玉米花生间作群体互补竞争及防风蚀效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验设计不同比例T1(10:10)、T2(8:16)和T3(2:10)玉米花生间作,以玉米单作和花生单作为对照,研究了不同间作比例对玉米花生生长发育、干物质积累、光合生理特性和产量品质的影响以及防风蚀效应。主要研究结果如下:
     1不同比例间作的玉米花生植株长势
     间作玉米前期生长旺盛,后期速度减缓,株高略低于单作,边行低于内行,T2的变化幅度最小;植株基部周长,低于单作,边行低于内行,T3基部周长最短;前期单株叶面积差别较小,达到较高水平后,开始下降,边行落后于内行,T2下降速度最慢,表明边行比内行绿叶持续时间长,T2持续最久。间作花生主茎高明显高于单作,边行高于内行,T1的增长幅度最大;第一对和第二对侧枝长的动态变化趋势相似,前期侧枝长度差别较小,后期间作明显高于单作,边行大于内行,T1变化幅度最为明显,T3最小;间作单株叶面积明显低于单作,且边行大于内行,达到较高水平后,T3下降幅度最为明显,边行比内行下降更快。
     2不同比例间作的玉米花生干物质积累
     间作增加了玉米单株干物质总量,边行大于内行,T2增加幅度最大,T3最小;密度不同,群体干物质总量则以T3最大,T1最小。间作降低了花生单株干物质总量,内行大于边行:群体干物重表现为T3>T2>T1,T3下降幅度最小。
     3不同比例间作的玉米花生光合生理特性
     玉米LAI变化为边行>内行>单作,T3的LAI最高,边行下降幅度大于内行;花生LAl变化呈现单作>内行>边行,T1下降最早,叶片衰老最早,绿叶面积持续时间相对较少。玉米叶片的叶绿素含量前期单作高于间作,后期则低于间作,边行高于内行;花生叶片的叶绿素含量单作低于间作,内行高于边行,后期T1降低幅度最小。玉米叶片可溶性糖含量内行>边行>单作,T1较单作增加幅度最大;花生叶片可溶性糖含量内行大于边行,单作大于间作。玉米底层和穗位层的PAR透射率明显高于单作,且边行高于内行,T3的PAR透射率最高,与单作相比增加幅度最大,T2次之,T1最小;花生底层和中层PAR透射率亦明显高于单作,边行高于内行,T1的PAR透射率增加最高,T2次之,T3最小。间作系统中玉米叶片Pn、Gs和Tr均明显高于单作,边行大于内行,表现为T3>T2>T1,Ci则呈现相反趋势;花生的Pn、Gs和Tr较单作有所降低,内行大于边行,表现为T3>T2>T1;Ci则呈现相反趋势,边行大于内行。间作系统中玉米叶片的最大光化学效率Fv/Fm内行大于边行,比单作明显降低,T1>T2>T3;花生叶片Fv/Fm边行大于内行,间作明显高于单作。
     4不同比例间作的玉米花生产量及品质
     间作增加了玉米经济产量和生物产量,边行高于内行,T3较单作增加幅度最大;主要是降低了秃尖长/穗长和增加了穗粒数,而对穗长、穗粗和百粒重影响较小,对边行的影响程度明显高于内行,其中T3的变化幅度最大,T2次之。间作降低了花生经济产量和生物产量,T3>T2>T1,内行高于边行,T1较单作下降幅度最大,T3最小:单株果数,出仁率和百仁重均为边行<内行<单作,秕果率则呈现相反趋势,T1的变化幅度最为明显。间作对玉米子粒品质的影响主要表现在蛋白质含量和油脂含量较单作均有所增加,边行明显高于内行;而淀粉含量较单作降低,内行高于边行,T3变化幅度最大T2次之。花生果仁蛋白质含量和油酸含量高于单作,边行高于内行;油脂含量和亚油酸含量呈现相反趋势,低于单作,内行高于边行,油亚比均较单作有所提高,T1的变化幅度最大。LER除2010年T1外,其他均大于1,表现为间作优势,T3达到1.102,增产率达到10.2%。全年产值较玉米单作大幅增加,却较花生单作有所下降,不同间作种植比例中,T3(2:10)的产值最高,T1(10:10)最低。
     5不同比例间作的土壤防风蚀能力
     玉米花生间作对表层土壤的物理性状有较大影响。花生幅的上壤粗化程度高于玉米带,间作中迎风处沙粒含量均高于背风处,而粉沙粒、粉粒和粘粒均呈现相反趋势,与单作相比,T1玉米幅沙粒增加比例最小,花生幅,沙粒减少比例最大,土壤粗化程度最低。间作降低了玉米幅的土壤含水量,使花生幅的含水量上升,背风处大于迎风处,T1的变化幅度最大。容重均表现为迎风处大于背风处,玉米幅较单作有所上升,花生幅则有所降低,T3变化幅度最小。总孔隙度,呈现与容重相反趋势。间作降低了花生幅的土壤风蚀量,玉米幅却略有增加,迎风处高于背风处,T1处理的上壤风蚀量减少幅度最大,T2次之。
     总而言之,玉米花生间作经济效益较单作花生有所降低,但从生态角度来说,间作降低了土壤风蚀程度,减缓了花生连作障碍带来的危害,史加利于农业可持续发展,采用小比例(2:10)的玉米与花生间作,可最大限度的保障经济效益,但是总体效应较低;大比例的总体效应更好,8:16的总体效应比10:10更为突出。
To research the effects on growth, dry matter accumulation, photosyntheticcharacteristics yield and quality in maize and peanut group and wind erosion prevention in theintercropping system with different maize and peanut proportions,6trial treatments such10:10maize-peanut intercropping (T1),8:16maize-peanut intercropping (T2),2:10maize-peanut intercropping (T3), maize monoculture (CK1)and peanut monoculture(CK2)were designed. The main results were as follows:1Differences on maize and peanut plant growth and development in the differentproportoions intercropping system
     Effects on plants growth and development in intercropping systems were significant.Maize grew more quickly in early growth, but became slow lately. Intercropping made maizeplant height shorter than monoculture, that of interior row was higher than border row. Plantstem perimeter of T3was the thinnest one. Maize’s leaves area duration of T3was longer thanothers, border row>interior row. In intercropping systems, peanut main stem height, first pairof lateral branches length and second pair of lateral branches length all presented significantlyhigher than monoculture, border row>interior row, T1rose with the most obvious changes.Leaves area per peanut plant was significantly lower than monoculture, border row>interiorrow. Leaves area of T3had the most obvious decline, while that of the border row declinedfaster than the interior row.2Differences on maize and peanut dry matter accumulation in the different proportoionsintercropping system
     Intercropping also improved the dry matter accumulation of maize and peanut.Compared with monoculture, dry matter accumulation of whole maize plant in border rowwas greater than in interior row, T2increased in the largest range, T1was in the smallest.Because of different densities, dry matter accumulation of population in T3was the biggestamong all treatments, T1was the smallest. From logistic curve model, the time of maximumvalue of dry matter accumulation rate in monoculture occurred early, border row was laterthan interior. Peanut plant dry matter accumulation was dropped sharply in the intercroppingsystem, the border row was greater than the interior row. Dry matter accumulation ofpopulation presented as T3>T2>T1, each treatment was lower than monoculture. Using thelogistic equation, the time of maximum value of dry matter accumulation rate in monocultureoccurred lately, border row was later than interior, the max dry matter accumulation ratedecreased more than intercropping systems. 3Differences on maize and peanut photosynthetic charaterstics in the different proportoionsintercropping system
     Results revealed that LAI of maize was climbed dramatically by intercropping, presentedas border row>interior row, T3was the highest. LAI of peanut was presented as monoculture>interior row> border row, LAI of T1began to decline early, leaves duration occurred fasterthan others. Chlorophyll content of intercropping maize leaves was more than monoculture inthe early growth, while less in the late growth, border row> interior row. Chlorophyll contentof intercropping peanut leaves was less than monoculture, while interior row was more thanborder row. Soluble carbohydrate content of maize leaves experienced a steady rise in theintercropping systems, interior row>border row, T1had a sharply increase. Intercroppingpeanut leaves soluble carbohydrate content was higher than monoculture, interior row>borderrow.When compared to their monoculture treatments, intercropping increased maize andpeanut PAR capture ratio. Maize low layer and ear layer PAR capture ratio of T3was thehighest, T2followed, T1was the minimum. Peanut low layer and middle layer PAR captureratio of T1was the highest, T2followed, T3was the minimum. Pn, Gs and Tr of maize leaveswere all presented as T3>T2>T1> monoculture, border row> interior row, Ci had the oppositeeffect. Pn, Gs and Tr of peanut leaves were all presented as monoculture>T3>T2>T1, interiorrow> border row. Fv/Fm and Fv/Fo of maize leaves were decreased in intercropping system,interior row> border row, those of peanut leaves had the opposite effect.4Differences on maize and peanut yield and quality in the different proportoionsintercropping system
     The results indicated the yield of maize was increased by intercropping, while the yieldof peanut was decreased, Maize grain yield and biological yield were presented as T3>T2>T1,border row> interior row. It reduced bare tip length and increase grains per ear, but littleinfluence on ear length, perimeter and100-grain weight in the intercropping system withdifferent maize and peanut proportions, decrease of T3was more than others. Peanut podyield and biological yield were presented as T3>T2>T1, interior row> border row. Podsnumber per plant, kernel ratio and100-kernel weight in interior row were better than borderrow, blighted pods number ratio per plant had the opposite trend, change of T1was mostsignificant.Protein content and fat content of maize kernel increased by intercropping, that ofborder row was higher than interior row; starch content of border row decreased more thaninterior row, T3changed in amplitude. Protein content and oleic content of peanut kernelincreased in intercropping system, that of border row was higher than interior row; oil content and linoleic content showed the opposite trend, change of T1was most.Except T1in2010,LER from other treatments were greater than1, which showed intercropping advantage. LERof T3was1.102with increasing rate of10.2%. The economic benefit was more than maizemonoculture, but less than peanut monoculture. In the intercropping system with differentmaize and peanut proportions, T3(2:10) had the highest economic benefit, T1(10:10) was inminimum.5Differences on soil wind erosion in the different proportoions intercropping system
     There was a great impact on the physical properties of surface soil in the intercroppingsystems. Compared to their monoculture treatments, soil desertification of peanut fielddecreased, while maize field increased, the content of granularity in>0.05mm of windwardside was higher than that of leeward side, the content of granularity in0.05-0.02mm,0.02-0.002mm and <0.002mm showed the opposite trend. Soil moisture content in maize fieldwas lower than monoculture, that of peanut field was higher, windward side was higher thanleeward side, T1changed in a large range. Soil bulk density was increased by intercropping inmaize field, while decreased in peanut field, that of windward side was higher than that ofleeward side, as compared to monoculture, T3was lest affected among all treatments. Soilporosity presented an opposite trend with bulk density. When compared to monoculture, thecontent of granularity in0.05-0.02mm increased least of maize field and decreased most ofpeanut field in T1treatment. Soil wind erosion amount of windward side was more than thatof leeward side, intercropping rose wind erosion of maize filed, which it declined that ofpeanut field. The degree of soil wind erosion amount reduced in T1treatment was the largest.
     Generally speaking, economic benefit was lower when maize and peanut wereintercropped than peanut monoculture treatment, but in the ecological point of view,intercropping could be reduced the degree of soil wind erosion, retard the detriment of thepeanut continuous cropping, and it was more conducive to the agriculture sustainabledevelopment. In this experiments, maize and peanut2:10intercropping could have the mostprotect of economic benefits; for protection wind erosion, maize and peanut10:10intercropping and maize and peanut8:16intercropping were better,8:16was more than10:10.
引文
[1]艾希珍,郭延奎.2004.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构.中国农业科学,37(2):268-273
    [2]卞新民,刘景春.1995.苏南丘陵旱地麦/玉米/秋作复合群体时空结构配置研究.耕作与栽,5:14-15,29.
    [3]曹敏建.2002.耕作学.中国农业出版社,北京.
    [4]陈传永,侯玉虹,李刚,等.2008.密植高产条件下玉米植株可溶性糖含量及其产量关系分析.玉米科学,16(4):77-81.
    [5]陈恩凤,周礼恺,邱凤琼,等.1985.土壤肥力实质的研究II.棕壤.土壤学报,22(2):113-119
    [6]陈阜,逄焕成.2000.冬小麦/春玉米/夏玉米间套作群体的高产机理探讨.中国农业大学学报.5(5):12-16
    [7]陈渭南,董光荣,董治宝,等.1994.中国北方风蚀问题研究的进展与趋势.地球科学进展,9(5):6-11
    [8]陈玉香,周道玮.2003.玉米-苜蓿间作的生态效应.生态环境,12(4):467-468.
    [9]陈智,麻硕士,范贵生等.2007.麦薯带状间作农田地表土壤抗风蚀效应研究.农业工程学报,(03):51-54.
    [10]陈智,麻硕士.2006阴山北麓农牧交错区麦薯带状间作农田土壤抗风蚀能力研究.河南农业大学学报,4:370-374.
    [11]陈智.2006.阴山北麓农牧交错区地表土壤抗风蚀能力测试研究.内蒙古农业大学博士学位论文.
    [12]程国彦,成如,范希铨,等.2010.农牧交错带马铃薯种植地防风蚀技术探析.国际农业工程大会论文集
    [13]褚贵新,沈其荣,王树起,等.2004.不同供氮水平对水稻/花生间作系统中氮素行为的影响.土壤学报,41(5):789-794
    [14]褚贵新.2003.旱作水稻/花生间作系统的氮素供应特征及产量优势.中国农业大学博士学位论文
    [15]董宏儒,邓振铺,郑永仁,等.1981.带田光能分布特征的研究.中国农业科学,1:69-79
    [16]董树亭,高荣岐,胡昌浩,等.1997.玉米花粒期群体光合性能与高产潜力研究.作物学报,23(3):318-325.
    [17]董树亭,胡昌浩,岳寿松,等.1992.夏玉米群体光合速率特性及其与冠层结构、生态条件的关系.植物生态学与地植物学学报,16(4):372379.
    [18]董治宝,陈渭南,董光荣,等.植被对风沙土风蚀作用的影响.环境科学学报,1996,(04):437-443.
    [19]董钻.2012.大豆产量生理.北京,中国农业出版社.
    [20]樊廷录,王勇,宋尚有.1997.陇东早源玉米根际供水效益及小麦套种玉米增产机理.西北农业学,6(l):18-21.
    [21]房增国,左元梅,李隆,等.2004a.灭菌土壤玉米-花生混作对花生铁营养的影响研究.中国农业生态学报,12(3):98-101
    [22]房增国,左元梅,李隆,等.2004b.玉米-花生混作体系中不同施氮水平对花生铁营养及固氮的影响.植物营养与肥料学报,10(4):386-390
    [23]房增国,左元梅,李隆,等.2005.玉米-花生混作对系统内氮营养的影响研究.中国农业生态学报,13(3):63-64
    [24]房增国,左元梅,赵秀芬,等.2006.玉米-花生混作系统中的氮铁营养效应.生态环境,15(1):134-139
    [25]逢焕成,陈阜,张明亮,等.1995.玉米大豆间作复合群体光效应特征研究.耕作与栽培,(4):4-7.
    [26]逢焕成,宋吉作,刘光亮,等.1994a.小麦玉米套种共生期的气候生态效应与小麦边际效应分析.耕作与栽培,(4):15-16.
    [27]逢焕成,赵跃龙.1994b.国外间混套作的研究进展.世界农业,(11):27-36.
    [28]高绍森,朱延姝,冯辉,等.2005连续遮光对番茄苗期生长发育和叶绿素荧光指标影响的研究.辽宁农业科学,(3):31-32
    [29]高阳,段爱旺,刘祖贵,等.2009.单作和间作对玉米和大豆群体辐射利用率及产量的影响.中国生态农业学报.17(1):7-12
    [30]高阳,段爱旺,刘祖贵,等.玉米和大豆条带间作模式下的光环境特性.应用生态学报,19(6):1248-1254.
    [31]宫秀杰,滕云飞,钱春荣,等.2010.玉米/辣椒间作复合群体生理效应研究Ⅰ.不同间作方式对玉米/辣椒光合速率和产量的影响,中国农学通报,26(21):111-114
    [32]韩亚雄,赵满全,陈智,等.2010.带状间作留茬地表农田抗风蚀效应试验研究.农机化研究,(06):162-164.
    [33]韩亚雄.2010.带状间作农田抗风蚀机理试验研究.内蒙古农业大学.
    [34]郝芳华,陈利群,刘昌明,等.2004.土地利用变化对产流和产沙的影响分析.水土保持学报,(03):5-8.
    [35]郝艳茹.2002.小麦、玉米间套复合群体的营养效应及超高产特性研究.山东农业大学硕十学位论文.
    [36]何承刚,黄高宝,姜华.2003.氮素水平对单作和间套作小麦玉米品质影响的比较研究.植物营养与肥料学报,9(3):280-283.
    [37]侯敏,侯刚,刘学良,等.2010.辽宁省花生生产现状、问题及发展对策,安徽农学通报,16:97-98.
    [38]胡昌浩,潘子龙.1982.夏玉米同化产物积累与养分吸收分配规律的研究Ⅰ.干物质积累与可溶性糖和氨基酸的变化规律.中国农业科学,15(1):56-64.
    [39]胡新元,郭天文,邱进怀,等.2001.河西绿洲灌区小麦/玉米带田高效种植方式研究.甘肃农业科技,05:11-13.
    [40]胡云峰,刘纪远,庄大方.2003.土壤风力侵蚀研究现状与进展.地理科学进展,22(3):288-295.
    [41]黄富祥,牛海山,王明星,等.2001.毛鸟素沙地植被覆盖率与风蚀输沙率定量关系.地理学报,56(6):700-710
    [42]黄高宝,黄鹏,柴强.2000.小麦/玉米复合群体光合特性与作物生产力间的相关性.甘肃农业大学学报,35(l):70-74.
    [43]黄进勇,李新平,孙敦立,等.2003.黄淮海平原冬小麦-春玉米-夏玉米复合种植模式生理生态效应研究.应用生态学报,14(l):51-56.
    [44]黄宁,郑晓静.2007.风沙运动力学机理研究的历史、进展与趋势.力学与实践,29(4):9-16.
    [45]黄卫东,吴兰坤,战吉成.2004.中国矮樱桃叶片生长和光合作用对弱光环境的适应性调节.中国农业科学,37(12):1981-1985.
    [46]蒋和,翁文钰,林增泉.1990.施肥十年后的水稻土微生物学特性和酶活性的研究.土壤通报,21(6):265-268.
    [47]焦念元,李增嘉,宁堂原,等.2003.套作对不同类型玉米苗期展开叶生长的影响.玉米科学,11(1):60-62.
    [48]焦念元,宁堂原,赵春,等.2006.玉米/花生间作复合体系的光合特性的研究.作物学报,32(6):917-923.
    [49]焦念元,赵春,宁堂原,等.2008.玉米-花生间作对作物产量和光合作用光响应的影响.应用生态学报,19(5):981-985.
    [50]金绍龄,李隆,张丽慧,等.1996.小麦/玉米带田作物氮营养特点.西北农业大学学报,24(5):35-41
    [51]金绍龄,李隆,张丽慧,等.1997.小麦玉米带田作物PK营养特点研究.甘肃农业科技,(1):22-24
    [52]匡廷云.2004.作物光能利用效率与调控.济南,山东科学技术出版社.
    [53]李潮海,栾丽敏,王群,等.2005.苗期遮光及光照转换对不同玉米杂交种光合效率的影响.作物学报,31(3):381-385.
    [54]李军华,谷建中,金建猛,等.2011.不同种植模式和贮藏时间对花生油亚比的影响.河南农业科学,40(2):74-75.
    [55]李隆,杨思存,孙建好.1999a.春小麦大豆间作条件下作物养分吸收积累动态的研究.植物营养与肥料学报,5(2):163-171
    [56]李隆,杨思存,孙建好.1999b.小麦/大豆间作中作物种间的竞争作用和促进作用.应用生态学报,10(2):197-200
    [57]李满亮,王娟.2011.麦薯带状留茬间作地表抗风蚀效果的风洞实验研究.内蒙古科技与经济.24(250)125,127
    [58]李清曼,王化岑,赵华,等.1998.棉花-花生在不同间作模式下土壤养分的变化特点.地域研究与开发,17(l):65-68
    [59]李淑敏,乔海涛,吕娇.2011.大豆/玉米间作下干物质累积动态变化与产量分析.天津农业科学17(4):38-41
    [60]李万源,沈志宝,吕世华等.2007.风蚀影响因子的敏感性试验.中国沙漠,27(6):984-993.
    [61]李文学.2001.小麦/玉米/蚕豆间作系统中氮、磷吸收利用特点及其环境效应.中国农业大学博士论文
    [62]李晓丽,申向东.2006.内蒙古阴山北部四子王旗土壤风蚀量的测试分析.干旱区地理,2:132-136.
    [63]李新平,黄进勇.2001.黄淮海平原麦玉玉三熟高效种植模式复合群体生态效应研究.植物生态学报,25(4):476-482
    [64]李永庚,于振文,梁晓芳,等.2005.小麦产量和品质对灌浆期不同阶段低光照强度的响应.植物生态学报,29(5):807-513.
    [65]李增嘉,李风超,赵秉强.1998.小麦玉米间套作的产量效应与光热资源利用率的研究.山东农业大学学报,29(4):419-426.
    [66]李增嘉.1996.小麦玉米玉米间套作高产复合群体结构特征与功能研究[C].中国农业大学
    [67]李植,秦向阳,王晓光,等.2010.大豆/玉米间作对大豆叶片光合特性和叶绿素荧光动力学参数的影响.大豆科学,(05):808-811.
    [68]联合国粮食及农业组织.1960.土壤风蚀.意大利:联合国粮食及农业组织.
    [69]梁镇林.2000.耐荫与不耐荫大豆叶性状的变化及差异比较研究.大豆科学,19(1):35-40.
    [70]林全业,张继祥.1996.枣麦间作系统光能分布及与光合速率的关系.林业科技通讯,(7):32-34.
    [71]刘登望,李林,王正功,等.2010.棉花花生间作复合系统的照度、生长发育与生产力效应,中国农学通报,26(24):270-275
    [72]刘建国,杨勇刚.2001a.小麦套种玉米吨粮田复合群体光合机制的研究.新疆农业科学,38(3):119-122
    [73]刘建国,杨勇刚.2001b.南疆小麦/玉米带田群体特征研究.耕作与栽培,(2):88-91
    [74]刘巽浩.1987.中国的多熟种植.北京农业大学出版社.56
    [75]刘巽浩.1998.面向21世纪的中国农作制.河北科学技术出版社
    [76]刘洋,孙占祥,白伟.2011.玉米大豆间作对辽西地区作物生长和产量的影响.大豆科学,30(2)224-228
    [77]刘永秀,左元梅,张福锁,等.1999a.玉米/花生混作对改善花生铁营养及固氮的影响.土壤通报,30(2):55-56
    [78]刘永秀,左元梅.1999b.玉米-花生混作改善铁营养及固定氮的影响.土壤通报,30(2):55-56
    [79]卢铁钢,侯敏.2004.辽宁省花生生产科研现状及发展对策.辽宁农业科学,3:34-35.
    [80]吕丽华,陶洪斌,夏来坤,等.2008.不同种植密度下的夏玉米冠层结构及光合特性.作物学报,34(3):447-455.
    [81]麻硕士,陈智.土壤风蚀测试与控制技术.北京:科学出版社,2010.
    [82]马超.2010.群体结构对夏玉米光合特性及物质积累的影响.河南农业大学.硕士学位论文.
    [83]睦晓蕾.2005.弱光条件下不同基因型辣椒幼苗光合与生长的差异.农业工程学报,21:41-44
    [84]倪蕙文,钟树福.1994.春玉米间大豆行比试验.江西农业大学学报,16(1):99-104
    [85]宁堂原,李增嘉,焦念元,等.2004.不同熟期玉米品种春夏套作对全株饲用营养价值的影响.作物学报,30(5):443-448.
    [86]宁堂原,李增嘉,焦念元,等.2005a.不同熟期玉米品种春、夏套作对籽粒淀粉含量及糊化特性的影响.作物学报,31(1):77-82.
    [87]宁堂原,李增嘉,焦念元,等.2005b.春夏玉米套作高产优质高效特性研究.玉米科学,13(4):99-101.
    [88]宁堂原,苏琳,焦念元,等.2006.不同施氮水平下春夏玉米套作对全株饲用营养价值的影响.中国农业科学,39(10):2042-2047.
    [89]齐万海,柴强,于爱忠.2010.间作小麦的边行效应及其与根系空间分布的关系.甘肃农业大学学报,45(1)72-76
    [90]任华中,黄伟,张福馒,等.2002.低温弱光对番茄生理特性的影响.中国农业大学学报,7(1):95-101
    [91]佘丽娜,郑毅,朱有勇.2003.小麦蚕豆间作中作物对氮的吸收利用.云南农业大学学报,18(3):256-258
    [92]佘丽娜.2006.大豆-玉米轮间作系统中的根系相互作用和营养效应.华南农业大学博士学位论文
    [93]申加祥,宁堂原,李增嘉,等.2004.不同熟期玉米套作夏玉米可溶性糖含量与产量形成.玉米科学,12(2):65-68.
    [94]盛晋华,刘克礼,吕凤山,等.1997.春玉米叶片光合速率变化规律的研究.内蒙古农牧学院学报,18(3):43-47.
    [95]师华定,齐永青.2010.蒙古高原土壤风蚀研究.北京:中国环境科学出版社.
    [96]隋鹏,陈阜,高旺盛.2000.海河低平原区小麦玉米套种高产技术研究.作物杂志,2:10-11
    [97]万书波,单世华,李春娟,等.2005.我国花生安全生产现状与策略.花生学报,34(1):1-4.
    [98]万书波,王才斌,李春娟,等.2008.花生品种改良与高产优质栽培.北京:中国农业出版社.
    [99]王昌全,魏成明,李廷强,等.2001.不同免耕方式对作物产量和土壤理化性状的影响.四川农业大学学报,19(2):158-161.
    [100]王春丽,李增嘉.2005.小麦花生玉米不同间套作模式产量品质效益比较.耕作与栽培,(5):11-12,18.
    [101]王刚,张大勇.1996.生物竞争理论.陕西科学技术出版社
    [102]王惠哲,庞金安,李淑菊,等.2005.弱光对春季温室黄瓜生长发育的影响.华北农学报,20(1):55-58
    [103]王慧新,于洪波,吴占鹏.2008.辽宁省花生品种种植结构的历史现状与展望,河北农业科学,12(12):1-2.
    [104]王俊强,腾云飞,马宝新,等.2010.玉米/辣椒间作群体对光能利用的研究,中国农学通报,26(13):109-113
    [105]王满意,薛吉全,梁宗锁,等.2004.源库比改变对玉米生育后期茎鞘贮存物质含量及产量的影响.西北植物学报,24(6):1072-1076.
    [106]王谦,陈景玲,孙治强.2006.LAI-2000冠层分析仪在不同植物群体光分布特征研究中的应用.中国农业科学,39(5):922-927.
    [107]王绍辉,张振贤,于贤昌,等.1999.遮荫对生姜生理生化特性的影响.西北农业学报,8(2):77-79
    [108]王巍,于洪波,杨会全,等.2005.辽宁省花生生产的过去与未来,花生学报,34(2):23-26.
    [109]王伟.2008.不同大豆品种对低钾胁迫的生物学响应及耐性机制研究.沈阳农业大学博士学位论文.
    [110]王瑛,周治国,陈兵林,等.2006b.麦棉套作复合根系群体对棉株氮素吸收与分配的影响.应用生态学报,17(12):2341-2346
    [111]王永军,孙其专,杨今胜,等.2011.不同地力水平下控释尿素对玉米物质生产及光合特性的影响.作物学报,37(12);2233-2240.
    [112]王宇蕴,任家兵,郑毅,等.2011.间作小麦根际和土体磷养分的动态变化.云南农业大学学报,26(6):850-854
    [113]肖继坪,颉炜清,郭华春,等.2011.马铃薯与玉米间作群体的光合及产量效应,中国马铃薯,25(6):339-341
    [114]肖靖秀,汤利,郑毅,等.2011.大麦/蚕豆间作条件下供氮水平对作物产量和大麦氮吸收累积的影响.麦类作物学报,31(3):499-503
    [115]肖焱波,段宗颜,金航,等.2007,小麦/蚕豆间作体系中的氮节约效应及产量优势.植物营养与肥料学报,13(2):267-271
    [116]肖焱波,李隆,张福锁.2004.两种问作体系中养分竞争与营养促进作用研究.中国生态农业学报,12(4):86-89
    [117]肖焱波,李隆,张福锁.2005.小麦/蚕豆间作体系中的种间相互作用及氮转移研究.中国农业科学,38(5):965-973
    [118]肖焱波.2003.豆科/禾本科间作体系中养分竞争和氮素转移研究.中国农业大学博士学位论文
    [119]小野良孝,封海胜.1979.花生的种植密度与品种.花生科技,(2):44-48.
    [120]谢运河,李小红,王业建,等.2011a.玉米大豆间作行比对早熟春大豆农艺性状及产量的影响湖南农业科学(5):26-28,31
    [121]谢运河,李小红,王同华,等.2011b.玉米/大豆间作条件下根瘤菌与氮肥互作对大豆产量和品质的影响,作物杂志,(4):54-57
    [122]徐强,程智慧,卢涛,等.2010.间作对植株生长及养分吸收和根际环境的影响,西北植物学报,30(2):0350-0356
    [123]徐庆年,徐怀诗.1980.营养面积对花生生育期影响的初步观察.花生科技,(3):26-28.
    [124]许春辉.1991.光逆境对叶绿体叶绿素蛋白质复合物的影响.植物学通报,11(4):8-11
    [125]许大全,张玉忠,张荣铣.1992.植物光合作用的光抑制.植物生理学通讯,28(4):237-243.
    [126]许大全.1997.光合作用气孔限制分析中的一些问题.植物生理学通讯,33(4):241-244.
    [127]杨广东,朱祝军,计玉妹.2002.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响.植物营养与肥料学报,8(1):115-118
    [128]叶优良,包兴国,宋建兰,等.2004.长期施用不同肥料对小麦/玉米间作产量、氮吸收利用和土壤硝态氮累积的影响.植物营养与肥料学报,10(2):113-119
    [129]叶优良,李隆,索东让,等.2008.小麦/玉米和蚕豆/玉米间作对土壤硝态氮累积和氮素利用效率的影响,生态环境,17(l):377-383
    [130]叶优良,孙建好,李隆,等.2005.小麦/玉米间作根系相互作用对氮素吸收和土壤硝态氮含量的影响.农业工程学报,21(11):33-37
    [131]叶优良.2003.间作对氮素和水分利用的影响.中国农业大学博十学位论文
    [132]易金鑫,陈静华.1999.弱光胁迫对茄子植株形态及两项生理指标的影响.江苏农业科学,(6):62-65
    [133]岳红光,张启昌,兰晓龙,等.1996.松辽流域风蚀量与下垫面关系的综合分析.水土保持通报,16(6):43-47
    [134]战吉成,黄卫东,王利军等.2002.不同光环境对葡萄幼苗光合产物分配与转化的影响.中国农业科学,35(11):1432-1436
    [135]张超男.2008.不同施肥方式对超高产夏玉米群体质量和源库代谢的影响.河南农业大学.硕士学位论文
    [136]张建华,马义勇,王振南,等.间作系统中玉米光合作用指标改善的研究.玉米科学,2006,(04):104-106.
    [137]张雪松,郝芳华,程红光,等.亚流域划分对分布式水文模型模拟结果的影响.水利学报,2004,7:119-123+128.
    [138]赵举,郑大玮.2002.阴山北麓农牧交错带带状留茬间作轮作防风蚀技术研究.干旱地区农业研究,20(2):5-9.
    [139]赵沛义,妥德宝,康暄,等.2011.阴山北麓残茬间作带田土壤风蚀规律.水土保持学报,2(6)55-58
    [140]赵沛义,妥德宝,郑大玮,等.2007.带状留茬间作减轻旱作农田土壤风蚀的生态效应研究.中国农学通报,23(10):171-174.
    [141]甄伟,张福墁.2000.弱光对黄瓜功能叶片光合特性及其超微结构的影响.园艺学报,27(4):290-292.
    [142]周建忠.2004.土壤风蚀及保护性耕作减轻沙尘暴的试验研究.北京:中国农业大学.
    [143]周苏玫,马淑琴,李文,等.1998.玉米花生间作优势分析,河南农业大学学报,32(1):17-22.
    [144]朱朝云,丁国栋,杨明远,等.1992.风沙物理学.北京:中国林业出版社.
    [145]左元梅,李晓林,曹一平,等.1997a.石灰性土壤上玉米/花生间作对花生铁营养的影响.植物营养与肥料学报,3(2):153-159.
    [146]左元梅,李晓林,曹一平,等.1997b.玉米花生间作对花生铁营养的影响.植物营养与肥料学报,3(2):153-159.
    [147]左元梅,李晓林,王永歧,等.1997c.玉米/花生间作对花生铁营养吸收的影响.植物营养与肥料学报,3(2):153-159.
    [148]左元梅,李晓林,曹一平,等.2003a.河南省沙区玉米花生间作对花生铁营养效率及间作优势的影响.作物学报,29(5):658-663.
    [149]左元梅,刘永秀,张福锁,等.2003b.NO3-态氮对花生结瘤与固氮作用的影响.生态学报,23(4):758-764.
    [150]左元梅,刘永秀,张福锁,等.2003c.与玉米混作改善花生铁营养对其根瘤形态结构及豆血红蛋白含量的影响.植物生理与分子生物学学报,29(1):33-38.
    [151]左元梅,张福锁.2003d.不同间作组合和间作方式对花生铁营养状况的影响.中国农业科学,36(3):300-306.
    [152] Abram M D, Kubiske M EI.1990.Leaf structural characteristies of31hardwood and conifer treesPecies in Central Wisconsin: Influence of light regime and shade tolerance rank.For Ecol Manage,31:145-153.
    [153] Ae N.,J. Arihara,K. Okada, T. Yoshihara and C. Johansen.1990. Phosphorus uptake by pigeon peaand its role in cropping systems of Indian subcontinent. Science,248:477-480
    [154] Archna Suman, Menhi Lal, A. K. Singh, et al.2006. Microbial biomass turnover in Indian subtropicalsoils under different sugarcane intercropping systems. Agronomy Joumal,98:698-704
    [155] Bergstrom D W.,Monreal C M.1998. Increased soil enzyme activities under two row crops. Soil Sci.Soc Am. J.,62:1295-1301
    [156] Binkley D.,C. Giardina and M. Bahskin.2000.Soil phosphorus supply under the influence ofEucalyPtus saligna and nitrogen-fixing Albizia facalaria. Forest Ecology of Management,128:241-247
    [157] Bulson H A J, Snaydon R W and Stopes C E.1997. Effects of plant density on intercropped wheatand field beans in an organic farming system. Journal of Agricultural Science,128:59-71
    [158] Chaturvedi G S, Ingram K T.1989.Growth and yield of low land rice in response to shade anddrainage.Crop Sciences,14:61-67.
    [159] Chepil W S.1959.Wind credibility of fields.Soil and Water Conservation,14(5):214-219.
    [160] Chepil W.S.1950a. Properties of soil which influence wind erosion:Dry aggregate structure as anindex of erodibility.Soil Science.69:403-414
    [161] Chepil W.S.1950b. Properties of soil which influence wind erosion:The governing principle ofsurface roughness.Soil Science.69:149-162
    [162] Chepil W.S. Woodruff N P.1963. The physics of wind erosion and its control. Advance of Agronomy.15(2):211-302
    [163] Compoton J. and D. W. Cole.1998. Phosphorus cycling and soil fractions in Douglas-fir and redalder stands. Forest Ecology of Management,110:101-112
    [164] Doran, J.W. et al.1998.Soil microbial activity nitrogen cycling, and long-term changes in organiccarbon pools as related to fallow tillage management. Soil Tillage Research, v.49, n.1, p.3-18.
    [165] Douglas, J.R., C.L. et al.1980.Wheat straw composition and placement effects on decomposition indry land agriculture of the Pacific Northwest. Soil Science Society of America Journal, v.44,p.833-837.
    [166] Egli D B.1999. Variation in Leaf Starch and Sink Limitations during Seed Filling in Soybean. CropScience,39:1361-1368
    [167] Franzlubbers, A. J., Hons, F. M.and Zuber, D. A.1994.Seasonal changes in soil microbial biomassand mineralizable C and N in wheat management systems. Soil Biol. Biochem.,22:1469-1475.
    [168] Fujita K, Ogata S, Matsumoto K, et al.1990. Nitrogen transfer and dry matter Production in soybeanand sorghum mixed cropping system at different Population densities. Soil Science and Plant Nutrition,36:233-241
    [169] Gallaher R.N.1975. All out feed production by multiple cropping.Multiple Cropping proceedingfeeds and feeding research.Bulletin Georgia Exp Sta,129-136
    [170] Gomes L, Arrue, J L, Lopez, et al.2003.Wind erosion in a semiarid area of Spain: the WELSONSproject. Catena,(52):235-256.
    [171] Hauggaard-Nielsen H., P. Ambus and E.S. Jensen.2001a. Interspecific component, N use andinterference with weeds in Pea-barely intercropping. Field Crop Research,70:101-109
    [172] Hauggaard-Nielsen H., P. Ambus and E.S. Jensen.2001b. Temporal and spatial distribution of rootsand competition for nitrogen in pea-barley intercrops a field study employingP-32technique. Plantand Soil,236:63-74
    [173] Horst W. J and C. Waschkies.1987. PhosPhorus nutrition of spring wheat (Tritieum aestivum L.)inmixed culture with white luPin (LuPinus albus L.).Z. Pflanzenemaehr. Bodenkd,150:1-8
    [174] Insam, H.1991. Relationship of soil microbial biomass and activity with fertilizer practice and cropyield of three Lutisols. Soil Biol.Biochem.,23:459~464.
    [175] Izaurralde R C,Mcgill W B and Juma N G.1992. Nitrogen fixation efficiency, interspecies N transfer,and root growth in barley-field Pea intercrop on a Black Chernozemic soil. Biology and Fertility ofsoils,13:11-16
    [176] Jensen E.S.Rhizo.1996. Deposition of N by pea and barley and its effects on soil N dynamics. SoilBiol.Biochem.28:65-71
    [177] Kakiuchi Jin, Tohru Kobata.2004. Shading and Thinning Effects of Seed and Shoot Dry MatterInerease in Determinate Soybean during the Seed-Filling Period.Agron.J,96:398-405
    [178] Karpenstein-Machan. M. and R Stuelpnagel.2000. Biomass yield nitrogen fixation of legumesmonocropped and intercropped with rye and rotation effects on a subsequent maize crop.Plant andSoil,218:215-232
    [179] Kaye J.,P. S. C,Resh, M. W. Kaye and R. A. Chimner.2000. Nutrient and carbon dynamics in areplaeement species of Eucalypyus and Albizia Trees. Ecology,81:3267-3273
    [180] Kiniry J R, Williams J R.1991. A general, process-oriented model for two competing plant species.Trans of ASAE,35(3):801-810
    [181] L.J. Hagen.1996.Crop residue effects on aerodynamic processes and wind erosion.Theoretical andApplied Climatology,54(1):39-46.
    [182] Lakshmi Praba, M., Vanangamud i M.2004.Effect of low light on yield and physiological attributesof rice. Crop management and physiology,29(2):71-73.
    [183] Lalande R, Gagnon B, Simard R R.1998. Microbial biomass and alkaline phosphatase activity in twocomposted amended soils. Can. J. Soil Sci.78:581-587
    [184] Lee D. W.1987. The selective advantage of palisade parenchyma in bifacial leaves.Amer J Bot,74:618-619
    [185] Li Long, Sun J H, Zhang F S, et al.2001. wheat/maize or wheat/soybean strip intercropping I. Yieldadvantage and interspecific interactions on nutrients. Field Crops Research,71:123-137.
    [186] Li Long, Yang SC, Li X L, et al.1999. Interspecifie complimentary and competitive interactionbetween intercropped maize and faba bean. Plant soil,212:105-114
    [187] Li Long., F. S. Zhang, X. L. Li, et al.2003. Interspecific facilitation of nutrient uptake byintercropped maize and faba bean. Nutr. Cycl. Agroecosys.,65:61-71
    [188] Li Long., S. C. Yang, X. L. Li, F. S. Zhang and P. Christie.1999.Interspecific complementary andcompetitive interactions between intercropped maize and fababean. Plant Soil,212:105-114
    [189] Li W X,LI L,Sun J H,Zhang F S and Christie P.2003a. Effects and Nitrogen and phosphorusFertilizers and intercropping on uptake of Nitrogen and Phosphorus by Wheat, Maize and Faba Bean.
    [190] Lightfoot, C.W E, Dear, K. B.G, Mead, R.1987. Intercropping sorghum with cowpea in dry landfarming systems in Botswana. I Comparative stability of aitemative cropping systems.Exp. Agric,23:435-442.
    [191] Maddonni G A, Otegui M E, Cirilo A G.2001.Plant population density, row spacing and hybrideffects on maize canopy architecture and light attenuation. Field Crops Res,71:183-193.
    [192] Marshall, B., Willey, R.W.1983. Radiation intercropping and growth in an intercrop of Pearlmillet/ground nut. Field Crops Res,7:141-160.
    [193] Mckibben G E.1970.Double cropping.In Proceedings National Conference on No-tillage CropProduction.Lexington: Kenrucky Univ, Press
    [194] Monreal C M, Bergstrom D W.2000. Soil enzymatic factors expressing the influence of land use,tillage system and texture on soil biochemical quality. Can. J. Soil Sci.,80:419-428
    [195] Press,68-103.
    [196] Seim, Dick.1996. Wheat bolsters intercrop bean yields.Farm journal,120:24-26.
    [197] Singh,V. P., Dey, S. K.1988.Effect of low light stress on growth and yield of rice. Indian Journal ofPlant Physiology,31(1):84-91.
    [198] Skidmore E.L.1986. Wind erosion climatic erosivity. Climate change.9(1-2):195-208
    [199] Stuelpnagel R.1992. Intercropping of faba bean (vicia faba L) with oats or spring wheat. Proceedingsof International Crop Science Congress,14-22
    [200] Thangaraj M, Sivasubram A V.1990.Effects of low light intensity on growth and productivity ofirrigated rice. Madras Agricultural Journal,77:220-224.
    [201] Tim L., Setter Brian A., Flannigan, Jeff Melkonian.2001. Loss of Kernel Set Due to Water Deficitand Shade in Maize: Carbohydrate Supplies, Abscisic Acid, and Cytokinins. Crop Sci,41:1530-1540
    [202] Van Kessel C and H. Hartley.2000. Agricultural management of grain legumes: has it led to anincrease in nitrogen fixation. Field Corps Res.48:267-293
    [203] Vandermeer J.1989. The Ecology of Intercropping. Cambridge University Press, New york,1-10
    [204] Wahua, T. A. T., Babalola, O., Aken`ova, M. E.1981. Intercropping morphologically different typesof Maize with cowPeas: L ET and growth attribute of associated cowpeas.Exp. Aric.,17:407-413.
    [205] Wani S P,T J. Rego, O. Ito and K. K Lee.1996. Nitrogen budget in soil under different croppingsystems. Roots and nitrogen in cropping systems of the semi-arid tropics, Edited by Osamu Ito, ChrisJohansen, Joseph J, Adu-Gyamfi, KatsuyUki Katayama, Jangala V. D. Kumar Rao and Thomas J.Rego. Published by Japan International Research Center for Agricultural Science,1-2, Ohwashi,Tsukuba, lbaraki305,Japan,481-492
    [206] Zhang F. S., V. Romheld and H. Marschner.1991. Diurnal pattern in release of phytosiderophoresand uptake reate of zinc in iron deficient and iron sufficient wheat. Soil Sci. Plant Nutr.,37:671-678
    [207] Zhang F.S., M. Treeby, V. Romheld and H. Marschoer.1990. Mobilization of iron byphytosiderophores as effected by other micronutrient. Plant Soil,130:173-178
    [208] Zhou X L, C A. Madramootoo, A. F. Mackenzie, J. W. Kaluli and D L. Smith.2000. Maizeyield and fertilizer N recovery in water-table-controlled maize-rye-grass systems. European Journal ofAgronomy,12:83-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700