/粒度分布、表面形貌、晶型以及装药密度等外因对感度也会产生显著的影响,更重要的是这种影响在一定程度上是可以控制和调整的。因此,一直以来国内外学者均试图通过调节含能材料的粒度分布和表面形貌来改善和提高武器弹药系统的安全性能。这些研究取得了丰硕的成果,同时也存在很多分歧,特别是缺乏具有系统性和规律性的研究结果。事实上,由含能材料的粒度分布和表面形貌的不同所导致的感度变化只是一种外在的表现形式,而实质原因则是在于含能颗粒群中颗粒尺寸结构及表面形貌的复杂和不均匀(不规则)程度的差异会使得它们的热传导性能发生改变,从而在宏观上体现出感度的不同。本研究旨在结合分形理论和热点学说,采用分形维数来定量地表征含能颗粒群中颗粒的尺寸结构以及表面形貌的复杂和不均匀(不规则)程度,试建立具有分形特征含能颗粒群的热传导模型,并运用该模型结合实验详细研究微纳米含能材料的分形特征对其感度的影响,初步实现将含能颗粒群的分形维数作为衡量其热传导性能以至感度的一个重要依据。
     首先,研究了含能颗粒群的粒度分布和表面形貌的分形特征,并结合分形理论和热点学说,试建立了具有分形特征含能颗粒群的热传导模型。采用粒度分形维数(D)表征含能颗粒群中颗粒尺寸结构、粒度分布范围、细颗粒所占比例、颗粒尺寸的复杂和不均匀程度等,采用表面分形维数(D_s)表征含能颗粒群中颗粒的表面粗糙度、颗粒比表面积、以及表面形貌的复杂和不规则程度等,并讨论了D和D_s的取值范围和物理意义。在此基础上,试建立了简单分形(只含D)含能颗粒群的热传导模型和混合分形(含D和D_s)含能颗粒群的热传导模型,详细讨论了D和D_s的变化会对含能颗粒群的热传导性能以及感度产生怎样的影响。然后,通过含能颗粒群的粒度累积分布曲线计算出D值,典型的含能单颗粒的表面形貌SEM照片计算出D_s值,根据D值和D_s值作为定性地衡量含能颗粒群热传导性能的变化情况及其感度大小的一个重要依据。
     其次,从微米级炸药的机械感度和热分解特性等方面入手,系统地研究了炸药的粒度分布和表面形貌的分形特征对其感度的影响规律。采用机械球磨法、溶剂/非溶剂法、物理筛分法以及气流粉碎法等制备了不同粒度/粒度分布和形貌的微米级(HMX、RDX、HNIW和AP)炸药,考察了它们的机械感度和热分解特性等。研究结果表明,对于同类炸药,相同或相似形貌炸药的感度随粒度的变化遵循一定的规律,然而,不同形貌的同类炸药之间其感度随粒度的变化规律却各不相同。以HMX为例,随着粒度(d_(50))的减小,球形HMX的撞击感度降低、而摩擦感度升高,针形HMX的撞击和摩擦感度均降低,无规则多面状HMX的撞击和摩擦感度均变化不大,球形HMX的热分解速率降低。同样,球形和短棒及片状RDX的感度随粒度也遵循各自不同的变化规律。结合分形分析的研究发现,炸药的撞击感度与粒度分形维数有关,即D值越大,含能颗粒群的热传导性能越好,不易产生热点引发爆炸。并且,炸药的摩擦感度与表面分形维数有关,即D_s值越大,含能颗粒间以及颗粒与周围介质间的摩擦系数增大,摩擦生热量增多,易产生热点引发爆炸。此外,炸药的热分解特性与粒度分形维数和表面分形维数均有关,即D值和D_s值均很大的含能颗粒群的热传导性能好,不易形成热点引发爆炸。
     第三,在微米炸药的研究基础上,为进一步考察纳米级含能材料的感度性质,分别制备了纳米及纳米复合炸药并进行了机械感度和热分解特性的研究。结合溶胶-凝胶法和超临界GAS法制备了纳米(HNIW/Fe_2O_3、RDX/Fe_2O_3、HMX/Fe_2O_3、AP/Fe_2O_3和ADN/Fe_2O_3)复合炸药,并首次利用酸蚀法祛除其中的惰性骨架(Fe_2O_3),成功地制备了纳米硝胺(HNIW、RDX和HMX)炸药。研究发现,前驱体Fe(NO_3)_3·9H_2O的摩尔浓度为0.297 mol·L_(乙醇)~(-1)内,HNIW浓度为0.438 mol·L_(乙酸乙酯)~(-1)内,环氧丙烷用量为8.334mL·g_(硝酸铁)~(-1)时,是制备纳米HNIW/Fe_2O_3复合炸药的最佳工艺条件。酸蚀法所获得的纳米HNIW为α晶型和ε晶型的混晶体,以α晶型为主,粒子尺寸约50nm~100nm。此外,纳米RDX中多数粒子尺寸约100nm,纳米HMX是β晶型和α晶型的混晶体,以β晶型为主,大部分粒子尺寸约100nm。感度实验结果表明,纳米复合炸药随其中炸药含量的减少,其撞击感度和摩擦感度以及放热量均呈显著降低的趋势,且放热峰有一定提前(除纳米复合AP/Fe_2O_3的摩擦感度升高外)。另外,纳米硝胺炸药的撞击感度略有降低,但摩擦感度却大幅升高,且放热峰提前。
     最后,尝试将分形含能颗粒群的热传导理论拓展至混合型含能颗粒群的感度研究中,初步探讨了Si粉的分形特征对微纳米硅/铅丹延期药的热反应特性和机械感度的影响。研究结果表明,在微米硅/铅丹延期药体系中,随着超细Si粉含量的增大,延期药的低温反应提前并增强,总放热量增大,而摩擦感度却普遍升高,这是由于超细Si粉具有较高的表面分形维数(D_s)所致;在纳米硅/铅丹延期药体系中,随着纳米Si粉粒度的减小,延期药的高低温反应均提前,表观活化能(E_a~-)也呈降低的趋势。
The subject for investigating the sensitivities of energetic materials always challenges the peer researchers who want to improve their safety.In the mass,two kinds of factors influence the sensitivities of energetic materials.One is inherent properties depending on chemical structure,and the other attributes to external physical configuration,such as particle size,size distribution,morphology,crystal,charge density etc.For example,TATB is well known as“wood explosive”because of containing the low-active bases as C-NO2,C-NH2 and phenyl in its molecular structure,which may result in quite low sensitivity.However,nitroamine explosives with exploding base as N-NO_2 exhibit high sensitive,such as RDX,HMX and HNIW etc.The influence of chemical structure on sensitivity is generally difficult to alter,but the influence depending on external physical configuration may be controlled or adjusted in a large degree.Therefore,researchers inside or aboard devoted themselves to improving the safety of ammunition by adjusting the size distribution and morphology of energetic particles. They have obtained deals of experimental results,among which many discrepancy and faultiness are presented.As an appearance of influence on sensitivity of energetic materials, size distribution and morphology do act on heat conduction properties of energetic particles, and finally lead to the changes of sensitivities.This study intends to combine fractal and hot spots theories together,apply fractal dimensions to characterizing the complexity degree of particle size and morphology of energetic materials quantificationally,and establish the models heat conduction for fractal energetic particles finally.These models will be employed to investigate the influence of fractal particle size and morphology on sensitivities of micron and nanometer energetic materials by means of experimental results.Fractal dimensions(D and D_s)are also applied to assess the sensitivities of energetic materials.
     Firstly,fractal characteristics of particle size distribution and morphology of energetic materials are investigated,and the models heat conduction of energetic particles have been established by combining fractal and hot spot theories.Particle size fractal dimension“D”is used to characterize the size formation,span of size distribution,proportion of fine particles, and the complex degree of the asymmetric energetic particles.Another morphology fractal dimension“D_s”is employed to describe the coarse degree and proportion of surface,and complex degree of the anomalistic surface morphology of energetic particles,either.The value scope and physical signification of D and D_s are also discussed.After that,two heat conduction models had been established,which one containing D is for simple fractal energetic particles,and the other containing D and D_S is for mixed fractal energetic particles. How D and D_S influence heat conduction along with sensitivity of energetic particles are discussed in detail.The value of D could be calculated with cumulation distribution data,and D_S could be obtained from SEM images of typical particle.Both D and D_S can be a quantitative criterion to estimate heat conduction and sensitivity of energetic materials.
     Next,influence of fractal particle size and morphology on sensitivity of micrometer explosives is investigated in detail.Micrometer explosives as HMX,RDX,HNIW and AP with different particle size distribution and morphology were prepared by milling,solvent and non-solvent,sieving,and airflow crushing.Their mechanical sensitivities and thermal decomposition are also investigated in detail.The results indicated that sensitivity of explosive with similar morphology changes regularly along with particle size.However,these rules vary along with the morphology of energetic particles.For example,the impact sensitivity of spherical HMX samples falls,and friction sensitivity decreases as the particle size(d_(50))decrease.Both impact and friction sensitivities of needle HMX samples fall as the particle size decrease.However,the mechanical sensitivities of polyhedral HMX samples change a little.Similarly,the sensitivities of spherical RDX and sheet RDX samples vary at different rules.After fractal analysis,we found that impact sensitivity is related to D.The heat conduction of energetic particles with high D value exhibits too excellent to form hot spots which would cause exploding.Meanwhile,friction sensitivity is related to D_s.The friction coefficient among particles with high D_s value increases,which would yield more heat to form hot spots leading to explode.In addition,thermal decomposition is related to both D and D_s.The heat conduction of energetic particles with high D and D_s become superior,and not easy to form hot spots.
     Thirdly,in order to investigate the sensitivity of nanoscale energetic materials,several nanometer explosives and composite explosives were prepared,and their mechanical sensitivities and thermal decomposition are also discussed.Combining sol-gel reaction and supercritical GAS method,we had prepared nanometer HNIW/Fe_2O_3,RDX/Fe_2O_3, HMX/Fe_2O_3,AP/Fe_2O_3 and ADN/Fe_2O_3 energetic composites.After etching Fe_2O_3,nanometer HNIW、RDX and HMX powders were prepared,respectively.The results indicated that the optimal technical parameters were located at Fe(NO_3)_3·9H_2O molar concentration of 0.297 mol·L_(ethanol)~(-1),HNIW concentration within 0.438 mol·L_(ethyl acetate)~(-1)and 1,2-epoxypropane dosage of 8.334mL·g_(Fe(NO_/wZ,-gFe(N0_3)~(-1).Nanometer HNIW powders of 50nm tolOOnm contain mainlyαcrystals,and a few e crystals.Meanwhile,nanometer RDX powders are mostly about 100nm,and nanometer HMX powders of l00nm contain mostlyβcrystals and a fewαcrystals.Experimental results indicated that both impact and friction sensitivities of nanometer composite explosives decrease as the content of explosives reduce,and exothermic peak move ahead,except that friction sensitivity of nanometer AP/Fe_2O_3 increases.In addition,the impact sensitivity of nanometer nitroamine explosives falls a bit.However,the friction sensitivity increase largely,and exothermic peak move ahead either.
     Finally,we tried to develop the model heat conduction of fractal energetic particles into sensitivity study of blending energetic materials.The influence of fractal characteristic of Si powders on thermal reaction and mechanical sensitivities of Si/Pb_3O_4 composites are discussed.The results indicated that for micrometer Si/Pb_3O_4 composites,as the content of superfine Si powders increase,the low temperature reaction moves ahead with added exothermic quantity.Meanwhile,the friction sensitivity increases because of superfine Si powders with high D_s.However,for nanometer Si/Pb_3O_4 composites,as the particle size of nanometer Si reduces,the low and high temperature reactions go ahead,and the activation energy(?)_a decrease either.
引文
[1]刘志建.超细材料与超细炸药技术[J].火炸药学报,1995,18(4):37-40.
    [2]R.L.Simpson,P.A.Urtiew,D.L.Ornellas,et al.CL-20 Performance exceeds that of HMX and its sensitivity is moderate[J].Propellants,Explosives,Pyrotechnics,1997,22:249-255.
    [3]C.R.Siviour,M.J.Gifford,S.M.Walley,et al.Particle size effects on the mechanical properties of a polymer bonded explosive[J].Journal of Materials Science,2004,39:1255-1258.
    [4]D.Price.Effect of particle size on the shock sensitivity of pure porous HE.AD A178206,1986.
    [5]金以文,鲁世杰.分形几何原理及其应用[M].杭州:浙江大学出版社,1998.
    [6]沙震,阮火军.分形与拟合[M].杭州:浙江大学出版社,2005.
    [7]李后强,程光钺.分形与分维[M].成都:四川教育出版社,1990.
    [8]谢和平,张永平,宋晓秋,等.分形几何[M].重庆:重庆大学出版社,1991.
    [9]徐小荷,宋守志,李功伯.分形几何和粉碎特征[J].中国矿业,1994,3(1):32-35.
    [10]郁可,郑中山.粉体粒度分布的分形研究[J].材料科学与工程,1995,13(3):30-34
    [11]薛祥立.粒度分布函数的分形表示[J].青岛建筑工程学院学报,1997,18(4):2-5
    [12]褚武扬.材料科学中的分形[M].北京:化学工业出版社,2004.
    [13]王泽山.含能材料概论[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [14]炸药理论编写组.炸药理论[M].北京:国防工业出版社,1982.
    [15]潘功配,杨硕.烟火学[M].北京:北京理工大学出版社,1997.
    [16]胡双启.燃烧与爆炸[M].北京:兵器工业出版社,1992.
    [17]高大元.炸药的感度与安全性评价方法研究[C].全国爆炸与安全技术学术交流会,2002,116-122.
    [18]张熙和,云主惠.爆炸化学[M].北京:国防工业出版社,1989.
    [19]张杏芬.国外火炸药原材料性能手册[M].北京:兵器工业出版社,1991.
    [20]钟一鹏,胡雅达,江宏志.国外炸药性能手册[M].北京:兵器工业出版社,1990.
    [21]J.K.Dienes,Q.H.Zuo,J.D.Kershner.Impact initiation of explosives and propellant via statistical crack mechanics[J].Journal of the Mechanics and Physics of Solids,2006,54:1237-1275.
    [22]M.R.Baer.Modeling heterogeneous energetic materials at the mesoscale[J].Thermochimica Acta,2002,384:351-367
    [23]M.J.Gifford,W.G.Proud,J.E.Field.Development of a method for quantification of hot-spots[J].Thermochimica Acta,2002,384:285-290.
    [24]冯长根.热爆炸理论[M].北京:科学出版社,1988.
    [25]R.W.Armstrong,H.L.Ammon,W.L.Elban,et al.Investigation of hot spot characteristics in energetic crystals[J].Thermochimica Acta,2002,384:303-313.
    [26]J.G.Bennett,K.S.Haberman,J.N.Johnson,et al.A constitutive model for the non-shock ignition and mechanical response of high explosives[J].Journal of the Mechanics and Physics of Solids,1998,46(12):2303-2322.
    [27]A.M.Mellor,D.A.Wiegand,K.B.Isom.Hot spot histories in energetic materials[J].Combustion and Flame,1995,101(1):26-35.
    [28]张宝坪,张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,1997.
    [29]陈福梅,火工品原理与设计[M].北京:兵器工业出版社,1990.
    [30]张端明,雷雅洁,张美军,等.混合颗粒流分形模型及相关有效热传导的分析[J].华中科技大学学报,2001,29(12):114-116.
    [31]陈志远,蒋海涛.粒度分布具有分形特征的非均匀颗粒流的有效热导率理论研究[J].咸宁学院学报,2007,27(3):29-33.
    [32]张智,张端明,郁伯铭,等.单一颗粒流分形模型及有效热导率计算[J].华中理工大学学报,1997,25(11):107-109.
    [33]姜秀民,杨海平,李彦,等.煤粉颗粒粒度分形分析[J].煤炭学报,2003,28(4):414-418.
    [34]李伯奎,杨凯,刘远伟.分形理论及分形参数计算方法[J].工具技术,2004,38(12):80-83.
    [35]谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学技术出版社,1998.
    [36]B.B.Mandelbrot.The fractal geometry of nature[M].San Francisco,Freeman,1982.
    [37]张济忠.分形[M].北京:清华大学出版社,1995.
    [38]龙期威.金属中的分形与复杂性[M].上海:上海科技出版社,1999.
    [39]于锋波,胡咏梅,叶文辉.分形理论在金属材料研究中的应用现状[J].有色金属加工,2007,36(4):7-9.
    [40]王毅力,芦家娟,周岩梅,等.沉积物颗粒表面分形特征的研究[J].环境科学学报,2005,25(4):457-463.
    [41]黄传辉,朱华,葛世荣.磨粒轮廓分形维数与磨损状态的关联性研究[J].摩擦学学报,2003,23(4):336-339.
    [42]李功伯,唐春安,徐小荷.岩石粉碎粒度G-S分布的分形几何描述[J].中国有色金属学报,1991,1(1):31-33.
    [43]王飞,吴成宝.用投影轮廓分维中位维表征颗粒群粗糙度的研究[J].粉体测试与表征,2006,(6):24-28.
    [44]H.Song,L.Min,X.Jun,et al.Fractal characteristic of three Chinese coals[J].Fuel,2004,83:1307-1313.
    [45]陈辉,胡元中,王慧,等.粗糙表面分形特征的模拟及其表征[J].机械工程学报,2006,42(9):219-223.
    [46]张亚衡,周宏伟,谢和平.粗糙表面分形维数估算的改进立方体覆盖法[J].岩石力学与工程学报,2005,24(17):3192-3196.
    [47]Y.L.Wang,B.Y.Du,J.Liu,et al.Surface analysis of cryofixation-vacuum-freeze-dried polyaluminum chloride-humic acid(PAC1-HA)flocs[J].Journal of Colloid and Interface Science,2007,316:457-466.
    [48]G.W.Stachowiak,P.Podsiadlo.Surface characterization of wear particles[J].Wear,1999,225:1171-1185.
    [49]徐晓鹏,彭瑞东,谢和平,等.基于SEM图像分维估算的脆性材料细观结构演化方法研究[J].岩石力学与工程学报,2004,23(21):3600-3603.
    [50]A.Dathe,S.Eins,J.Niemeyer,et al.The surface fractal dimension of the soil-pore interface as measured by image analysis[J].Geoderma,2001,103:203-229.
    [51]王毅力,李乐勇,邓式阳,等.图像法确定底泥颗粒物的表面分形维数(D_s)[J].环境化学,2006,25(4):400-404.
    [52]孙霞,吴自勤,黄畇.分形原理及应用[M].合肥:中国科学技术大学出版社,2003.
    [53]彭瑞东,谢和平,鞠杨.二维数字图像分形维数的计算方法[J].中国矿业大学学报,2004,33(1):19-24.
    [54]冯志刚,周宏伟.图像的分形维数计算方法及其应用[J].江苏理工大学学报,2001,22(6):92-95.
    [55]张杰,张蕊蕊,胡卜元,等.煤焦SEM图像的表面孔洞分形维数的Matlab实现[J].河北工程大学学报,2007,24(2):40-44.
    [56]葛世荣,索双富.表面轮廓分形维数计算方法的研究[J].摩擦学学报,1997,17(4):354-362.
    [57]R.J.Spear,V.Nanut.Mechanism of and particle size effects on shock sensitivity of heterogeneous pressed explosives.AD A187597,1987.
    [58]M.N.Patil,G.M.Gore,A.B.Pandit.Ultrasonically controlled particle size distribution of explosives:A safe method[J].Ultrasonics Sonochemistry,2008,15:177-187.
    [59]L.Mercado,P.M.Torres,L.M.Gomez,et al.Synthesis and characterization of high-energy nanoparticles[J].Journal of Physical Chemistry,2004,108:12314-12317.
    [60]莫红军,赵凤起.纳米含能材料的概念与实践[J].火炸药学报,2005,28(3):79-82
    [61]张小宁,徐更光,徐军培,等.超细HMX和RDX撞击感度的研究[J].火炸药学报,1999,1:33-36.
    [62]刘玉存,王建华,安崇伟,等.RDX粒度对机械感度的影响[J].火炸药学报,2004,27(2):7-9.
    [63]杨斌林,陈荣义,曹晓宏.RDX炸药粒度对其爆轰性能的影响[J].火工品,2004,3:50-56.
    [64]刘桂涛,曲虹霞.超细RDX爆轰感度与撞击感度、摩擦感度的研究[J].南京理工大学学报,26(4):410-413.
    [65]王保民,张景林.气体反溶剂(GAS)过程细化技术及对炸药安全性能的影响研究[J].中国安全科学学报,2001,11(4):32-34.
    [66]汪波,刘玉存,李敏,等.HMX粒度对其撞击感度的影响研究[J].华北工学院学报,2005,1:35-37.
    [67]徐永江.三种粒度ξ-六硝基六氮杂异伍兹烷分解及撞击感度研究[J].火炸药学报,2001,1:46-47.
    [68]王彩玲,赵省向.不同粒度AP的机械感度[J].火炸药学报,2006,29(6):27-29.
    [69]陈天石,张玉若,张英浩.HMX粒度对其机械感度的影响研究[J].理论与探索,2006.5:27-28.
    [70]W.P.King,S.Saxena,B.A.Nelson.Nanoscale thermal analysis of an energetic material [J].Nano Letters,2006,6(9):2145-2149.
    [71]R.G.Hasenbein.The effects of temperature on time to propellant cook-off.AD A024304,1976.
    [72]袁凤英,闻利群,张景林.炸药粒度、粒度级配与质量密度的关系及球列模型研究[J].爆炸与冲击,1999,19(4):304-307.
    [73]刘玉存,王作山,柴涛,等.HMX粒度及其级配对塑料粘结炸药冲击波感度和爆炸输出能量的影响[J].兵工学报,2000,21(4):357-360.
    [74]刘玉存,王作山,吕春玲,等.黑索今粒度及粒度级配对高分子粘结炸药冲击波感度的影响[J].兵工学报,2005,26(1):126-128.
    [75]吕春玲,刘玉存.HMX粒度级配对HMX/F_(2641)输出能量的影响[J].火炸药学报,2003,26(4):64-66.
    [76]张景林,吕春玲,王晶禹.亚微米炸药的感度选择性[J].爆炸与冲击,2004,24(1):59-62.
    [77]冯志红,刘玉存.炸药粒度对爆轰传播性能的研究[J].四川兵工学报,2007,1: 21-22.
    [78]陆春荣,刘玉存.RDX的粒度对临界截面积的影响[J].华北工学院学报,2004,25(5):368-370.
    [79]柴涛,张景林.HMX粒度、粒度级配对混合传爆药性能影响的研究[J].中国安全科学学报,2000,10(3):71-75.
    [80]T.Raymond,W.R.Faeirheller.Development of processes for reliable detonator grade very fine secondary explosive powders,DE88-012863[R],1990.
    [81]A.Pivkina,P.Ulyanova,Y.Frolov.Nanomaterials for heterogeneous combustion[J].Propellants,Explosives,Pyrotechnics,2004,29(1):39-48.
    [82]何得昌,郑波,谭崝.窄分布纳米级HMX的制备[J].含能材料,2004,12(1):43-45.
    [83]陈厚和,马慧华,裴艳敏,等.纳米黑索金的制备及其机械感度[J].弹道学报,2003,15(3):11-18.
    [84]Y.X.Zhang,D.B.Liu,C.X.Lv.Preparation and characterization of reticular nano-HMX [J].Propellants,Explosives,Pyrotechnics,2005,30(6):438-441.
    [85]王昕.纳米含能材料研究进展[J].火炸药学报,2006,29(2):29-32.
    [86]C.T.Bryce,B.B.Thomas.Very sensitive energetic materials highly loaded into RF matrices by sol-gel method[C].The 33rd International ICT Conference,Karsruhe,Germany,2002.
    [87]C.T.Bryce,B.B.Thomas.Cryogen synthesis of nanocrystalline CL-20 coated with cured nitrocellulose[C].The 33rd Intemational ICT Conference,Karsruhe,Germany,2003.
    [88]池钰,黄辉,李金山.溶胶—凝胶法制备RDX/SiO_2纳米复合含能材料[J].含能材料,2007,15(1):16-18.
    [89]T.M.Tillotson,L.W.Hrubesh,R.L.Simpson,et al.Sol-gel processing of energetic materials[J].Journal of Non-Crystalline Solids,1998,(225):358-363.
    [90]池钰,黄辉,李金山.溶胶—凝胶法制备纳米复合含能材料的研究进展[J].火工品,2006,(2):46-50.
    [91]王保民,张景林.炸药超临界流体细化技术研究进展[J].火工品,2002,(2):26-28.
    [92]刘海营,张景林,王作山.纳米HMX/微米RDX复合炸药撞击感度的性能研究[J].山西化工,2007,27(5):15-16.
    [93]郭秋霞,聂福德,杨光成,等.溶胶凝胶法制备RDX/RF纳米复合含能材料[J].含能材料,2006,14(4):268-271.
    [94]S.Ye,K.Tonokura,M.Koshi.Energy transfer rates and impact sensitivities of crystalline explosives[J].Combustion and Flame,2003,132:240-246.
    [95]童祜嵩.颗粒粒度与比表面测量原理[M].上海:上海科学技术文献出版社,1989.
    [96]焦万丽,刘宜汉,姚广春等,NiFe_2O_4尖晶石粒度级配对振实效率的影响[J].东北大学学报,2004,25(5):445-448.
    [97]李邦盛,蒋海燕,李志强,等.ZrO_2粉双峰级配对钛合金熔模精铸涂料粘度的影[J].铸造,1999,(6):22-24.
    [98]谢和平.岩土介质的分形孔隙和分形粒子[J].力学进展,1993,23(2):145-164.
    [99]蒋建忠.颗粒群粒度分布宽度表示方法的研究[J].过滤与分离,2006,16(1):21-23.
    [100]H.Xie,R.Bhasker,J.Li.Generation of Fractal Models for Characterization of Pulverized Materials[J].Minerals and Metallurgical Processing,1993,(2):36-42.
    [101]王薇.分形理论在表面粗糙度非接触测量中的应用[D].长春:吉林大学,硕士学位论文,2006.
    [102]F.G.Meng,H.M.Zhang,Y.S.Li,et al.Cake layer morphology in microfiltration of activated slugde wasterwater based on fractal analysis[J].Separation Purification Technology,2005,44:250-257.
    [103]易成,王长军,张亮,等.基于两体相互作用问题的粗糙表面形貌描述指标系统的研究[J].岩石力学与工程学报,2006,25(12):2481-2491.
    [104]李凤生.超细粉体技术[M].北京:国防工业出版社,2000.
    [105]杨光成,聂福德.超细HMX的制备与表征[J].含能材料,2004,12(6):350-357.
    [106]叶毓鹏.炸药结晶工艺学及其应用[M].北京:兵器工业出版社,1995.
    [107]R.H.Fan,H.L.Liu,K.N.Sun,et al.Kinetics of thermite reaction in Al-Fe_2O_3 system[J].Thermochimica Acta,2006,440:129-131.
    [108]S.Vyazovkin,C.A.Wight.Kinetics in solids[J].Annual Review of Physical Chemistry,1997,48:125-149.
    [109]冯晓军,王晓峰,韩助龙.炸药装药尺寸对慢速烤燃响应的研究[J].爆炸与冲击,2005,25(3):285-288.
    [110]R.Z.Hu,Z.Q.Yang,Y.J.Liang.A study of reaction between RDX and urea by a single non-isothermal DSC curve[J].Thermochimica.Acta,1988,134:429-432.
    [111]J.E.Balzer,W.G.Proud,S.M.Walley,et al.High-speed photographic study of the drop-weight impact response of RDX/DOS mixtures[J].Combustion and Flame,2003,135:547-555.
    [112]O.H.Johansen,J.D.Kristiansen,R.Giers(?)e,et al.RDX and HMX with reduced sensitivity towards shock initiation-RS-RDX and RS-HMX[J].Propellants,Explosives,Pyrotechnics,2008,33:20-23.
    [113]欧育湘,贾会平,陈博仁,等.六硝基六氮杂异伍兹烷的研究进展(3)[J].含能材料,1999,7(2):49-52.
    [114]R.Sivabalan,G.M.Gore,U.R.Nair,et al.Study on ultrasound assisted precipitation of CL-20 and its effect on morphology and sensitivity[J].Journal of Hazardous Materials,2007,A139:199-203.
    [115]欧育湘,王才,潘则林,等.六硝基六氮杂异伍兹烷的感度[J].含能材料,1999,7(3):100-102.
    [116]R.Turcotte,M.Vachon,Q.S.M.Kwok,et al.Thermal study of HNIW(CL-20)[J].Thermochimica Acta,2005,433:105-115.
    [117]吕子剑,胡庆贤.CL-20及其混合炸药的机械感度研究[J].四川兵工学报,2002,23(1):14-16.
    [118]M.A.Bohn.Thermal ageing of rocket propellant formulations containing ε-HNIW (ε-CL20)investigated by heat generation rate and mass loss[J].Thermochimica Acta,2003,401:27-41.
    [119]T.B.Brill,P.J.Brush,D.G.Patil.Thermal decomposition of energetic materials[J].Combustion and Flame,1993,94:70-76.
    [120]Y.P.Wang,J.W.Zhu,X.J.Yang,et al.Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate[J].Thermochimica Acta,2005,437:106-109.
    [121]L.L.Liu,F.S.Li,L.H.Tan,et al.Effects ofNi,Cu,Al and NiCu nanopowders on the thermal decomposition of Ammonium Perchlorate[J].Propellants,Explosives,Pyrotechnics,2004,29(1):34-38.
    [122]王英红,李葆萱,胡松起,等.AP粒度和包覆层对硼燃烧的影响[J].固体火箭技术,2004,27(1):50-52.
    [123]方羽中,李疏芬.NEPE推进剂中AP含量及粒度效应实验研究[J].固体火箭技术,2001,24(3):47-52.
    [124]刘磊力.纳米金属及复合金属粉的制备及其催化性能的研究[D].南京:南京理工大学,博士学位论文,2004.
    [125]池钰.纳米复合含能材料的制备与性能表征[D].绵阳:中国工程物理研究院,硕士学位论文,2006.
    [126]李凤生.特种超细粉体制备技术及应用[M].北京:国防工业出版社,2002.
    [127]王保民.炸药的超临界重结晶细化技术[J].火炸药学报,2003,26(3):62-64.
    [128]B.J.Clapsaddle,A.E.Gash,J.H.S.Jr,et al.Silicon oxide in an iron()oxide matrix:Ⅲthe sol-gel synthesis and characterization of Fe-Si mixed oxide nanocomposites that contain iron oxide as the major phase[J].Joumal of Non-Crystalline Solids,2003,331:190-201.
    [129]F.X.Geng,Z.G.Zhao,H.T.Cong,et al.An environment-friendly microemulsion approach to α-FeOOH nanorods at room temperature[J].Materials Research Bulletin,2006,41:2238-2243.
    [130]A.E.Gash,T.M.Tillotson,J.H.Satcher,et al.Use of Epoxides in the Sol-gel Synthesis of Porous Iron(Ⅲ)Oxide Monoliths from Fe(Ⅲ)Salts[J].Chemstry of Materials,2001,13:999-1007.
    [131]A.E.Gash,T.M.Tillotson,J.H.Satcher,et al.New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors[J].Joumal of Non-Crystalline Solids,2001,285:22-28.
    [132]张永旭.含能材料纳米粉体的制备和性能研究[D].南京:南京理工大学,博士学位论文,2005.
    [133]闻利群,张景林.超临界CO_2抗溶剂法重结晶AP微细颗粒的研究[J].含能材料,2005,13(5):323-326.
    [134]黄洪勇.高能氧化剂二硝酰胺铵研究进展[J].上海航天,2005,4:31-35.
    [135]何利明,肖忠良,经德齐,等.ADN氧化剂的合成及其在推进剂中的应用[J].含能材料,2003,11(3):171-173.
    [136]马振叶,李凤生.大比表面积α-Fe_2O_3的制备及其催化性能研究[J].固体火箭技术,2006,29(4):286-288.
    [137]刘建勋,李凤生,陈爱四,等.纳米Fe_2O_3的制备及其对AP热分解的催化作用[J].推进技术,2006,27(4):381-384.
    [138]陈伟凡.纳米稀土氧化物的控制制备及其催化性能的研究[D].南京:南京理工大学,博士学位论文,2006.
    [139]马跃,张海林.二硝酰胺铵(ADN)球形化工艺研究[J].固体火箭技术,2002,25(2):59-62.
    [140]万代红,府勤,黄洪勇.高能氧化剂二硝酰胺铵的热分解研究[J].推进技术,2003,24(5):464-466.
    [141]G.Santhosh,R.P.C.Tien,A.H.Ghee.Thermal decomposition kinetics of ammonium dinitramide-guanylurea dinitramide mixture analyzed by isoconversional methods[J].Thermochimica Acta,2008,480:43-48.
    [142]O.P.Korobeinichev,A.A.Paletsky,A.G.Tereschenko,et al.Combustion of ammonium dinitramide/polycaprolactone propellants[J].Proceedings of the Combustion Institute,2002,29:2955-2961.
    [143]万代红,府勤,黄洪勇,等.燃速催化剂对ADN的热分解作用[J].火炸药学报,2006,29(2):72-75.
    [144]苏勉曾.固体化学导论[M].北京:北京大学出版社,1986.
    [145]潘功配.烟火技术基础与应用[M].南京:江苏科学技术出版社,1985.
    [146]Z.Jun,L.Yunliang,Z.Congzhang.The mechanism of solid state reaction of silicon and red lead delay composition[C].17th Proceedings International Pyrotechnics Seminar:176-182.
    [147]N.Hidetsugu,A.Miyako,H.Yasutake.The combustion mechanism of tungsten-potassium perchloratebarium chromate delay powder[J].Kayaku Gakkaishi,61(1):7-12.
    [148]王春乐,龙云玲.纳米延期药的研制[J].爆破器材,35(1):19-21.
    [149]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [150]赵文虎.毫秒级Si-CuO-PbO_2延期药[J].火工品,2001,1:25-28.
    [151]俞金良,郝建春.硼铅丹延期药预点火反应机理研究[J].含能材料,2004,12(3):143-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700