楸树优良无性系2-8苗期生理变化与基因表达对干旱胁迫的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
楸树(Catalpa bungei)是我国特有珍贵用材树种,分布范围广,材质优良,已有2600多年的栽培历史,目前主要作为高档家具和细木工板材等原材料。然而,目前推广的主栽品种抗旱性较差,在相对干旱的条件下表现不佳。因此,为了提高在相对干旱条件下楸树的生长量,开展种内耐旱和高水分利用效率新品种选育成为重要的研究方向。
     了解楸树对干旱胁迫的生理和分子响应机理,挖掘关键基因,是开展高效育种的基础。本研究以楸树优良耐旱无性系为试材,利用高通量测序技术建立转录本集合,通过干旱处理和基因芯片技术挖掘胁迫响应关键基因,并结合生理变化,对响应机理进行阐述。主要结果如下:
     (1)在自然干旱胁迫过程中,当土壤重量含水量下降到23%时,苗高、地径和叶片生长基本停止,成熟叶片的叶面积为正常条件下的53%(93.5cm2),净光合速率(Pn)和光合性能指数(PI)显著下降;当土壤含水量下降到15%时,Pn接近于0,叶片和根系游离脯氨酸、可溶性糖、脱落酸含量在胁迫下均显著升高,茉莉酸含量则轻微升高,可溶性蛋白含量先升高后降低,叶片和根系的SOD、POD活性、以及叶片POD活性均呈现为先下降,后期呈显著升高的趋势。
     (2)采集正常和干旱胁迫条件下3个楸树基因型的叶片、根、茎等组织进行混合转录组测序(454焦磷酸测序),共获得77,337个Unigene,在Nr数据库中比对,共有33,672个Unigene具有同源序列,其中有19,110个获得GO功能注释。通过KEGG代谢通路富集,共参与了包括碳水化合物、氨基酸、脂肪酸代谢(Carbohydrate,Amino acid,Fatty acidmetabolism)、光合作用(Photosynthesis)等在内的250个代谢通路。发掘了包括双碱基重复(Di-)至六碱基重复(Hexa-),以及混合型在内的2,782个SSR和79,528个SNP。
     (3)依据转录组测序结果,设计了表达谱芯片,并依据干旱胁迫下生长和生理变化趋势,选择了5个土壤含水量梯度对叶片和根系进行差异基因表达分析。与对照相比,4种胁迫下叶片中差异表达基因共有16,137个,根系中共有14,913个,叶片中有2,233个基因是在4种胁迫下共差异表达的,其中有630个随胁迫加重表达量呈不断升高或降低的趋势(持续差异基因)。根系中有1,006个基因是在4种胁迫下共差异表达的,其中有203个随胁迫加重表达量呈不断升高或降低的趋势(持续差异基因)。对叶片和根系中的持续差异基因进行GO和KOG注释表明,主要涉及到信号转导途径、转录、离子跨膜转运、渗透调节物质合成、抗氧化酶和激素合成等方面。
     (4)通过功能分析,发掘到与干旱胁迫响应相关的基因,主要包括4个方面:
     信号转导相关基因:丝氨酸/苏氨酸蛋白激酶(Serine/Threonine-protein kinase)、富含亮氨酸重复序列(leucine-rich repeat,LRR)类受体蛋白激酶、MYB、MYC、bZIP、NAC;
     抗氧化酶基因:原叶绿素酸酯氧化还原酶(NADPH: protochlorophyllideoxidoreductase)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)、锰超氧化物歧化酶(manganese superoxide dismutase,Mn-SOD)、环阿乔醇-C-24位甲基转移酶(S-adenosyl-L-methionine: delta24-sterol-C-methyltransferase)、type II过氧化物酶(type IIperoxiredoxin,POD)、丁酸-辅酶A连接酶(butyrate--CoA ligase AAE11);
     渗透调节物质合成相关基因:蔗糖合成酶(Sucrose synthase)、蔗糖磷酸合酶(Sucrosephosphate synthase)、棉籽糖合成酶(Raffinose synthase)、水苏糖合成酶(Stachyosesynthase)、△-吡咯啉-5-羧基合成酶(△1-pyrroline-5-carboxylate synthase)、鸟氨酸-△-氨基转移酶(Ornithine-delta-aminotransferase)、△-吡咯啉-5-羧基还原酶(Pyrroline-5-carboxylate reductase)、谷氨酸脱氢酶(Glutamate dehydrogenase)、乙醛脱氢酶(Aldehyde dehydrogenase)、胆碱单加氧酶(Choline monooxygenase)、水孔蛋白(Aquaporin);
     激素合成相关基因:9-顺式-环氧类胡萝卜素双加氧酶(9-cis-epoxycarotenoiddioxygenase,NCED)、ABA-醛氧化酶(ABA aldehyde oxidase)、细胞色素P450、赤霉素-20-氧化酶(Gibberellin20-oxidase)、12-氧-植物二烯酸还原酶(12-oxophytodienoic acid10,10-reductase)。
Catalpa bungei, one of the endemism and valuable timber tree species in China, whichhas been cultivation more than2600years. This species was widely distribution in China andprimarily be used as the raw materials of high-end furniture and musical instruments cause ofthe excellent material quality. However, the recently promotion main cultivar has been shown adiscrepancy drought resistance, the performance was misadventure under the relativelydroughty condition. Therefore, how to selection breeding the excellent new varieties withrelatively drought-tolerant and high water use efficiency has become an important orientationfor improvement the mass growth of Catalpa bungei under the relatively droughty condition.
     Understanding the physiological and molecular response mechanism to drought stress andmining the key genes in Catalpa bungei is the foundation of effective breeding. This studychoose the excellent drought resisting clone of Catalpa bungei as test materials, usinghigh-throughput sequencing technology to build the assemblage of transcription, adopting thegene chip technology to excavate the key response gene after drought treatment, combinedwith the physiological changes to elaborate the response mechanism. The main results were asfollows:
     (1)In the process of natural drought stress, the height, diameter and leaf growth basicallystopped when the gravimetric water content drop to23%, the leaf area of mature leaves was53%of that under normal conditions(93.5cm2). Net photosynthetic rate (Pn)and photosyntheticperformance index(PI)decreased significantly, Pn was close to0when the soil moisturecontent down to15%, no significant change in the efficiency of light energy conversion(Fv/Fm). The content of free proline, soluble sugar, abscisic acid in leaves and roots weresignificantly elevated under drought stress treatment, the content of jasmonic acid was slightlyincreased, the content of soluble protein was firstly increased and then decreased; the activity of SOD, POD in leaves and roots and leaf POD activity were shown a trend of decline at firstand significantly increased in late.
     (2)Leaves, roots, stems, and other tissue of three Catalpa bungei genotypes which undernormal and drought stress treatment were acquisition and mixed for transcriptome sequencing(454pyrosequencing), a total of77,337unigene were obtained, Clustering with NR database,a total of33,672unigene have been found homologous sequences, among which19,110acquired GO functional annotation.250metabolic pathways including Carbohydrate, Aminoacid, fatty acid metabolism, Photosynthesis, citrate cycle, glycolysis were got by KEGGmetabolism pathways enrich.2,782SSR including double-nucleotide repeat(Di-)to six baserepeat (Hexa-), and mixed type were explored, a total of79,528SNP were excavated.
     (3)Based on the transcriptome sequencing results, expression profile chip were designed.According to the growth and physiological change trends under drought stress treatment,5soilmoisture gradient(including controls)were chosen to analysis the gene differences expressionin leaves and roots. Comparing with the control, totally16,137differentially expressed genes inleaves and14,913in the roots were discovered under four kinds of drought stress treatments.2,233genes in leaves were commonly differentially expression under the four drought stresstreatments, including630genes(continuous differential gene)have the trend of increasing ordecreasing expression quantity with the drought stress degree increased;1,006genes in rootswere commonly differentially expression under the four drought stress treatments, including230genes(continuous differential gene)have the trend of increasing or decreasing expressionquantity with the drought stress degree increased; results of GO and KOG annotation of thecontinuous differential gene in leaves and roots showed that the differential gene in leaves androots were mainly involved in signal transduction pathway, transcription, transmembrane iontransport, osmotic adjustment substances sythesis, antioxidant enzyme and hormone sythesisother functions and processes.
     (4)According the functional analysis, the droughts stress response-related genes wereexplored, including four aspects.
     Signal transduction related genes: Serine/threonine-protein kinase, leucine-rich repeat(LRR)receptor-like protein kinase, MYB, MYC, bZIP, NAC;
     Antioxidant protective enzyme gene: NADPH(protochlorophyllide oxidoreductase),glutathione peroxidase(GSH-Px), manganese superoxide dismutase(Mn-SOD), S-adenosyl-L-methionine(△24-sterol-C-methyltransferase), type II peroxiredoxin(POD), butyrate-theCoA ligase AAE11;
     Adjustment substances synthesis related gene: sucrose synthase, sucrose phosphatesynthase, Raffinose synthase, and stachyose synthase,△1-pyrroline-5-carboxylate synthase,ornithine-△-aminotransferase, pyrroline-5-carboxylate reductase, glutamate dehydrogenase,aldehyde dehydrogenase, choline monooxygenase;
     Hormone synthesis related genes:9-cis-epoxycarotenoid dioxygenase(NCED), ABAaldehyde oxidase, cytochrome P450, gibberellin20-oxidase,12-oxophytodienoic acid10,10-reductase. The differential expression gene above-mentioned were the molecular basis ofCatalpa bungei clones2-8respond to drought stress, the mining and function analysis of suchgene have supported for the selection and breeding of superior drought resistant Catalpabungei clones
引文
Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptionalactivators in abscisic acid signaling[J]. The plant cell,2003,15(1):63-78.
    Agre P, Brown D, Nielsen S. Aquaporin water channels: unanswered questions and unresolvedcontroversies[J]. Current opinion in cell biology,1995,7(4):472-483.
    Aharon R, Shahak Y, Wininger S, et al. Overexpression of a plasma membrane aquaporin in transgenictobacco improves plant vigor under favorable growth conditions but not under drought or salt stress[J].Plant cell,2003,15(2):439-447.
    Alexandersson E, Danielson J, R de J, et al. Transcriptional regulation of aquaporins in accessions ofArabidopsis in response to drought stress[J]. The plant journal,2010,61(4):650-660.
    Almeida-Rodriguez AM, Cooke JEK, Yeh F, et al. Functional characterization of drought responsiveaquaporins in Populus balsamifera and Populus simonii×balsamifera clones with different droughtresistance strategies[J]. Physiologia plantarum,2010,140(4):321-333.
    Amiard V, Morvan-Bertrand A, Billard JP, et al. Fructans, but not the sucrosyl-galactosides, raffinose andloliose, are affected by drought stress in perennial ryegrass[J]. Plant physiology,2003,132(4):2218-2229.
    Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis[M]. Elsevier sciencepublishers, Amsterdam,1987.
    Aussenac G. Interactions between forest stands and microclimate: ecophysiological aspects andconsequences for silviculture[J]. Annals of froest science,2000,57(3):287-301.
    Avise JC. Molecular Markers, Natural History, and EvolutionLondon[M]. UK: Chapman and Hall,2004.
    Avonce N, Mendoza-Vargas A, Morett E, et al. Insights on the evolution of trehalose biosynthesis[J]. BMCevolutionary biology,2006,6:109.
    Beaumont MA. Adaptation and speciation: what can FSTtell us?[J]. Trends in ecology&evolution,2005,20(8):435-440.
    Beldade P, Rudd S, Gruber JD, et al. A wing expressed sequence tag resource for Bicyclus anynanabutterflies, an evo-devo model[J]. BMC genomics,2006,7:130.
    Bolstad BM., Irizarry RA, Astrand M, et al. A comparison of normalization methods for high densityoligonucleotide array data based on variance and bias[J]. Bioinformatics,2003,19(2):185-193.
    Bouck A, Vision T. The molecular ecologist‘s guide to expressed sequence tags[J]. Molecular ecology,2007,16(5):907-924.
    Boursiac Y,Chen S,Luu DT,et al. Early effects of saliaity on water transport in Arabidopsis roots.Molecular and cellular features of aquaporin expression[J]. Plant physiology.2005,139(2):790-805.
    Chaitanya KV, Rasineni GK, Reddy AR. Biochemical responses to drought stress in mulberry (Morus albaL.): evaluation of proline, glycine betaine and abscisic acid accumulation in five cultivars[J]. Actaphysiologiae plantarum,2009,31(3):437-443.
    Changjuan Shan, Zongsuo Liang. Jasmonic acid regulates ascorbate and glutathione metabolism inAgropyron cristatum leaves under water stress[J]. Plant science,2010,178(2):130-139.
    Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought from genes to the wholeplant[J]. Functional plant biology,2003,30(3):239-264.
    Citao L, Wu YB, Wang XP. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator ofcold and drought stress response in rice[J]. Planta,2012,235(6):1157-1169.
    Cocozza C, Cherubini P, Regier N, et al. Early effects of water deficit on two parental clones of Populusnigra grown under different environmental conditions[J]. Functional plant biology,2010,37(3):244-254.
    Cohen D, Marie-Béatrice B, Tisserant E, et al. Comparative transcriptomics of drought responses in Populus:a meta-analysis of genome-wide expression profiling in mature leaves and root apices across twogenotypes[J]. BMC genomics,2010,11:630.
    Cramer GR, Sluyter SCV, Hopper DW, et al. Proteomic analysis indicates massive changes in metabolismprior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to waterdeficit[J]. BMC plant biology2013,13:49.
    Crowe JH, Carpenter JF, Crowe LM. The role of vitrification in anhydrobiosis[J]. Annual review ofphysiology,1998,60(1):73-103.
    Danielson J H, Johanson U. Unexpected complexity of the Aquaporin gene family in the mossphyscomitrella patens[J]. BMC plant biology,2008,8:45.
    Delauney AJ, Verma DPS. Proline biosynthesis and osmoregulation in plants[J]. The plant journal,1993,42(2):215-223.
    Dobbs C, Hernández J, Escobedo F. Above ground biomass and leaf area models based on a non destructivemethod for urban trees of two communes in Central Chile[J]. Bosque,2011,32(3):287-296.
    Edwards CE., Parchman TL, Weekley CW. Assembly, gene annotation and marker development using454floral transcriptome sequences in Ziziphus Celata(Rhamnaceae), a highly endangered, Florida endemicplant[J]. DNA research,2012,19(1):1-9.
    Eisenbarth DA, Weig AR. Dynamics of aquaporins and water relations during hypocotyls elongation inRicinus communis L. seedlings[J]. Journal of experimental botany,2005,56(417):1831-1842.
    Ellegren H. Sequencing goes454and takes large-scale genomics into the wild[J]. Molecular ecology2008,17(7):1629-1631.
    Emrich SJ, Barbazuk WB, Li L, et al. Gene discovery and annotation using LCM-454transcriptomesequencing[J]. Genome research,2007,17:69-73.
    Marin E, Nussaume L, Quesada A, et al. Molecular identification of zeaxanthin epoxidase of Nicotianaplumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus ofArabidopsis thaliana[J]. The EMBO journal,1996,15(10):2331-2342.
    Ennajeh M, Vadel AM, Cochard H, et al. Comparative impacts of water stress on the leaf anatomy of adrought-resistant and a drought-sensitive Olive cultivar[J]. Journal of horticultural science&biotechnology,2010,85(4):289-294.
    Fang XW, Turner NC, Yan GJ, et al. Flower numbers, pod production, pollen viability, and pistil function arereduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminaldrought[J]. Journal of experimental botany,2009,61(2):335-345.
    Fedurco M, Romieu A, Williams S, et al. BTA, a novel reagent for DNA attachment on glass and efficientgeneration of solid-phase amplified DNA colonies[J]. Nucleic acids research,2006,34(3):22.
    Flowers TJ, Yeo AR. Ion relations of plants under drought and salinity[J]. Australian journal of plantphysiology,1986,13(1):75-91.
    Fray R G, Wallace A, Grierson D, et a1. Nucleotide sequence and expression of a ripening and waterstress-related cDNA from tomato with homology to the MIP class of membrane channel proteins[J].PlantMol Biol,1994,24(3):539-543.
    Fu JM, Huang BR, Jack F. Osmotic potential, sucrose level, and activity of sucrose metabolic enzymes inTall Fescue in response to deficit irrigation[J]. Journal of the American society for horticultural science,2010,135(6):506-510.
    Gan XC, Stegle O, Behr J, et al. Multiple reference genomes and transcriptomes for Arabidopsis thaliana[J].Nature,2011,477:419-423.
    Gao CX, Han B. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) genesuperfamily in rice (Oryza sativa)[J]. Gene,2009,431(1-2):86-94.
    Gebre GM, Kuhns MR, Brandle J R. Organic solute accumulation and dehydration tolerance in threewater-stressed Populus deltoids clones[J]. Tree physiology,1994,14(6):575-587.
    Graham IA., Besser K, Blumer S, et al, The genetic map of Artemisia annua L. identifies loci affecting yieldof the antimalarial drug artemisinin[J]. Science,2010,327(5963):328-331.
    Grime JP. Plant Strategies, vegetation processes, and ecosystem properties[M]. Chichester: John wiley&sons.2002.
    Guicherd P., Peltier JP, Gout E, et al. Osmotic adjustment in Fraxinus excelsior L.: malate and mannitolaccumulation in leaves under drought conditions[J]. Trees,1997,11(3):155-161.
    Hahn DA, Ragland GJ, Shoemaker DD, et al. Gene discovery using massively parallel pyrosequencing todevelop ESTs for the flesh fly Sarcophaga crassipalpis[J]. BMC genomics,2009,10:234.
    Handson AD, Rathinasabapathi B, Rivoal J, et al. Osmorprotective compounds in the plumbaginacae:anatural experiment inmatabolic engineeringof stress tolerance[J]. Proceedings of the national academyof sciences, USA,1994,91(1):306-310.
    Hao DC, Ge GB, Xiao PG, et al. The first insight into the tissue specific taxus transcriptome via Illuminasecond generation sequencing[J]. Plos one,2011,6(6):21220.
    Hardie DG. Plant protein serine/threonine kinases: classification and functions[J]. Annual review of plantphysiology and plant molecular biology,1999,50(1):97-141.
    Haslbeck M, Walke S, Stromer T, et a1. Hsp26: a temperature-regulated chaperone[J]. The EMBO journal,1999,18(23):6744-6751.
    Helliwell CA, Chandler PM, Poole A, et al. The CYP88A cytochrome P450, entkaurenoic acid oxidase,catalyzes three steps of the gibberellins biosynthesis pathway[J]. Proceedings of the national academy ofsciences, USA,2001,98(4):2065-2070.
    Hermans C, Smeyers M, Rodriguez RM, et al. Quality assessment of urban trees: A comparative study ofphysiological characterisation, airborne imaging and on site fluorescence monitoring by the OJIP-test[J].Journal of plant physiology,2003,160(1):81-90.
    Herrero J, Valencia A, Dopazo J. A hierarchical unsupervised growing neural network for clustering geneexpression patterns[J]. Bioinformatics,2001,17(2):126-136.
    Hooijmaijers C, Rhee JY, Kwak KJ, et a1. Hydrogen peroxide permeability of plasma membrane aquaporinsArabidopsis thaliana[J]. Journal of plant research,2012,125(1):147-153.
    Hua XJ, Van DCB, Van MM, et a1. Developmental regulation of pyrroline-5-carboxylate reductase geneexpression in Arabidopsis[J]. Plant physiology,1997,114(4):1215-1224.
    Hudson ME. Sequencing breakthroughs for genomic ecology and evolutionary biology[J]. Molecularecology resources,2008,8(1):3-17.
    Iordachescu M, Imai R. Trehalose biosynthesis in response to abiotic stresses[J]. Journal of integrative plantbiology,2008,50(10):1223-1229.
    Iturriaga G, Gaff DF, Zentella R. New desiccation-tolerant plants, including a grass, in the central highlandsof Mexico, accumulate trehalose[J]. Australian journal of botany,2000,48(2)153-158.
    Iuchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene manipulation of9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. The plantjournal,2001,27(4):325-333.
    Jain D, Chattopadhyay D. Analysis of gene expression in response to water deficit of chickpea (Cicerarietinum L.) varieties differing in drought tolerance[J]. BMC plant biology,2010,10:24.
    Johanson U, Karlsson M, Johansson I, et al. The complete set of genes encoding major intrinsic proteins inArabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants[J]. Plantphysiology,2001,126(4):1358-1369.
    Joslin JD, Wolfe MH, Hanson PJ. Effects of altered water regimes on forest root systems[J]. New phytologist,2000,147(1):117-129.
    Ju J, Kim DH, Bi L, et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotidereversible terminators[J]. Proceedings of the national academy of sciences, USA,2006,103(52):19635-19640.
    Kar M, Mishra D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence[J].Plant physiology,1976,57(2):315-319.
    Kavi KPB, Hong Z, Miao GH, et al. Overexpression of delta1-pyrroline-5-carboxylate synthetase increa-sesproline production and confers osmotolerance in transgenic plants[J]. Plant physiology,1995108(4):1387-1394.
    Kido EA, Neto JRCF, Silva RLO, et al. Expression dynamics and genome distribution of osmoprotectants insoybean: identifying important components to face abiotic stress[J]. BMC bioinformatics,2013,14(Suppl1):57.
    Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, et al. The isolation of abscisic acid (ABA)deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines ofArabidopsis thaliana (L.) heynh[J]. Theoretical and applied genetics,1982,61(4):385-393.
    Koornneef M, Léon-Kloosterziel KM, Schwartz SH, et al. The genetic and molecular dissection of abscisicacid biosynthesis and signal transduction in Arabidopsis[J]. Plant physiology and biochemistry,1998,36(1-2):83-89.
    Kotchoni SO, Kuhns C, Ditzer A, et al. Overexpression of different aldehyde dehydrogenase genes inArabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation andoxidative stress[J]. Plant cell environ,2006,29(6):1033-1048.
    Kristiansson E, Asker N, Forlin L, et al. Characterization of the Zoarces viviparus liver transcriptome usingmassively parallel pyrosequencing[J]. BMC genomics,2009,10:345.
    Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome[J]. Nature,2001,409(6822):860-921.
    Li GW, Peng YH, Yu X, et al. Transport functions and expression analysis of vacuolar membrane aquaporinsin response to various stresses in rice[J]. Journal of plant physiology,2008,165(18):1879-1888.
    Lu TT, Lu GJ, Fan DL, et al. Function annotation of the rice transcriptome at single-nucleotide resolution byRNA-seq[J]. Genome research,2010,20(9):1238-1249.
    Luikart G, England PR, Tallmon D, et al. The power and promise of population genomics: from genotypingto genome typing[J]. Nature reviews genetics,2003,4(12):981-994.
    Luo AD, Qian Q, Yin HF. EUI1, encoding a putative cytochrome P450monooxygenase, regulates internodeelongation by modulating gibberellin responses in Rice[J]. Plant and cell physiology,2006,47(2):181-191.
    Macevicz S C. DNA sequencing by parallel oligonucleotide extensions[P]. US patent5750341,1998.
    Mantri NL, Ford R, Coram TE, et al. Transcriptional profiling of chickpea genes differentially regulated inresponse to high-salinity, cold and drought[J]. BMC genomics,2007,8(9):303.
    Mao XG, Zhang HY, Tian SJ, et al. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat(Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis[J]. Journal of experimentalbotany,2010,61(3):683-696.
    Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitrereactors[J]. Nature,2005,437(7057):376-380.
    Martin K, Kelso J. High-throughput DNA sequencing-concepts and limitations[J]. Cell&Molecular Biology,2010,32(6):524-536.
    Maurel C, Verdoucq L, Luu DT, et al. Plant aquaporins: membrane channels with multiple integratedfunctions[J]. Annual Review of Plant Biology,2008,59:595-624.
    McNeil SD, Nuccio ML, Hanson AD. Betaines andrelated osmoprotectants. Targets for metabolicengineering of stress resistance[J]. Plant physiology,1999,120(4):945-949.
    Meyer E, Aglyamova GV, Wang S, et al. Sequencing and de novo analysis of a coral larval transcriptomeusing454GSFlx[J]. BMC genomics,2009,10:219.
    Mita K, Morimyo M, Okano K, et al. The construction of an EST database for Bombyx mori and itsapplication[J]. Proceedings of the national academy of sciences, USA,2003,100(24):14121-14126.
    Moose S P, Mumm R H. Molecular plant breeding as the founda-tion for21st century crop improvement[J].Plant physiology,2008,147(3):969-977.
    Munne′-Bosch S, Falara V, Pateraki I, et al. Physiological and molecular responses of the isoprenoidbiosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to waterdeficit[J]. journal of plant physiology,2009,166(2):136-145.
    Nagaraj SH, Gasser RB, Ranganathan S. A hitchhiker‘s guide to expressed sequence tag (EST) analysis[J].Briefings in bioinformatics,2007,8(1):6-21.
    Narasimha Chary S, Hicks GR., Choi YG, et al. Trehalose-6-phosphate synthase/phosphatase regulates cellshape and plant architecture in Arabidopsis[J]. Plant physiology,2008,146(1):97-107.
    Nelson DE, Rammesmayer G, Bohnert HJ. Regulation of cell-specific inositol metabolism and transport inplant salinity tolerance[J]. The plant cell,1998,10(5):753-764.
    Novaes E, Drost DR, Farmerie WG, et al. High-throughput gene and SNP discovery in Eucalyptus grandis,an uncharacterized genome[J]. BMC genomics,2008,9:312.
    Ouyang SQ, Liu YF, Liu P, et al. Receptor-like kinase OsSIK1improves drought and salt stress tolerance inrice (Oryza sativa) plants[J]. The plant journal,2010,62(2):316-329.
    Hedden P, Phillips AL. Gibberellin metabolism: new insights revealed by the genes[J]. Trends in plantscience,2000,5(12):523-530.
    Paiva RMC, Freitas RB, Lopes FJF, et al. Identification and characterization of gene expression of threecoffee NCED members under drought[C].22nd International Conference on Coffee Science,2008:992-996.
    Papanicolaou A, Joron M, McMillan WO, et al. Genomic tools and cDNA derived markers for butterflies[J].Molecular ecology,2005,14(9):2883-2897.
    Parchman TL, Geist KS, Grahnen JA, et al. Transcriptome sequencing in an ecologically important treespecies: assembly, annotation, and marker discovery[J]. BMC genomics,2010,11:180.
    Paschall JE, Oleksiak MF, VanWye JD, et al. FunnyBase: a systems level functional annotation of FundulusESTs for the analysis of gene expression[J]. BMC genomics,2004,5:96.
    Peng H, Cheng HY, Chen C. A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, isinvolved in drought stress response and various developmental processes[J]. Journal of Plant Physiology,2009,166(17):1934-1945.
    Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology[J]. Trends in genetics,2008,24(3):142-149.
    Pregitzer KS, Hendrick RL, Fogel R. The demography of fine roots in response to patches of water andnitrogen[J]. New phytologist,1993,125(3):575-580.
    Ranney TG, Bassuk NL, Whitlow TH. Osmotic adjustment and solute constituents in leaves and roots ofwater-stressed Cherry (Prunus) trees[J]. Journal of the American society for horticultural science,1991,116(4):684-688.
    Richardson GR, Cowan AK. Development of an abscisic acid biosynthesizing cell-free system from flavedoof Citrus sinensis fruit[J]. Journal of Experimental Botany,1996,47(3):455-464.
    Robinson SA, Stewart GR., Phillips R. Regulation of glutamate dehydrogenase activity in relation to carbonlimitation and protein catabolism in carrot cell suspension cultures[J]. Plant physiology,1992,98(3):1190-1195.
    Rudd S. Expressed sequence tags: alternative or complement to whole genome sequences[J] Trends in plantscience,2003,8(7):321–329.
    Ruparel H, Bi L, Li Z, et al. Design and synthesis of a3'-O-allyl photocleavable fluorescent nucleotide as areversible terminator for DNA sequencing by synthesis[J]. Proceedings of the national academy ofsciences, USA,2005,102(17):5932-5937.
    Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor,DREB2A, involved in drought responsive gene expression[J]. The plant cell,2006,18(5):1292-309.
    Sarker SK, Das N, Chowdhury MQ, et al. Developing allometric equations for estimating leaf area and leafbiomass of Artocarpus chaplasha in Raghunandan Hill Reserve, Bangladesh[J]. Southern forests,2013,75(1):51–57.
    Schroeder JI, Kwak JM, Allen GJ. Guard cell abscisic acid signalling and engineering drought hardiness inplants[J]. Nature,2001,410(6826):327-330.
    Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling[J].Trends in plant science,2004,9(5):236-243.
    Scott P. Resurrection plants and the secrets of eternal leaf[J]. Annals of botany,2000,85(2):159-166.
    Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of7000Arabidopsis genes underdrought, cold and high-salinity stresses using a full-length cDNA microarray[J]. The plant journal,2002,31(3):279-292.
    Seo T S, Bai X, Kim D H, et al. Four-color DNA sequencing by synlhesis on a chip using photocleavablefluorescent nucleotides[J]. Proceedings of the national academy of sciences, USA,2005,102(17):5926-5931.
    Sheen J. Ca2+dependent protein kinases and stress signal transduction in plants[J]. Science,1996,274(5294):1900-1902.
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought andcold stress responses[J]. Current opinion in plant biology,2003,6(5):410-417.
    Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J].Journal of Experimental Botany,2007,58(2):221-227.
    Son O, Hur YS, Kim YK, et al. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-Zip) proteinof Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression ofa gibberellin20-oxidase gene[J]. Plant and cell physiology,2010,51(9):1537-1547.
    Stadtman ER. Protein oxidation and aging[J]. Science,1992,257(5074):1220-1224.
    Sunkar R, Bartels D, Kirch HH. Overexpression of a stress-inducible aldehyde dehydrogenase gene fromArabidopsis thaliana in transgenic plants improves stress tolerance[J]. The plant journal,2003,35(4):452-464.
    Taji T, Ohsumi C, Luchi S, et al. Important roles of drought-and cold-inducible genes for galactinolsynthase in stress tolerance in Arabidopsis thaliana[J]. The plant journal,2002,29(4):417-426.
    Talame V, Ozturk NZ, Bohnert HJ., et al. Barley transcript profiles under dehydration shock and droughtstress treatments: a comparative analysis[J]. Journal of experimental botany,2007,58(2):229-240.
    Tan BC, Schwartz SH, Zeevaart JAD, et al. Genetic control of abscisic acid biosynthesis in maize[J].Proceedings of the national academy of sciences, USA,1997,94(22):12235-12240.
    Tan BC, Joseph L M. J, Deng WT, et al. Molecular characterization of the Arabidopsis9-cisepoxycarotenoid dioxygenase gene family[J]. The plant journal,2003,35(1):44-56.
    Umezawa T, Fujita M, Fujita Y, et al. Engineering drought tolerance in plants: discovering and tailoringgenes unlock the future[J]. Current opinion in biotechnology,2006,17(2):113-122.
    Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisicacid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proceedingsof the national academy of sciences, USA,2000,97(21):11632-11637.
    Vandeleur RK, Mayo G, Shelden MC,et al. The role of plasma membrane intrinsic protein aquaporins inwater transport through roots: diurnal and drought stress responses reveal different strategies betweenisohydric and snisohydric cultivars of Grapevine[J]. Plant physiology,2009,149(1):445-460.
    Vartanian N, Marcotte L, Ciraudat J. Drought rhizogenesis in Arabidopsis thaliana (Differential Responsesof Hormonal Mutants)[J]. Plant physiology,1994,104(2):761-767.
    Vera JC, Wheat CW, Fescemyer HW, et al. Rapid transcriptome characterization for a nonmodel organismusing454pyrosequencing[J]. Molecular Ecology,2008,17(7):1636-1647.
    Verma AK., Upadhyay SK, Verma PC, et al. Functional analysis of sucrose phosphate synthase (SPS) andsucrose synthase (SS) in sugarcane (Saccharum) cultivars[J]. Plant biology,2010,13(2):325-332.
    Vierling E. The roles of heat shock proteins in plants[J]. Annual review of plant physiology and plantmolecular biology,1991,42:579-620.
    Villadsen D, Rung JH, Nielsen TH. Osmotic stress changes carbohydrate partitioning and fructose-2,6-bisphosphate metabolism in barley leaves[J]. Functional plant biology,2005,32(11):1033-1043.
    Vogt KA, Persson H. Measuring growth and development of roots. In: Lassoie,J. P.&T. M. Hinckleeds.Techniques and approaches in forest tree ecophysiolgy[M]. Boston: CRC press.1991,477-501.
    Wang LJ, Li XF, Chen SY, et a1. Enhanced drought tolerance in transgenic Leymus chinensis plants withconstitutively expressed wheat TaLEA3[J]. Biotechnology Letters,2009,31(2):313-319.
    Wang WG, Li R, Liu B, et al. Effects of low nitrogen and drought stress on proline synthesis of Jatrophacurcas seedling[J]. Acata physiol plant,2011,33(5):1591-1595.
    Wang ZL, Huang BR, Xu QZ. Effects of abscisic acid on drought responses of Kentucky Bluegrass[J].Journal of the American society for horticultural science,2003,128(1):36-41.
    Watad AE, Lerner HR. Comparison between a stable NaCl-selected nicotiana cell line and the wild type K+,Na+, and proline pools as a function of salinity[J]. Plant physiology,1983,73(3):624-629.
    Weber APM, Weber KL, Carr K, et al. Sampling the Arabidopsis transcriptome with massively parallelpyrosequencing[J]. Plant physiology,2007,144(1):32–42.
    Weimberg R, Lerner HR, Poljakoff-Mayber A. A relationship between potassium and proline accumulationin salt-stressed Sorghum bicolor[J]. Physiologia Plantarum,1982,55(1):5-10.
    Wheat CW. Rapidly developing functional genomics in ecological model systems via454transcriptomesequencing[J]. Genetica,2010,138(4):433-451.
    Whitfield CW, Band MR, Bonaldo MF, et al. Annotated expressed sequence tags and cDNA microarrays forstudies of brain and behavior in the honey bee[J]. Genome research,2002,12:555-566.
    Wicker T, Schlagenhauf E, Graner A, et al.454sequencing put to the test using the complex genome ofbarley[J]. BMC genomics,2006,7:275.
    Wingler A. The function of trehalose biosynthesis in plants[J]. Phytochemistry,2002,60(5):437-440.
    Wu Q, Sun C, Luo HM, et al. Transcriptome analysis of Taxus cuspidate needles based on454pyrosequencing[J]. Planta medica,2011,77(4):394-400.
    Xiao XW, Yang F, Zhang S, et al. Physiological and proteomic responses of two contrasting Populuscathayana populations to drought stress[J]. Physiologia plantarum,2009,136(2):150-168.
    Xing HT, Guo Peng, Xia XL, et al. PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confersenhanced water use efficiency in Arabidopsis[J]. Planta,2011,234(2):229-242.
    Xu DP, Duan XL, Wang BY. Express of a late embryogenesis abundant protein gene, HNA1, from barleyconfers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiol,1996,1l0:249-257.
    Yamaguchi S. Gibberellin metabolism and its regulation[J]. Annual review of plant biology,2008,59:225-251.
    Yamaguchi-Shinosaki K, Koizumi M, Urao S, et a1. Molecular cloning and characterization of cDNAs forgenes that are responsive to desiccation in Arabidops thaliana: sequence analysis of one cDNA clone thatencodes a putative transmembrane channel protein[J]. Plant cell physiology,1992,33(3):217-224.
    Yin DM, Chen SM, Chen FD, et al. Morphological and physiological responses of two chrysanthemumcultivars differing in their tolerance to waterlogging[J]. Environmental and experimental botany,2009,67(1):87-93.
    Yue GD, Zhuang YL, Li ZX, et al. Differential gene expression analysis of maize leaf at heading stage inresponse to water-deficit stress[J]. Bioscience reports,2008,28(3):125-134.
    Zagrobelny M, Scheibye-Aling K, Jensen NB, et al.454pyrosequencing based transcriptome analysis ofZygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides[J]. BMCgenomics,2009,10:574.
    Zenoni S, Ferrarini A, Giacomelli E, et al. Characterization of transcriptional complexity during berrydevelopment in Vitis vinifera using RNA-Seq[J]. American society of plant biologists,2010,152(4):1787-1795.
    Zhang JP, Liu TS, Zheng J. Cloning and characterization of a putative12-oxophytodienoic acid reductasecDNA induced by osmotic stress in roots of foxtail millet[J]. The journal of sequencing and mapping,2007,18(2):138-144.
    Zhang N, Si HJ, Wen G, et al. Enhanced drought and salinity tolerance in transgenic potato plants with aBADH gene from spinach[J]. Plant biotechnology reports,2011,5(1):71-77.
    Zhang X., Wu N., Li C. Physiological and growth responses of Populus davidiana ecotypes to different soilwater contents[J]. Journal of arid environments,2005,60(4):567-579.
    Zhang ZY, Liu X, Wang XD, et al. An R2R3MYB transcription factor in wheat, TaPIMP1, mediates hostresistance to Bipolaris sorokiniana and drought stresses through regulation of defense-and stress-relatedgenes[J]. New phytologist,2012,196(4):1155-1170.
    Zhu JK. Salt and drought stress signal transduction in plants[J]. Annual review of plant biology,2002,53:247-273.
    蔡海霞,吴福忠,杨万勤.干旱胁迫对高山柳和沙棘幼苗光合生理特征的影[J].生态学报,2011,31(9):2430-2436.
    曹兵,宋丽华,谢应吉.土壤干旱胁迫对臭椿苗木生理指标的影响[J].东北林业大学学报,2008,36(9):11-13.
    陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系[J].植物生理学报,1999,25(1):49-56.
    陈亚鹏,陈亚宁,李卫红,等.塔里木河下游干旱胁迫下的胡杨生理特点分析[J].西北植物学报,2004,24(10):1943-1948.
    陈颖,谢寅峰,沈惠娟.银杏幼苗对水分胁迫的生理响应[J].南京林业大学学报(自然科学版),2002,26(2):55-58.
    陈豫梅,陈厚彬,陈国菊,等.香蕉叶片形态结构与抗旱性关系的研究[J].热带农业科学,2001,(4):14-16.
    陈忠,苏维埃,汤章城.豌豆热激蛋白Hpc60研究[J].植物学报,1999,41(10):1090-1093.
    崔秀萍,刘果厚,张瑞麟.浑善达克沙地不同生境下黄柳叶片解剖结构的比较[J].生态学报,2006,26(6):1842-1847.
    邓云,王冰,苏文华,等.干旱胁迫下巨尾桉的形态可塑性和生理响应特征[J].西北植物学报,2010,30(6):1173-1179.
    杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    冯燕,王彦荣,胡小文.水分胁迫对幼苗期霸王叶片生理特性的影响[J].草叶学报,2011,28(4):577-581.
    冯玉龙,巨关升,朱春全.杨树无性系幼苗光合作用和PV水分参数对水分胁迫的相应[J].林业科学,2003,39(3):30-36.
    葛云侠,姚允聪,许雪峰,等.干旱胁迫下杏叶片中茉莉酸积累的作用[J].园艺学报,2007,34(4):575-578.
    郭尚敬,陈娜,孟庆伟.叶绿体小分子量热激蛋白介绍[J].植物学通报,2005,22(2):223-230.
    何宝坤,李德全.植物渗调蛋白的研究进展[J].生物技术通报,2002,(2):6-10.
    何军贤,傅家瑞.种子Lea蛋白的研究进展[J].植物生理学通讯,1996,32(4):241-246.
    胡云,燕玲,李红.14种荒漠植物茎的解剖结构特征分析[J].干旱区资源与环境,2006,20(1):202-208.
    黄国存,田波.高等植物中谷氨酸脱氢酶及其生理作用[J].植物学通报,2001,18(4):396-401.
    黄众,邱进清,肖石海,等.马尾松球花分化的化学调控[J].福建林学院学报,2000,20(1):311-314.
    江香梅,黄敏仁,王明庥.植物甜菜碱合成途径及基因工程研究进展[J].中国生物工程杂志,2002,22(4):49-56.
    姜英淑,陈书明,王秋玉,等.干旱胁迫对2个欧李种源生理特征的影响[J].林业科学,2009,45(6):6-10.
    蒋明义,荆家海,王韶唐.水分胁迫与植物膜脂过氧化[J].西北农业大学学报,1991,19(2):88-94.
    金雅琴,李冬林,陈小霞,等.不同种源乌桕幼苗对干旱胁迫的生理响应[J].西北植物学报,2012,32(7):1395-1402.
    康桂红,杨宗波,赵素华,等.泰安市降水特征与水资源分析[J].气象科技,2005,33(4):355-359.
    柯世省,杨敏文.水分胁迫对云锦杜鹃抗氧化系统和脂类过氧化的影响[J].园艺学报,2007,34(5):1217-1222.
    黎裕.植物的渗透调节与其他生理过程的关系及其在作物改良中的应用[J].植物生理学通讯,1994,30(5):377-385.
    李春香,李德全,王玮.不同抗旱性玉米、小麦根叶对水分胁迫的生理反应及渗透调节的研究[C].中国植物生理学会植物环境生理学术讨论会论文汇编,昆明,1999,92.
    李德全,邹琦.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,18(2):37-44.
    李天星,陈善娜,叶辉.不同水分状况下云南松抗病性的研究(Ⅱ)[J].云南大学学报(自然科学版),1999,21(5):422-425.
    李晓燕,王林和,李连国,等.沙棘根系形态解剖特征与其生态适应性研究[J].内蒙古农业大学学报,2007,28(4):62-66.
    李扬汉.植物学[M].上海:上海科学技术出版社,1995,139-155.
    李正理.旱生植物的形态和结构[J].生物学通报,1981,(4):9-12.
    梁烨,陈双燕,刘公社.新一代测序技术在植物转录组研究中的应用[J].遗传,2011,33(12):1317-1326.
    林晓明,徐程扬,王奇峰,等.氮、磷对107杨苗木生物量的影响[J].东北林业大学学报,2011,39(2):12-15.
    刘丹.水分胁迫下小麦幼苗呼吸及渗透调节物质积累的变化[J].云南农业大学学报,1990,5(1):30-37.
    刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    刘燕.近57年安阳和南阳降水变化分析[J].安徽农业科学,2011,39(6):9910-9912,9927.
    马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231.
    马媛媛,甘睿,王宁宁.植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能[J].植物生理与分子生物学学报,2005,31(4):331-339.
    梅杨,李海蓝,杨尚元,等.植物水孔蛋白的功能[J].植物生理学通讯,2007,43(3):563-568.
    潘根生,吴伯千,沈荣生,等.水分胁迫过程中茶树新梢内源激素水平的消长及其与耐旱性的关系[J].中国农业科学,1996,29(5):9-15.
    潘瑞炽.植物生理学[M].北京:高等教育出版社,2004.
    皮雪静,潘帮珍,徐增富.赤霉素诱导小桐子产生两性花[J].植物分类与资源学报,2013,35(1):26-32.
    齐述华,牛铮,王军邦,等.1982—2001年间中国干旱发生时空特征的遥感分析[J].土壤学报,2006,43(3):376-382.
    沈熙环,王清, Oden PC.高温和干旱处理诱导欧洲云杉(Picea abies)开花和赤霉素变化的研究[J].1991,27(2):168-172.
    时忠杰,杜阿鹏,胡哲森,等.水分胁迫对板栗幼苗叶片活性氧代谢的影响[J].林业科学研究,2007,20(5):683-687.
    史小玲,薛立,任向荣,等.华南地区4种阔叶树幼苗水分胁迫条件下的抗旱性初探[J].林业科学研究,2011,24(6):760-767.
    宋雯雯,李文滨,韩雪,等.干旱胁迫下大豆幼苗根系基因的表达谱分析[J].中国农业科学,2010,43(22):4579-4586.
    苏金为.干旱胁迫下茉莉酸甲酯对茶苗光合性能的影响[J].福建农林大学学报(自然科学版),2004,33(2):190-194.
    孙国荣,彭永臻,阎秀峰,等.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响[J].林业科学,2003,39(1):165-167.
    孙丽,吴忠义,李学东,等.植物气孔运动过程中的信号转导机制[J].植物生理学通讯,2006,42(6):1203-1210.
    汤日圣,王红,曹显祖. MeJA对水稻种子萌发和秧苗生长的调控效应[J].作物学报,2002,28(3):333-338.
    唐中华,杨蕾,梁胜楠,等.土壤不同水分条件对长春花(Catharanthus roseus)生活史型的影响[J].生态学报,2007,27(7):2742-2747.
    王改萍,岑显超,彭方仁,等.不同楸树品种的抗旱性鉴定[J].浙江林学院学报,2009,26(6):815-821.
    王金祥,李玲,潘瑞炽.高等植物中赤霉素的生物合成及其调控[J].植物生理学通讯,2002,38(1):1-8.
    Richardson GR, Cowan AK. Development of an abscisic acid biosynthesizing cell-free systemfrom flavedo of Citrus sinensis fruit[J]. Journal of Experimental Botany,1996,47(3):455-464.
    王良桂,张春霞,彭方仁,等.干旱胁迫对几种楸树苗木叶片荧光特性的影响[J].南京林业大学学报(自然科学版),2008,32(6):119-122.
    王曦,汪小我,王立坤,等.新一代高通量RNA测序数据的处理与分析[J].生物化学与生物物理进展,2010,37(8):834-846.
    王兴春,杨致荣,王敏,等.高通量测序技术及其应用[J].中国生物工程杂志,2012,32(1):109-114.
    王玮,邹琦.干旱条件下冬小麦体内K+的动态[J].山东农业大学学报,1996,27(2):199-202.
    王学奎.植物生理生化实验原理和技术[M].高等教育出版社,2006.
    韦莉莉,张小全,侯振宏,等.杉木苗木光合作用及其产物分配对水分胁迫的相应[J].植物生态学报,2005,29(3):394-402.
    魏永胜,梁宗锁,山仑,等.利用隶属函数值法评价苜蓿抗旱性[J].草业科学,2005,22(6):33-36.
    吴琼,孙超,陈士林,等.转录组学在药用植物研究中的应用[J].世界科学技术-中医药现代化,2010,12(3):457-462.
    吴秀菊,李桂琴,袁强.杏营养器官解剖结构及抗旱机理研究[J].东北农业大学学报,2005,36(2):186-190.
    伍维模,李志军,罗青红,等.土壤水分胁迫对胡杨、灰叶胡杨光合作用—光响应特性的影响[J].林业科学,2007,43(5):30-35.
    徐飞,郭卫华,徐伟红,等.刺槐幼苗形态、生物量分配和光合特性对水分胁迫的相应[J].北京林业大学学报,2010,32(1):24-30.
    闫芳,张春梅,王勤礼,等.赤霉素浸种对欧洲百里香种子萌发和幼苗生长的影响[J].种子,2012,31(12):74-76.
    燕玲,李红,贺晓,等.阿拉善地区9种珍稀濒危植物营养器官生态解剖观察[J].内蒙古农业大学学报,2000,21(3):65-71.
    闫绍鹏,杨瑞华,冷淑娇,等.高通量测序技术及其在农业科学研究中的应用[J].中国农学通报,2012,28(30):171-176.
    杨萍果,郑峰燕.汾河流域50年降水量时空变化特征[J].干旱区资源与环境,2008,22(12):108-111.
    杨玉珍,张云霞,彭方仁.干旱胁迫对不同种源香椿苗木光合特性的影响[J].北京林业大学学报,2011,33(1):44-48.
    尹艺林.脱落酸与植物抗旱性及其机理研究的进展[J].安庆师范学院学报,1996,2(4):60-61.
    尹赜鹏,刘雪梅,商志伟,等.不同干旱胁迫下欧李光合及叶绿素荧光参数的响应[J].植物生理学报,2011,47(5):452-458.
    喻晓丽,邸雪颖,宋丽萍.水分胁迫对火炬树幼苗生长和生理特性的影响[J].林业科学,2007,43(11):57-61.
    张承林.17种氨基酸对水分胁迫下大豆幼苗抗旱性的影响[D].华南农业大学,2008.
    张德汴,李柯星,喻谦花,等.开封、洛阳市近47a气温降水变化异同分析[J].气象与环境科学,2009,32(Supp1):193-197.
    张红霞,刘果厚,崔秀萍.干旱对浑善达克沙地榆叶片解剖结构的影响[J].植物研究,2005,25(1):39-44.
    张建华,姬虎太,张定一,等.植物DREB转录因子研究进展[J].小麦研究,2012,33(1):8-15.
    张伟伟.提高甘氨酸甜菜碱含量的转基因小麦的抗逆性分析[D].山东大学,2010.
    张香凝,孙向阳,王保平,等.土壤水分含量对Larrea tridentate苗木光合生理特性的影响[J].北京林业大学学报,2008,30(2):95-101.
    张怡,沈应柏,罗晓芳.水分胁迫对四倍体刺槐苗生长和光合作用的影响[J].林业科学研究,2010,23(4):920-923.
    周桂玲,达利夏提,安争夕,等.新疆滨藜属植物叶表皮微形态学及叶的比较解剖学研究[J].干旱区研究,1995,12(3):3437.
    周晓光,任鲁风,李云涛,等.下一代测序技术:技术回顾与展望[J].中国科学:生命科学,2010,40(1):23-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700