RLX/RXFP1、MMP9/MMP13和RANKL/OPG在关节炎软骨和骨破坏及中药治疗中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     通过建立CIA大鼠模型,研究RLX/RXFP1、MMP-9/MMP-13和RANKL/OPG在CIA大鼠模型血清和外周单核细胞中的表达水平,以及探讨RLX/RXFP1、MMP-9/MMP-13和RANKL/OPG在关节炎软骨破坏和骨质丢失中的机制和中药治疗中的作用。
     方法
     建立CIA大鼠模型,应用ELISA方法检测各组大鼠血清中RLX、MMP-9、MMP-13、OPG和RANKL的含量;采用荧光实时定量PCR方法检测各组大鼠的外周单核细胞中RXFP1、OPG和RANKL的mRNA的表达。比较CIA模型组和正常组之间RLX/RXFP1、MMP-9/MMP-13和RANKL/OPG的表达有无差异;比较药物治疗后与模型组之间RLX/RXFP1、MMP-9/MMP-13和RANKL/OPG的表达有无差异。
     结果
     1.正常组与CIA模型组比较
     CIA模型组中大鼠血清RLX、MMP-9、RANKL的含量以及RANKL/OPG比值较正常组明显增高,差异有统计学意义(P<0.05);而OPG和MMP-13的含量与正常组无统计学差异(P>0.05);CIA模型组中大鼠的外周单核细胞中RXFP1和RANKL的mRNA水平的表达较正常组中增高,具有统计学差异(P<0.05),而OPG的表达与正常组无统计学差异(P>0.05)。
     2.雷公藤多甙组与模型组比较
     雷公藤多甙组中大鼠血清中RLX、MMP-9、RANKL的含量以及RANKL/OPG比值较模型组明显降低,差异有统计学意义(P<0.05);而OPG和MMP-13的含量与模型组无统计学差异(P>0.05);雷公藤多甙组大鼠外周单核细胞中RXFP1和RANKL的mRNA水平的表达较模型组中降低,具有统计学差异(P<0.05),而OPG的表达与模型组无统计学差异(P>0.05)。
     3.甲氨喋呤组与模型组比较
     甲氨喋呤组中大鼠血清中MMP-9和RANKL的含量以及RANKL/OPG比值较模型组明显降低,差异有统计学意义(P<0.05);而RLX、OPG和MMP-13的含量与模型组无统计学差异(P>0.05);甲氨喋呤组中大鼠外周单核细胞中RANKL的mRNA水平的表达较模型组中降低,具有统计学差异(P<0.05),而RXFP1和OPG的mRNA水平的表达与模型组无统计学差异(P>0.05)。
     4.雷公藤多甙组与甲氨喋呤组比较
     雷公藤多甙组大鼠血清中RLX、MMP9、MMP13和RANKL的含量、RANKL/OPG比值以及外周单核细胞中RXFP1和RANKL的mRNA相对表达均低于MTX组,但差异均无统计学意义(P>0.05);雷公藤多甙组大鼠血清中OPG含量以及外周单核细胞中OPG的mRNA相对表达均高于MTX组,但差异均无统计学意义(P>0.05)。
     5.直线相关性分析
     RLX与MMP-9和RANKL呈正相关(r=0.428, P<0.05;r=0.416, P<0.05)。
     结论
     1.RLX可能通过上调MMP-9/MMP-13、RANKL/OPG途径导致CIA大鼠关节软骨破坏和骨质丢失;
     2.雷公藤多甙减轻CIA大鼠关节软骨破坏和骨质丢失可能与抑制RLX/RXFP1、MMP-9/MMP-13、RANKL/OPG途径相关。
     目的
     研究中药雷公藤多甙治疗RA患者前后RLX/RXFP1、MMP-9/MMP-13和RANKL/OPG在血清以及分离的单核细胞中的表达水平,探讨它们参与关节炎软骨破坏和骨质丢失中的机制以及中药雷公藤多甙片治疗RA的药理机制。
     方法
     20例符合纳入标准的RA患者和30例健康人纳入本次研究,采集RA患者雷公藤多甙治疗前后以及正常人外周血标本以及相关临床资料。应用ELISA检测血清中RLX-2、MMP-9、MMP-13、OPG和RANKL的含量;采用荧光实时定量PCR方法检测外周单核细胞RXFP1、OPG和RANKL的mRNA的表达;比较雷公藤多甙片治疗前后RA患者的RLX/RXFP1、MMP-9/MMP-13和RANKL/OPG的表达有无差异。
     结果
     雷公藤多甙治疗前后RA患者血清RLX-2、MMP-9、MMP-13和RANKL,RANKL/OPG比值以及分离的外周单核细胞RXFP1和RANKL mRNA的表达具有统计学差异(P<0.05或P<0.01)。
     结论
     1.RLX-2可能通过上调MMP-9/MMP-13、RANKL/OPG途径参与RA患者关节软骨破坏和骨质丢失机制中;
     2.雷公藤多甙缓解RA患者关节软骨破坏和骨质丢失可能与抑制RLX/RXFP1、MMP-9/MMP-13、RANKL/OPG途径相关。
     目的
     研究RLX/RXFP1、MMP-9/MMP-13和RANKL/OPG在不同疾病和证型的关节炎患者血清、外周单核细胞中的表达水平,以及探讨它们参与关节炎软骨破坏和骨质丢失的机制。
     方法
     共收集94例未治疗的关节炎患者(56例RA和38例OA)和30例正常人外周血标本。应用ELISA检测血清中RLX-2、MMP-9、MMP-13、OPG和RANKL的含量;通过抗凝血分离外周单核细胞,采用荧光实时定量PCR方法检测RXFP1、OPG和RANKL的mRNA的表达;比较RA、OA和正常组之间RLX-2/RXFP1、MMP-9/MMP-13和RANKL/OPG的表达有无差异。采用多元线性回归分析血清中RLX-2、MMP-9、MMP-13、RANKL和OPG的表达与RA患者以及OA患者的临床指标有无相关性;采用统计学直线相关性分析来分析血清中RLX-2与MMP-9和RANKL有无相关性。
     结果
     RA组和OA组血清RLX-2的含量均较正常组增高,差异有统计学意义(P<0.05或P<0.01), RA组和OA组之间无统计学意义(P>0.05);RA组和OA组外周血分离的单核细胞中RXFP1mRNA表达均较正常组增高,差异有统计学意义(P<0.05或P<0.01),RA组和OA组之间无统计学意义(P>0.05);RA组和OA组血清MMP-9的含量均较正常组增高,差异有统计学意义(P<0.05或P<0.01), RA组和OA组之间有统计学意义(P<0.05);RA组血清MMP-13的含量高于正常组但低于OA组,差异无统计学意义(P>0.05);RA组血清OPG的含量较OA组和正常组低,差异无统计学意义(P>0.05);RA组和OA组血清RANKL的含量较正常组高,差异有统计学意义(P<0.05或P<0.01),RA组和OA组之间有统计学意义(P<0.05);外周单核细胞中OPG和RANKL mRNA表达与血清中的表达呈现相同的特点;RA组和OA组血清RANKL/OPG比值均较正常组增高,差异有统计学意义(P<0.05或P<0.01),RA组和OA组之间有统计学意义(P<0.05);RA寒证或热证患者中血清MMP-9和RANKL以及外周单核细胞中RANKL的mRNA相对表达均高于OA寒证或热证患者,差异有统计学意义(P<0.05)。
     多元线性回归分析示血清RLX-2和MMP-9表达均与ESR成正相关(β=0.417,t=2.126, P=0.039;β=0.435, t=2.328, P=0.042);直线相关性分析示RLX-2与MMP-9和RANKL呈显著性正相关(r=0.417, P<0.01; r=0.423, P<0.01)。
     结论
     1.RLX-2可能通过上调MMP-9/MMP-13、RANKL/OPG途径参与RA和OA关节软骨破坏和骨质丢失机制中;
     2.RLX-2和MMP-9可以反映RA患者的整体炎症水平。
Purpose
     To study the expression of RLX/RXFP1、MMP-9/MMP-13and RANKL/OPG in theserum and separated PMBCs of CIA rats, and investigate the role of RLX/RXFP1,MMP-9/MMP-13and RANKL/OPG in the pathogenesis of cartilage destruction and boneloss in arthritis as well as the effects of Tripterygium wilfordii polyglycoside on them.
     Methods
     CIA rat model was established and ElISA was applied to detect the protein expression ofRLX, MMP-9, MMP-13, OPG and RANKL in the serum of each group. Real-time PCR wasused to detect the mRNA expression of RXFP1, OPG and RANKL in the PMBCs of eachgroup. The expression of RLX/RXFP1, MMP-9/MMP-13and RANKL/OPG in the modelgroup was compared with the normal group. The expression of RLX/RXFP1,MMP-9/MMP-13and RANKL/OPG after treatment was compared with the model group.
     Results
     1. Comparison between the normal group and the CIA model group
     Serum RLX, MMP-9, RANKL and RANKL/OPG ratio in the model group weresignificantly higher than that of the normal group (P<0.05), while serum OPG and MMP-13in the model group had no significant difference with the normal group (P>0.05). The mRNAexpression of RXFP1and RANKL in PBMCs of in the model group was significant higherthan that of the normal group (P<0.05), while mRNA expression of OPG in the model grouphad no significant difference with the normal group (P>0.05).
     2. Comparison between the TWP group and the model group
     Serum RLX, MMP-9, RANKL and RANKL/OPG ratio in the TWP group weresignificantly lower than that of the model group (P<0.05), while serum OPG and MMP-13inthe TWP group had no significant difference with the model group (P>0.05). The mRNAexpression of RXFP1and RANKL in PBMCs of the TWP group was significant lower thanthat of the model group (P<0.05), while mRNA expression of OPG in the TWP group had nosignificant difference with the model group (P>0.05).
     3. Comparison between the MTX group and the model group
     Serum MMP-9, RANKL and RANKL/OPG ratio in the MTX group were significantlylower than that of the model group (P<0.05), while serum RLX, OPG and MMP-13in theMTX group had no significant difference with the model group (P>0.05). The mRNAexpression of RANKL in PBMCs of MTX group was significant lower than that of the modelgroup (P<0.05), while mRNA expression of RXFP1and OPG in the MTX group had nosignificant difference with the model group (P>0.05).
     4. Comparison between the TWP group and the MTX group
     Serum RLX, MMP-9, MMP13, RANKL and RANKL/OPG ratio in the TWP groupwere lower than that of the MTX group without significant difference (P>0.05), while serumOPG in the TWP group was higher than that of the MTX group without significant difference(P>0.05). The mRNA expression of RXFP1and RANKL in PBMCs of TWP group waslower than that of the MTX group (P>0.05), while mRNA expression of OPG in the TWPgroup was higher than that of the MTX group (P>0.05).
     5. Straight line correlation analysis
     RLX was positively related to MMP-9and RANKL (r=0.428, P<0.05;r=0.416, P<0.05).
     Conclusion
     1. RLX may cause the destruction of the articular cartilage and bone loss byup-regulating the expression of MMP-9/MMP-13and RANKL/OPG;
     2. Tripterygium wilfordii polyglycoside may reduce the destruction of the articularcartilage and bone loss by inhibiting the RLX/RXFP1-MMP-9-OPG/RANKL.
     Purpose
     To study the expression of RLX/RXFP1、MMP-9/MMP-13and RANKL/OPG in theserum and separated PMBCs of RA patients before and after TWP treatment, and investigateRLX/RXFP1, MMP-9/MMP-13and RANKL/OPG in the pathogenesis of cartilagedestruction and bone loss in RA patients as well as the pharmacological mechanism of TWP.
     Methods
     20cases of RA patients with meeting including criteria and30cases of healthyindividuals were included in this study. The blood samples and relative clinical histories ofRA patients before and after TWP treatment as well as healthy individuals were collected.ELISA was applied to detect the expression of RLX-2, MMP-9, MMP-13, OPG and RANKLin the serum. Real-time PCR was used to detect the mRNA expression of RXFP1, OPG andRANKL in the isolated PBMCs. The expression of RLX-2/RXFP1, MMP-9/MMP-13, and OPG/RANKL before and after TWP treatment was compared.
     Results
     Serum RLX, MMP-9, MMP-13, RANKL and RANKL/OPG ratio as well as the mRNAexpression of RXFP1and RANKL in RA patients had significant difference before and afterTWP treatment (P<0.05or P<0.01). Serum concerntration and mRNA expression of OPG inRA patients had no signicicant difference before and after TWP treatment (P>0.05).
     Conclusion
     1. RLX may up-regulate the expression of MMP-9and RANKL to induce cartilagedestruction and bone loss involved in the mechanism of arthritis;
     2. The TWP may ease the cartilage destruction and bone loss of RA by inhibiting RLX/RXFP1-MMP-9-OPG/RANKL.
     Purpose
     To study the expression of RLX/RXFP1、MMP-9/MMP-13and RANKL/OPG in theserum and separated PMBCs of RA and OA patients with different syndromes, andinvestigate the role of RLX/RXFP1, MMP-9/MMP-13and RANKL/OPG in the pathogenesisof cartilage destruction in arthritis.
     Methods
     Clinical histories and blood samples of94untreated patients with arthritis (including56cases of RA patients and38cases of OA patients) as well as30cases of healthy individualswere collected. ELISA was applied to detect the expression of RLX-2, MMP-9, MMP-13,OPG and RANKL in serum. Real-time PCR was used to detect the mRNA expression ofRXFP1, OPG and RANKL in the isolated PBMCs. The expression of RLX/RXFP1,MMP-9/MMP-13, and OPG/RANKL among RA group, OA group and normal groups wascompared. Multiple linear regression analysis was applied to analyze the correlation of serumRLX-2, MMP-9, MMP-13, OPG and RANKL with clinical indicators in RA and OA patients.Straight line correlation analysis was used to analyze the correlation of serum RLX-2withMMP-9and RANKL.
     Results
     Serum RLX-2and the mRNA expression of RXFP1in isolated PBMCs were increasedin RA and OA patients compared to the normal group (P<0.05or P<0.01), and there was nosignificant difference between RA and OA patients (P>0.05). Serum MMP-9was increased inRA and OA patients compared to the normal group (P<0.05or P<0.01), and there wassignificant difference between RA and OA patients (P<0.05). Serum MMP-13was lower inRA patients than that of OA patients but higher than that of the normal group (P>0.05).Serum OPG as well as OPG mRNA expression in isolated PBMCs were lower in RA patientsthan that of OA patients and normal group (P>0.05). Serum RANKL as well as RANKLmRNA expression in isolated PBMCs increased in the RA patients compared to OA patientsand the normal group (P<0.05or P<0.01). Serum RANKL/OPG ratio was increased in RAand OA patients compared to the normal group (P<0.05or P<0.01), and there was significantdifference between RA and OA patients (P<0.05). Serum MMP-9and RANKL as well asRANKL mRNA expression in isolated PBMCs of RA patients differentiated as Cold or Heat Syndrome were higher than that of OA patients differentiated as Cold or Heat Syndromerespectively(P<0.05).
     Multiple linear regression analysis showed that serum levels of RLX-2and MMP-9were positively correlated with ESR(β=0.417, t=2.126, P=0.039;β=0.435, t=2.328, P=0.042).Straight line correlation analysis showed RLX-2was significantly positively related toMMP-9and RANKL (r=0.417, P<0.01; r=0.423, P<0.01).
     Conclusion
     1. RLX-2may induce cartilage destruction and bone loss in RA and OA byup-regulating MMP-9/MMP-13and RANKL/OPG;
     2. Both RLX-2and MMP-9reflected the inflammation level of RA.
引文
1. Murphy G, Nagase H. Reappraising metalloproteinases in rheumatoid arthritis andosteoarthritis: destruction or repair? Rheumatology,2008,4(3):128-135.
    2. Chan JY, Hossain MA, Samuel CS, et al. The relaxin peptide family-structure,function and clinical application. Protein&Peptide letters,2011,18(3):220-229.
    3. Santora K, Rasa C, Visco D, et al. Antiarthritic effects of relaxin, in combinationwith estrogen, in rat adjuvant-induced arthritis. J Pharmacol Exp Ther,2007,322(2):887-893.
    4. Figueiredo KA, Mui AL, Nelson CC, et al. Relaxin stimulates leukocyte adhesionand migration through a relaxin receptor LGR7-dependent mechanism. J Bio Chem,2006,281:3030–9.
    5. Ferlin A, PePe A, Facciolli A, et al. RLX stimulates osteoclast differentiation andactivation. Bone,2010,46:504-513.
    6. Binder C, Simon A, Binder L, et al. Elevated concentrations of serum relaxin areassociated with metastatic disease in breast cancer patients. Breast Cancer Res Treat2004;87:157–66.
    7. Santora K, Rasa C, Visco D, et al. Effects of RLX in a model of rat adjuvant inducedarthritis. Ann. N. Y. Acad. Sci,2005,1041:481-485.
    8.汤文璐,李俊,徐叔云等.II型胶原关节炎动物模型的研究概况.中国药理学报,1998,14(6):495-498.
    9. Hom JT, Estridge T, Cole H, et al. Effects of various anti-T cell recepter antibodieson the development of type II collagen-induced arthritis in mice. Immunol Invest,1993,22(4):257-265.
    10.高兴亚,汪晖,戚晓红等.机能实验学,北京:科学出版社,2001.
    11.林红,贺永怀,黎燕等.II型胶原蛋白与弗氏完全佐剂大鼠关节炎模型的建立和比较.中国实验动物学报,1999,7(1):1-6.
    12. Itoh T, UzukiM, Shimamura T, et al Dynamics of matrix metalloproteinase (MMP)-13in the patients with rheumatoid arthritis. Ryumachi2002,42(1):60-69.
    13. Elliott S, Hays E, Mayor M, et al. The triterpenoid CDDO inhibits expression ofmatrix metalloproteinase-1, matrix metalloproteinase-13and Bcl-3in primaryhuman chondrocytes. Arthritis Res Ther,2003,5(5): R285-291.
    14. Loies RJ, Derese I, Debaric T, et al. In vitro growith rate of fibroblast-like synovialcells reduced by methotrexate treatment. Ann Rheum Dis,2003,62:568-571.
    15.董宏生,胡荫奇,于孟学等.甲氨蝶呤对类风湿关节炎骨破坏和修复的实验研究.北京医学,2007,29(7):391-394.
    16.罗波,胡永红,张明敏等.雷公藤多甙对佐剂性关节炎模型大鼠关节中核因子κB受体激活剂配基表达的影响.医药导报,2006,25(5):395-397.
    17. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine thatregulates osteoclast differentiation and activation. Cell,1998,93(2):165-176.
    1. Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association1987revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum,1988,31(3):315-324.
    2.朱辉军,黄胜光,谭宁等.蜂针合中药熏蒸治疗类风湿关节炎的临床观察.湖南中医药大学学报,2010,30(1):70-72.
    3.类风湿关节炎分类标准(1981年ARA修订标准).中华风湿病学杂志,1998,2(2):96.
    4. Fransen J, van Riel PL. The disease activity score and the EULAR response criteria. ClinExp Rheumatol,2005,23(5SupPl39): S93-S99.
    5.孙晓云,苏茵,任丽敏等.甲氨蝶呤对类风湿关节炎患者的治疗作用及对相关细胞因子的影响.北京大学学报(医学版),2006,38(4):356‐359.
    6. Felson DT, Anderson JJ, Boers M, et al. American College of Rheuamtology.Preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum,1995,38(6):727-735.
    7.米存东,张素洁.基质金属蛋白酶与类风湿性关节炎骨侵蚀关系的研究进展.内科,2011,6(4):342-345.
    8.谢祥成,王鸣.RLX的生物学作用及其药用前景.医药导报,2010,29(8):1042-1045.
    9. Kapila S, Wang W, Uston K. Matrix metalloproteinase induction by RLX causes cartilagematrix degradation in target synovial joints. RLX and related peptides: fifth internationalconference. Ann.N.Y. Acad. Sci,2009,1160:322-328.
    10. Ferlin A, PePe A, Facciolli A, et al. RLX stimulates osteoclast differentiation andactivation. Bone,2010,46:504-513.
    11.吴振彪,卢宁,王彦宏等.基质金属蛋白酶MMP-2、MMP-9与类风湿性关节炎关节破坏的关系.中国免疫学杂志,2006,22(3):260-262.
    12. Gillian M, Vera K, Susan A, et al. Matrixmetalloproteinases in arthritic disease. ArthritisRes,2002;4(suppl3): S39-S49.
    13.胡伟,荣超,陈飞虎等.基质金属蛋白酶在类风湿关节炎发病机制中的作用研究进展.安徽医学,2011,32(5):671-672.
    14. Knauper V, Will H, Lopez OC, et al. Cellular mechanisms for humanprocollagenase-3(MMP-13) activation. Evidence that MT1-MMP (MMP-14) andgelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem,1996,271(29):17124-17131.
    15.王霖,王文杰.破骨细胞在类风湿性关节炎骨破坏中的作用及其调控机制.生理科学进展,2004,35(3):269-272.
    16.牛红青,张莉芸,李小峰等.RANKL/RANK/OPG系统及其在类风湿关节炎骨质破坏中的作用.中国药物与临床,2008,8(5):395-397.
    1. Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association1987revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum,1988,31(3):315-324.
    2.中华医学会骨科学分会.骨关节炎诊治指南(2007年版).中国医刊,2007,42(12):30-32.
    3.中华人民共和国卫生部.中药新药临床研究指导原则.北京:中国医药科技出版社.1993:210-214.
    4.吕诚.类风湿性关节炎寒热证候分类的系统生物学基础:[博士学位论文]。保存地点:中国中医科学院图书馆,2010.
    5.何羿婷,查青林,喻建平等.类风湿关节炎症状公因子与中西药疗效的关系.中西医结合学报,2008,6(1):32-36.
    6. Bani D. Rlaxin: A pleiotropic hormone. Gen Pharmacol,1997,28(1):13-22.
    7. Bennett RG. Relaxin and its role in the development and treatment of fibrosis.Translational Research,2009,154:1-6.
    8. Pehrsson M, Westberg L, Landen M, et al. Stable serum levels of relaxin throughout themenstrual cycle: a Preliminary Comparison of women with premenstrual dysPhoria andcontrols. Arch Womens Ment Health,2007,10:147-153.
    9. Binder C, Hagemann Th, Husen B, et al. Relaxin enhances in vitro invasiveness of breastcancercell lines by upregulation of matrix metalloproteases. Mol Hum ReProd2002,8:789–796.
    10. Kristiansson P, Holding C, Hughes S, et al. Does human RLX-2affect peripheral bloodmononuclear cells to increase inflammatory mediators in pathologic bone loss? Ann. N. Y.Acad. Sci,2005,1041:317-319.
    11.李卫平,蹇睿,胥方元.基质金属蛋白酶及其抑制物与骨性关节炎.西南军医,2010,12(6):1165-1167.
    12. I mai k. Matrixmetalloproteinase-7from human rectal carcinoma cells: Activati on of theprecursor interaction with other matrixmetalloproteinases and enzymic properties. J BiolChem,1995,270(12):6691-6697.
    13. Peter GM itchell,Holly A Magna,Lisa M Reeves,et al. Cloning,Expression,andtype II collagenolytic activity of matrix metalloproteinase-13from human osteoarthriticcartilage. J Clin Invest,1996,97(3):761.
    14.孙莉,王亚军,赵凡等.血清基质金属蛋白酶-9在膝骨性关节炎治疗前后水平变化的研究.中国老年学杂志,2009,29(23):3134-3135.
    15.王智勇,王霞,陈洪安等.外源性透明质酸钠对骨性关节炎患者的血清及关节滑液中基质金属蛋白酶-9的影响.中国骨伤,2009,22(2):152-153.
    16.史广强,金日龙,佟志慧等.骨性关节炎人群血清基质金属蛋白酶-13水平临床观察.中国现代医生,2010,48(1):113-115.
    17.班吉鹤,周利武,毛广平等.应用蛋白质芯片检测骨性关节炎患者基质金属蛋白酶-13的初步研究.医学研究生学报.2008,21(8):836-838.
    18. Anastasia P, Ioannis P, KellyM, et al. High levels of synovial fluid osteoprotegerin (OPG)and increased serum ratio of recepter activator of nuclear factor-κB ligand (RANKL) toOPG correlate with disease severity in patients with primary knee osteoartbritis. ClinBiochem,2008,41:746-749·
    19. Logar DB, Komadina R, Prezelj J, et al. Expression of bone resorption genes inosteoarthritis and in osteoporosis. J Bone MinerMetab,2007,25:219-225.
    20.陈居铕. OPG/PANK/PANKL细胞信号通路在骨性关节炎中作用的研究进展.中国矫形外科杂志,2011,19(5):395-397.
    21.管剑龙,施桂英,韩星海等.骨关节炎患者血清和滑液中金属蛋白酶-2和-9的研究.中华风湿病学杂志,2001,5(2):102-105.
    1. Cotran RS, Kumar SL. Robbins: Robbins pathologic basis of disease. WB Saunders, PA,1994.
    2. Petersson IF, Jacobsson L. Osteoarthritis of the peripheral joints. Best Pract Res ClinRheumatol,2002,16(5),741-760.
    3. Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis.Front Biosci,2006,11:529-43.
    4. Poole AR. An introduction to the pathophysiology of osteoarthritis. Front Biosci1999,4(1), D662-670.
    5. Arner EC. Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol,2002,2(3),322-9.
    6. Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis ResTher,2003,5(2),94-103.
    7. Hisaw FL. Experimental relaxation of the pubis ligament of the guinea pig. Proc. Soc.Exp. Biol Med,1926,23,661-663.
    8. Kong RCK, Shilling PJ, Lobb DK, et al. Membrane recepters: Structure and function ofthe RLX family peptide recepters. Mol. Cell Endocrinol,2010,320:1-15.
    9. Park JI, Chang CL, Hsu SYT. New insights into biological roles of RLX and RLX-relatedpeptides. Rev Endocr Metab Disord,2005,6,291-296.
    10. Wilkinson TN, Speed TP, Tregear GW, et al. Evolution of the RLX-like peptide family.BMC Evol Biol,2005,5,14.
    11. Hsu SY. New insights into the evolution of the RLX-LGR signaling system. TrendsEndocrinol Metab,2003,14,303-309.
    12. Chan JY, Hossain MA, Samuel CS, et al. The relaxin peptide family-structure, functionand clinical application. Protein&Peptide letters,2011,18(3):220-229.
    13. Hsu SY. Cloning of two novel mammalian paralogs of RLX/insulin family proteins andtheir expression in testis and kidney. Mol Endocrinol,1999,13,2163-2174.
    14. Liu C, Eriste E, Sutton S, et al. Identification of RLX-3/INSL7as an endogenous ligandfor the orphan G-protein-coupled recepter GPCR135. J Biol Chem,2003,278,50754-50764.
    15. Rosengren KJ, Lin F, Bathgate RA, et al. Solution structure and novel insights into thedeterminants of the recepter specificity of human RLX-3. J Biol Chem,2006,281,5845-5851.
    16. Haugaard-Jonsson LM, Hossain MA, Daly NL, et al. Structure of human insulin-likepeptide5and characterization of conserved hydrogen bonds and electrostatic interactionswithin the RLX framework. Biochem J,2009,419,619-627.
    17. Rosengren KJ, Zhang S, Lin F et al. Solution structure and characterization of the LGR8recepter binding surface of insulin-like peptide3. J Biol Chem,2006,281,28287-28295.
    18. Bani D. Rlaxin: A pleiotropic hormone. Gen Pharmacol,1997,28(1):13-22.
    19.谢祥成,王鸣.RLX的生物学作用及其药用前景.医药导报,2010,29(8):1042-1045.
    20. Unemori EN, Pickford LB, Salles AL et al. RLX induces an extracellularmatrix-degrading Phenotype in human lung fibroblasts in vitro and inhibits lung fibrosisin a murine model in vivo. J Clin Invest,1996,98,2739-2745.
    21. Samuel CS, Zhao C, Bathgate RA. RLX deficiency in mice is associated with anage-related progression of pulmonary fibrosis. Faseb J,2003(17):121-123.
    22. Williams EJ, Benyon RC, Trim N et al. RLX inhibits effective collagen deposition bycultured hepatic stellate cells and decreases rat liver fibrosis in vivo. Gut,2001,49,577-583.
    23. Masini E, Bani D, Bello MG. RLX counteracts myocardial damage induced byischemia-reperfusion in isolated guineapig hearts: evidence for an involvement of nitricoxide. Endocrinology,1997,138(11):4713-4720.
    24. KaPila S, Wang W, Uston K. Matrix metalloproteinase induction by RLX causes cartilagematrix degradation in target synovial joints. RLX and related peptides: fifth internationalconference. Ann.N.Y. Acad. Sci,2009,1160:322-328.
    25. Kristiansson P, Holding C, Hughes S, et al. Does human RLX-2affect peripheral bloodmononuclear cells to increase inflammatory mediators in pathologic bone loss? Ann. N. Y.Acad. Sci,2005,1041:317-319.
    26. Ferlin A, PePe A, Facciolli A, et al. RLX stimulates osteoclast differentiation andactivation. Bone,2010,46:504-513.
    27. Santora K, Rasa C, Visco D, et al. Effects of RLX in a model of rat adjuvant inducedarthritis. Ann. N. Y. Acad. Sci,2005,1041:481-485.
    28. Ho TY, Santora K, Chen JC, et al. Effects of RLX and estrogens on bone remodelingmarkers, recepter activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG), in ratadjuvant-induced arthritis. Bone,2011,48:1346-1353.
    29. Barrett AJ. Introduction to the history and classification of proteinases in: proteinases inmammalian cells and tissue. Elsevier/North-Holland, NY,1977,1-55.
    30. Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis ResTher,2003,5(2):94-103.
    31. Nagase H, Okada Y. Proteinases and matrix degradation in: Textbook of Rheumatology.W.B. Saunders, PA,1997,323-341.
    32. Nagase H, Woessner JF. Role of endogenous proteases in the degradation of the cartilagematrix. In: Joint cartlage degradation: Basic and clinical aspects. Marcel Dekker, NY,1993,159-185.
    33. Hisaw F. Experimental relaxation of the pubic ligament of the guinea pig. Proc Soc ExPBiol Med,1926,23(23):661-663.
    34. MarchenkoGN, Strongin AY. MMP-28, a new humanma-trixmetallo-protein ase with anunusual cysteine-switch sequence iswidely expressed in tumors. Gene,2001,265(122):87293.
    35.胡伟,荣超,陈飞虎等.基质金属蛋白酶在类风湿关节炎发病机制中的作用研究进展.安徽医学,2011,32(5):671-672.
    36.刘艳,贾玉杰.基质金属蛋白酶与类风湿性关节炎的研究进展.医学综述,2006,12(17):1027-1029.
    37. Murphy G, Nagase H. Reappraising metalloproteinases in rheumatoid arthritis andosteoarthritis: destruction or repair? Rheumatology,2008,4(3):128-135.
    38. Konttinen YT, Ainola M, Valleala H, et al. Analysis of16different matrixmetalloproteinases (MMP-1to MMP-20) in the synovial membrane: different profiles intrauma and rheumatoid arthritis. Ann Rheum Dis,1999,58(11):691-697.
    39. Elliott S, Hays E, Mayor M, et al. The triterpenoid CDDO inhibits expression of matrixmetalloproteinase-1, matrix metalloproteinase-13and Bcl-3in Primary humanchondrocytes. Arthritis Res Ther,2003,5(5): R285-291.
    40. Bonassar LJ, Frank EH, Murray JC, et al. Changes in cartilage composition and physicalproperties due to stromelysin degradation. Arthritis Rheum,1995,38(2):173-183.
    41. Mengshol JA, Mix KS, Brinckerhoff CE. Matrix metalloproteinases as therapeutic targetsin arthritic diseases: bull’s-eye or missing the mark? Arthritis Rheum,2002,46(1):13-20.
    42. Smeets TJ, Kraan MC, Galjaard S, et al. Analysis of the cell infiltrate and expression ofmatrix metalloproteinases and granzyme B in paired synovialbiopsy specimens from thecartilage-pannus junction in patientswith RA. Ann Rheum Dis,2001,60(6):561-565.
    43.魏平,付爽,王俊祥,等.基质金属蛋白酶3在类风湿关节炎中的表达及其意义.临床荟萃,2006,21(19):1389-1390.
    44. Itoh T, UzukiM, Shimamura T, et al Dynamics of matrix metalloproteinase (MMP)-13inthe patients with rheumatoid arthritis. Ryumachi2002,42(1):60-69.
    45.刘梦琼,林永前,王俏梅,等.类风湿关节炎和系统性红斑狼疮患者血清基质金属蛋白酶2、9检测的意义.检验医学,2009,24(12):883-885.
    46.范慧洁,戴如春,廖二元. OPG/RANK/RANKL系统与骨折和类风湿性关节炎.国际内分泌代谢杂志,2006,26(4):241-244.
    47. Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymphnode development. Genes Dev,1999,13(18):2412-2424.
    48. Bucay N, Sarosi I, Dunstan CR, et al. osteoprotegerin-deficient mice develop early onsetosteoporosis and arterial calcification. Genes Dev,1998,12(9):1260-1268.
    49. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulatesosteoclast differentiation and activation. Cell,1998,93(2):165-176.
    50. Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell,1996,85(3):307-310.
    51. Bendele A, McComb J, Gould T, et al. Animal models of arthritis: relevance to humandisease. Toxicol Pathol,1999,27(1):134-142.
    52. Kong YY, Feige U, Sarosi I, et al. Activated T-cells regulate bone loss and jointdestruction in adjuvant arthritis through osteoprotegerin ligand. Nature,1999,402(6759):304-309.
    53. Muller-Ladner U, Gay RE, Gay S. Molecular biology of cartilage and bone destruction.Curr Opin Rheumatol,1998,10(3):212-219.
    54. Hsu H, Lacey DL, Dunstan CR,et al. Tumor necrosis factor recepter family memberRANK mediates osteoclast differentiation and activation induced by osteoprotegerinligand. Proc Natl Acad Sci USA,1999,96(7):3540-3545.
    55. Kong YY. Activated T cells regulate bone loss and joint destruction in adjuvant arthritisthrough osteoprotegerin ligand. Nature,1999,402(7):304–309.
    56. Takayanagi H, Iizuka H, Juji T, et al. Involvement of recepter activator of nuclear factorkappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes inrheumatoid arthritis. Arthritis Rheum,2000,43(2):259-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700