珠三角地区土壤与北江沉积物中汞污染现状与评价初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是一种非生命必需元素,可通过呼吸、皮肤吸收、饮食等途径进入人体,危害人类健康。无机汞可以通过甲基化作用生成毒性很强的甲基汞。自日本发生水俣病(Minamata Disease)事件以来,汞污染一直引起全球持续关注。最近几十年,化石燃料燃烧、金属冶炼和工业生产等人为活动不断向环境释放大量的汞,导致区域性的汞污染不断加剧,汞也被公认为“全球性污染物”。汞可在大气-土壤-水体间交换,土壤和沉积物不仅是环境介质间汞交换的重要源和汇,而且是汞甲基化的重要场所,因此对土壤与沉积物中汞的研究具有重要意义。
     燃料燃烧、垃圾焚烧、水泥和陶瓷工业、氯碱工业、电池生产等涉汞行业是人为汞污染的重要来源。珠三角地区经济发达,其GDP占全国总量的约10%,且仍以每年约15%的速度增长,能源消耗总量大且将进一步增加,垃圾焚烧厂家数量占全国总数的约1/4,陶瓷产量占全国的约1/2,涉汞行业多且数量大,导致其环境中可能有较高含量的汞,同时珠三角地区独特的亚热带气候特点也有利于汞在不同环境介质间的迁移转化。北江是珠江流域第二大水系,是沿线的韶关、清远、肇庆和佛山等城市的主要饮用水源地,流域内工业污染源和矿区较多,且有电子垃圾拆解基地,汞是环境中重要特征污染物之一为了解珠三角地区土壤与北江沉积物汞污染现状,评价其污染程度,探索汞转化为甲基汞的影响因素,于2009年4~9月采集了珠三角地区741个土壤样品和北江19个沉积物样品,测定了样品中总汞(THg)和甲基汞(MeHg)含量,并分析了THg、MeHg与土壤pH、有机质(OM)的相关性,本研究初步获得以下结论:1、珠三角地区表层土壤THg含量范围为16.72~3 324.41 ng·g-1,平均值为278.01 ng·g-1。各城市表层土壤THg含量:佛山>广州>江门>东莞>肇庆>珠海>惠州>中山>深圳,水平分布以佛山、广州两大区域为高汞含量地带;垂直分布从表层至底层THg含量逐级递减,主要在0~40 cm土壤中富集,不同功能区THg含量:城市>农村,公园>生活区>工业区>菜地>稻田>耕地。珠三角地区土壤MeHg含量范围为0.14~1.34 ng·g-1,均值为0.31 ng·g-1,各城市土壤样品MeHg含量均值差距不明显,水平分布没有明显的规律。单因子污染指数法评价结果表明,珠三角地区土壤中THg平均浓度为轻度污染,其中广州、佛山为中度污染,深圳为未污染,其余城市为轻微污染;珠三角地区土壤中MeHg平均浓度为中度污染,其中东莞、惠州、江门为轻度污染,其余城市为中度污染。单因子潜在生态风险评价结果表明,总体上珠三角地区土壤汞属于轻微生态危害程度,其中广州和佛山属于中等生态危害程度,深圳属于微弱的生态危害程度,其余城市为轻微生态危害程度。2、相关性研究表明,研究区域土壤pH值与THg、MeHg含量没有明显的相关性,有机
     质与THg、MeHg含量显著相关,pH、有机质与汞的甲基化率均没有明显的相关性,表明汞的甲基化是一个复杂的过程,需要在该领域进一步加强研究。
     3、北江干流与支流沉积物THg含量范围为73.72~3 517.13 ng·g-1,平均浓度为607.62ng·g-1,THg空间分布与距离排污口远近有关,总体上距离越远含量越低,韶关冶炼厂和大宝山矿区为北江THg重要污染点源。北江干流与支流沉积物MeHg含量范围为0.39~2.38ng·g-1,平均浓度为1.30 ng·g-1,空间变化趋势与THg含量的变化趋势不一致。根据单因子污染指数法的评价结果,北江沉积物中THg, MeHg总体均属中度污染,但在部分靠近排放点源的区域污染较为严重。THg潜在生态风险评价结果表明北江沉积物属于强的生态危害程度。
     4、珠三角地区土壤甲基化比率变化范围为0.003%~1.51%,北江沉积物各采样点汞的甲基化率变化范围为0.024%~1.45%,差异较大,进一步研究汞甲基化的影响因素十分必要。
Mercury is a non-essential element which is harmful to human's health as it could be intook via inhalation, dermal intake and diet, the inorganic could be methylated into methylmercury with high toxicity. After the Minamata Disease happened, mercury pollution has been concerned globally. During the last decades, a great deal of mercury have been discharged into atmosphere by people's activity such as combustion of fuel, metal smelting and industries. As the mercury pollution is more and more serious, mercury is regarded as "a global pollutant". Mercury could be exchanged among atmosphere, soil and water. Soil and sediment are not only the the important source and sink for mercury exchange, but also a main place for mercury methylation. Hence, it is significant to study mercury pollution in soils and sediments.
     Combustion of fuel and garbage, industries such as cement, ceramic, chlor-alkali and battery are the main artificial mercury pollution source, Economy of the the Pearl River Delta(PRD) is prosperous, and the GDP contributed about 10% to that in China, with an increasing rate of 15% annually. As the economy is developing, the demand of energy increases as well. A quarter of national garbage combustion plants and a half of ceramic plants were located in the PRD,along with many other mercury relative industries, which leading to potential high levels of mercury in the environment. Furthermore, the subtropical climate in the PRD accelerate the transfer and transformation of of mercury among different environmental media. The Beijiang River is the second branch of the Pearl River, and it is the main water source for Shaoguan, Qingyuan, Zhaoqing and Foshan. Along the Beijiang River, there are many industries, mines, and even e-waste dismantling area. Therefore, mercury may be is an significant pollutant in the Beijiang River area.
     This article is to study on pollution status and assessment of mercury in soil of the PRD and sediment of the Beijiang River,741 soil samples and 19 sediment samples have been collected in this district from April to September of 2009, content of THg and MeHg has been determinated, correlations between mercury, pH and organic matter have also been analyzed.
     1.The concentration of THg in surface soil from the PRD ranged from 16.72 to 3324.41 ng-g-1, with an average value of 278.01 ng-g-1.The THg levels in surface soil from different cities decreased as the following order:Foshan>Guangzhou>Jiangmen>Dongguan>Zhaoqing> Zhuhai>Huizhou>Zhongshan>Shenzhen;with Guangzhou and Foshan as the high mercury polluted areas.. The vertial distribution shows that, the THg in soils descended from surface layer to sub-layer, with a mercury pool in the 0-40 cm soil. Distribution of THg in different used type is urban>rural area, Park>Living area>Industry area>Vegetable field>Rice filed>Woodland area,The MeHg in top soil from PRD ranged from 0.14 to 1.34 ng-g-1; with an average value of 0.31 ng-g-1, with no obvious distinction and distribution features for soils in different cities. According to single pollution index (SPI) assessment of THg, generally, PRD is at light polluion level, both Guangzhou and Foshan are at medium polluion level, Shenzhen with no pollution, others are at light pollution level. The SPI assessment of MeHg showed that, generally, PRD is at medium pollution level, Guangzhou, Shenzhen, Foshan, Zhaoqing, Zhuhai, Zhongshan are at medium polluion level, and Dongguan, Huizhou, Jiangmen are at light pollution level. The potential ecological risk assessment of THg showed that, generally, PRD is at light ecological risk, Guangzhou and Foshan are at at medium ecological risk level, Shenzhen is at a low ecological risk index, the others are at light ecological risk level.
     2. The linearity study showed that, pH value was found to have no obvious correlation with THg or MeHg, and organic matter (OM) was significantly correlated with THg and MeHg. Besides, neither pH value nor OM was significantly correlated with mercury methylation rate, indicating mercury methylation is a complex process, and further studies are required.
     3.The THg levels in sediment from Beijiang River ranged from 73.72 to 3 517.13 ng-g-1,with an average value of 607.62 ng-g-1. Generally, the THg levels decreased as the sampling sites located further from the drain outlet.Shaoguan smelting factory and Dabaoshan mine are the key piont pollution source of THg for the Beijiang River. The MeHg levels in sediment from the Beijiang River ranged from 0.39 to 2.38 ng-g-1,with an average value of 1.30 ng-g-1,with a different spatial distribution from the THg in this area. The SPI assessment of THg and MeHg showed that, the sediments from the Beijiang River are at medium pollution level, but the sampling sites near the drain outlet are suffering from serious pollution. The potential ecological risk assessment of THg showed that, Beijiang River is at a powerful ecological risk index.
     4.The methylation rate ranged from 0.003% to 1.51% for soils from the PRD, and from 0.024% to 1.45% for sediments from the Beijiang River, respectively. Totally, the methylation rates varied greatly, All these suggest that further studies investigating the affecting factors of mercury methylation are needed.
引文
[1]Lindqvist 0. Special issue of first international on mercury as a global pollutant[J].Water, Air and Soil Pollution,1991(56):1-1.
    [2]廖自基.微量元素的环境化学及生物效应[M].北京,中国环境科学出版社.1992.
    [3]冯新斌,仇广乐,付学吾,等.环境汞污染[J].化学进展,2003,21(2/3),436-457.
    [4]WHO. Inorganic Mercury. Environmental Health Criteria 118.World Health Organization, international Programme on Chemical Safety,Geneva,Switzerland,1991.
    [5]WHO. Methylmercury. Environmental Health Criteria 10, World Health Organization, International Programme on Chemical Safety,Geneva,Switzerland,1990.
    [6]Harada M. Crit.Rev. Toxicol.,1995,25:1-24.
    [7]Clarkson T W, Magos L,Myers G J.N. Engl.J.Med.,2003,349:1731-1737.
    [8]Chan H M, Egeland GM. Nutr. Rev.,2004,62:68-72.
    [9]Stern A H. Environ. Res.,2005,98:133-142.
    [10]Sakamoto M, Nakano A,Akagi H. Environ. Res.,2001,87:92-98.
    [11]Itai Y, Fujino T, Ueno K, et al.Environ. Sci.,2004,11:83-97.
    [12]WHO. Inorganic Mercury. Environmental Health Criteria 118. World Health Organization, international Programme on Chemical Safety,Geneva,Switzerland,1991.
    [13]Clarkson T W. Environ. Health Perspect.,2002,110 (Suppl 1):11-23.
    [14]ATSDR. Toxicological profile for mercury. Agency for Toxic Substances and Disease Registry, Atlanta,USA,1999.
    [15]Feng X, Li P,Qiu G, et al.Environmental Science Technical,2008,42:326-332.
    [16]Ysart G,Miller P,Croasdale M,et al.Food Addit.Contam.,2000,17:775-786.
    [17]Lindberg A,Bjornberg K A,Vahter M, et al.Environ. Res.,2004,96:28-33.
    [18]张伯尧.兰州市菜地土壤和蔬菜重金属含量及其健康风险评估[D].甘肃农业大学硕士学位论文.2009年6月.
    [19]吴广枫,许建军,石英.农产品质量安全及其检测技术[M].北京:化学工业出版社,2007,80-81.
    [20]李世勇.成都市城市土壤汞热释赋存形态研究[D].成都理工大学硕士学位论文,2007年6月.
    [21]冯新斌,陈业材,朱卫国.土壤挥发性汞污染释放通量的研究[J].环境科学学报,1996,17(2):20-23.
    [22]洪春来,贾彦博,杨肖娥,等.农业土壤中汞的生物地球化学行为及其生态效应[J].土壤通报,2007,38(3):590-596.
    [23]Leonard T L GE, Taylor, J M S. Mereury and Plant in contaminated soil:Uptake, Partitioning, and emission toa tmosphere[J].Environ Toxieol Chem,1998,17:2063-2071.
    [24]姜向阳,朱迎春,李蓉.汞在土壤-水稻系统中的迁移.重庆环境科学[J].995,17:54-57
    [25]王定勇,石孝洪,杨学春.大气汞对土壤-植物系统汞累积的影响研究[J].环境科学学报,1998,18:194-198.
    [26]林治庆,黄会一.植物对土壤中汞的吸收积累及耐性[J].农业环境保护,1989,8(5):33-3.
    [27]郭翠花,张红,杨国栋.工业城市农田生态系统中Hg污染及防治[J].农业环境保护,2000,19:245-247.
    [28]牟树森,青长乐.酸沉降区作物对汞的积累及其影响因素的研究[J].重庆环境科学,1997,19(1):5-10.
    [29]苏秋克,蒋敬业,马振东.武汉市湖泊汞污染现状研究闭.地址科技情报[J],2004,23(3):83-88.
    [30]陈静生.水环境化学[M].北京:高等教育出版社,1987.
    [31]陈静生,刘玉机.中国水环境重金属研究[M].北京:中国环境科学出版社,1992.
    [32]许振成,杨晓云,文勇,等.北江沉积物上游底泥重金属污染及其潜在生态风险危害评价[J].环境科学,2009,30(11):3262-3267.
    [33]Chan ajithRLR(裴效松译).人类活动对日本神西湖汞污染的影响[J].地质科学译丛,1996,13(2):37-40.
    [34]Vallb B.L, Ulmer D.D.Biochemical effects of mercury、cadmium and lead[J]. Annu.Rev.Biochem,1972,(4):92-108.
    [35]戴前进,冯新斌,唐桂萍.土壤汞的地球化学行为及污染的防治对策[J].地质地球化学,2002,30:75-77.
    [36]Heyer M, Burke J, Keler G. Atmospheric sources, transport and deposition of mereury in Michigan:two years of event precipitation[J].Water Air Soil Pollut,1995,80:199-208.
    [37]王定勇,石孝洪,杨学春.大气汞在土壤中转化及其与土壤汞富集的相关性[J].重庆环境科学,1998,20:22-2.
    [38]何锦林,谭红,赵亚民.等贵州梵净山自然保护区太气汞的沉降[J].环境科学学报,1999,19:164-169.
    [39]Qiu G, Feng X, Shang, L. Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou[J],China Environ Pollut,2006,142:549-558.
    [40]陈芳,董元华,安琼,等.长期肥料定位试验条件下土壤重金属含量的变化[J].土壤,2005,37:308-311.
    [41]方满,刘洪海.武汉市垃圾堆放场重金属污染调查及控制途径[J].中国环境科学,1998,8:54-59.
    [42]沈永.东平湖表层沉积物中汞的污染研究[D].山东大学硕士学位论文,2008年6月.
    [43]TemPleton D M,Ariese F,CornelisR,et al.IUPAC guidelines for terns related To chemical speeiation and fractionation of elements[J].Pure and Applied Chemistry,2000, 72(8):1453-1470.
    [44]栾向晶.汞污染形态分析的重要性[J].黑龙江环境通报,2001,25(3):97-99.
    [45]L INDQV IST O, et al.Mercury in the Swedish environment[J].Water,Air and Soil Poll.,1995,55:1-26.
    [46]MASON R P, F ITZGERALD W F,MOREL M M. The biogeochemical cycling of elemental mercury.anthropogenic influences[J].Geochmi. Cosmochim. Acta,1994,58:3191-3198.
    [47]牛凌燕,曾英.土壤中汞的赋存形态及迁移转化规律研究进展[J].广东微量元素科学,2008,15(7):1-5.
    [48]TESSIER A. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry,1979,51(7):844-851.
    [49]梁淑轩,庞秀言,孙汉文.超短柱气相色谱与原子吸收联用技术的优化及其在甲基汞形态分析中的应用[J].中国卫生检验杂志.2002,12(3):262-263.
    [50]杨兰萍,黄一波,潘伟清,等.汞矿地区人发中甲基汞的气相色谱测定[J].环境化学,1996,15(4):366-370.
    [51]殷学锋,徐青,徐秀珠.汞的形态分析研究(Ⅰ)萃取-液相色谱分离测定不同形态汞[J].分析化学,1995,23(10):1168-1171.
    [52]徐青,殷学锋,李世彬.汞的形态分析研究(Ⅱ)固相萃取预富集-液相色谱分离测定不同形态的有机汞[J].分析化学,1995(23):1305-1307.
    [53]Westoo G. Methylmereury compounds in fish,identification and determination[J].Aeta.Chemica. Seandinaviea,1966,20(8):2131-2137.
    [54]陈登云,刘娜,张兰英.应用HPLC-ICP-MS联用技术进行Hg的形态分析研究[J].环境化学,2005,24(1):110-113
    [55]Yingcharoen, D.,Bodaly, R.A. Elevated mereury levels infish resulting from reservoir flooding inThailand[J].Asian Fisheries Seienee,1993,6:73-80.
    [56]陶成,邓天龙,李泽琴.天然水中痕量无机汞和有机汞的氢化物原子荧光光谱法分析,广州化学,2003,28(4):16-20.
    [57]蔡玲,谢华林,李爱阳.ICP-MS法测定OVC-U饮水管材(件)中的痕量铅、镉、锡、汞[J].化学分析计量,2003,12(6):26-28.
    [58]农晋琦,汪春,卢益新.ICP-MS同时测定水处理剂一聚合氯化铝中的A12O3及五种元素含量的研究[J].质谱学报,1999,20(3):99-100.
    [59]Lewen N, Mathew S, Schenkenberger M, et al.A rapid ICP-MS sereen for heavy Metals in phannaceutical compounds[J].Journal of pharmaceutieal and Biomedical Analysis, 2004,35(4):739-752.
    [60]国家环保总局《水和废水监测分析方法》编委会编.水和废水监测分析方法[A].第3版,北京:中国环境科学出版社,1998,PP:163.
    [61]]Maekey E A, Beeker D A. Determination of thylmereury in two mussel tissue Standard Reference Materials by pre-irradiation separation and neutron Activation analysis[J].Analyst,1998,123(5):779-783.
    [62]Silvada R M, Soldado A B, Blanco E, et al. Speciation of mereury using capillary electrophoresis coupled to volatile species generation-inductively coupled plasma masss spectrometry[J].Journal of Analytical Atomic Spectrometry,2001,16(9):951-956.
    [63]吕昌银,王永生,曾祥月,等.动力学-压电石英晶体传感器测定水中微量汞的研究[J].分析实验室,1997,16(1):71-74.
    [64]李顺兴,黄金泉,钱沙华.改性绿茶对汞的吸附研究-汞的形态分析[J].环境化学,1997,16(4):374-376.
    [65]Kannamkumarath S S, Wrobel Kat, Wrobel Kaz, et al. Capillary electrophoresis-inductively coupled plasma-massspectrometry:an attractive eomplementary technique for elemental Speciation analysis[J].Journal of Chromatography,2002,975(2):245-266.
    [66]孙汉文,乔玉卿,孙建民,等.气相色谱-卧管式火焰原子吸收法测定环境样品中的二乙基汞[J].分析仪器,2001,(1):29-32.
    [67]梁立娜,江桂斌.高效液相色谱及其联用技术在汞形态分析中的应用[J].分析科学学报,2002,15(4):335-343.
    [68]蒋红梅,冯新斌,梁琏,等.蒸馏-乙基化结合GC-CVAFS测定天然水体中的甲基汞[J].中国环境科学,2004,24(5):568-571.
    [69]崔瑞平,赵彬彬,满洪界.某汞矿冶炼厂附近环境汞污染调查[J].环境科学,1998,3:65-67.
    [70]王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,1995.145-155.
    [71]刘俊华,王文华,彭安.北京市二个主要工业区汞污染及其来源的初步研究[J].环境科学学报,1998,18(3):331-336.
    [72]荆治严,杨洪莉,杨杰,等.沈阳市汞污染水平与测试技术的研究[J].环境科学丛刊,1992,13(5):48-66.
    [73]王定勇.汞在酸沉降地区陆地生态系统中的分布与行为[D].重庆:西南农业大学博士学位论文,2001.
    [74]钱建平,张力,刘辉利,等.桂林市及近郊土壤汞的分布和污染研究[J].地球化学,2000,29(1):94-99.
    [75]QU LI-YA, HOU HUN-YUAN, XUE YOU-MEI.Status of mercury pollution during resources development in Guizhou province, China[J].Joural of Environmental Sciences,2000,12:12-18.
    [76]夏增禄,穆从如,李森照,等.我国若干土壤类型剖面中汞的自然含量及其分异的初步分析[J].科学通报,1984,29(1):620-622.
    [77]郭翠花,王应刚,任艳萍.太原市地表土汞含量的分布特征[J].山西大学学报(自然科学),1996,19(3):339-344.
    [78]刘清,李明.兰州市土壤中汞含量及污染问题探讨[J].中国卫生检验杂志,2000,10(2):237-238.
    [79]李志博.长春市汞的污染特征及其生态风险评价[D].北京:中国科学院硕士学位论文,2003.
    [80]陶澍,邓宝山.深圳地区土壤汞含量分布及污染[J].中国环境科学,1993,13(2):35-38.
    [81]廖自基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,1989:32-68.
    [82]张丰松,阎百兴,何岩,等.松花江冰封期江水和沉积物中汞形态研究[J].湿地科学,2007,5(1):59-62.
    [83]张少庆,王起超,赵明宪,等.葫芦岛市不同污染源河流汞污染特征研究[J].地球与环境,2008,36(3):225-229.
    [84]张翠,陈振楼,毕春娟,等.黄浦江上游饮用水源地水及沉积物中汞、砷的分布特征[J].环境科学学报,2008,28(7):1455-1462.
    [85]孙剑辉,刘群,冯精兰,等.黄河中下游表层沉积物中汞和砷的污染研究[J].人民黄河,2009,31(2):55-57.
    [86]Kanna k, Smith J R G, Lee,R F,et al. Distribution of total mercury and methyl mercury in water, sediment and fish from South Florida Estuaries[J].Archives of Environment Contamination and Toxicology 1998,34:109-118.
    [87]Kannan K, Falandysz J. Speciation and concentrations of mercury in certain coastal marine sediment[J].Water, Air, and Soil Pollution,1998,103:129-136.
    [88]Mikac, N., Niessen,S., Ouddane,B., et al. Speciation of mercury in sediments of the Seine Estuary(France). Applid Organomrysllic Chemistry 1999,13:715-725.
    [89]鲍士旦(主编).土壤农化分析.北京:中国农业出版社,2000.
    [90]王永华,钱少,徐南妮,等.巢湖东区底泥污染物分布特征及评价[J].环境科学研究,2004,17(6):22-26
    [91]尹伟,卢瑛,李军辉,等.广州城市土壤汞的分布特征及其污染评价[J].土壤通报,2009,40(5):1185-1188.
    [92]王定勇,石孝洪.西藏“一江两河”地区洪积土汞含量及其土壤性质的关系[C].第六届环境地球化学学术讨论会论文.
    [93]王永华,刘振宇,刘伟,等.巢湖合肥区底泥污染物分布评价与相关特征研究.北京大学学报(自然科学版),2003,39(4):501-506.
    [94]Wallschlager D, Desai M V M, Spengler M, et al. How humic substances dominate mercury geochemistry in contamintation floodplain soils and sedements[J].Environ Qual,1998,27 (50):1044-1054.
    [95]Falter R, Wilken R D. Isotope experiments for the determination of the abiotic mereury methylation potential of a River Rhine sediment[J].VomWasser,1998,90:217-231.
    [96]钱晓莉.贵州草海汞形态分布特征研究[D].西南大学硕士学位论文,2007年5月.
    [97]Robert D Rogers.A biolgica methylation of mercury in soil[J].Environ Qual,1977,6(4):463-467.
    [98]Kelka C A, Rudd J W M, Holoka M H. Effeet of pH on mereury uptake by aquatic baeterium: implications for Hg cyeling[J].Environ. Sei.Technol.2003,30:2941-2946.
    [99]苏秋克,祈士华,蒋敬业,等.武汉城市湖泊汞的环境地球化学评价[J].地球化学,2006,35(3):221-226.
    [100]陈翠华,倪师军,何彬彬,等.GIS技术支持下的江西德兴地区矿山环境地球化学质量评价[J].成都理工大学学报(自然科学版)2005,32(6):633-639.
    [101]文军,骆东奇,罗献宝,等.千岛湖底泥汞污染的生态风险评价[J].水土保护研究,2006,13(1):13.
    [102]张丽旭,任松,蔡健.东海三个倾倒区表层沉积物汞富集特征及其潜在生态风险评价[J].海洋通报,2005,24(2):92-96.
    [103]郭军娜.胶州湾潮间带沉积物重金属分布研究与污染评价[D].青岛:中国海洋大学,2003年5月.
    [104]贾振邦,霍文毅,赵智杰,等.应用次生相富集系数评价柴河沉积物重金属污染[J].北京大学学报(自然科学版),2000,36(6):808-812.
    [105]冯慕华,龙江平,喻龙,等.辽东湾东部浅水区沉积物中汞潜在生态评价[J].海洋科学,2003,27(3):52-56.
    [106]甘居利,贾晓平,林钦,等.近岸海域底质汞生态风险评价初步研究[J].水产学报,2000,24(6):533-538.
    [107]刘文新,汤鸿霄.河流沉积物重金属污染质量控制基准的研究(1)C-B-T质量三合一方法(Triad)[J].环境科学学报,1999,19(2):120-126.
    [108]霍文毅,黄风茹,陈静生,等.1997.河流颗粒物汞污染评价方法比较研究[J].地理科学,17(1):81-86.
    [109]Pai P, Niemi D, Powers B. A North American inventory of anthropogenic mercury emissions[J].Fuel Processing Technology,2000,65-66:101-115.
    [110]Hansen J C, Danscher G, Organic mercury, an environmental threat to the health of dietary-exposed societies[J].Rev Environ Health,1997,12(2):107-116.
    [111]杨永奎,王定勇.大气汞的时空分布研究进展[J].四川环境,2006,25(6):91-95.
    [112]林杰藩,赖启宏,方敬文,等.珠江三角洲土壤Hg污染区生态地球化学评价[J].生态环境,2007,16(1):41-46.
    [113]赖启宏,杜海燕,林杰藩,等.珠江三角洲土壤汞高含量区的形成[J].环境化学,2005,24(2):219-220.
    [114]Jian-bo Shi, Carman C M, et al., Spatial and temporal variations of mercury in sediments from Victoria Harbour, Hong Kong. Marine Pollution Bulletin.2007,54:464-488.
    [115]孙彬彬.珠三角土壤元素时空变化研究[D].中国地质大学(北京)硕士学位论文,2008年5月.
    [116]丁小勇,陈来国,张卫东,等.北江沉积物汞现状与评价初步研究[J].农业环境科学学报,2010,29(2):357-352.
    [117]李仲根,冯新斌,何天容,等.王水水浴消解-冷原子荧光法测定土壤和沉积物中的总汞[J],矿物岩石地球化学通报,2005,24(2):140-143.
    [118]何天容,冯新斌等.萃取-乙基化结合GC-CVAFS法测定沉积物及土壤中的甲基汞[J].地球与环境.2004,32(2):83-87.
    [119]叶军.桂林交通干道旁侧土壤-植物-大气汞污染研究[D].桂林工学院硕士学位论文,2006年6月.
    [120]赖启宏,杜海燕,张忠进,等.珠江三角洲土壤高汞含量的形成[J].环境监测,2005,24(2):219-220.
    [121]仇广乐,冯新斌,王少峰,等.贵州汞矿矿区不同位置土壤中总汞和甲基汞污染特征研究[J],环境科学,2006,27(3):550-555.
    [122]仇广乐.贵州省典型汞矿区汞的环境化学研究[D].中国科学院博士毕业论文,2005年10月.
    [123]柴世伟,温琰茂,张云霓,等.广州郊区农业土壤重金属含量与土壤性质的关系[J].农村生态环境,2004,20(2):55-58.
    [124]《环境科学》编辑部.环境中若干元素的自然背景值及其研究方法[M].北京:科学出版社,1982:27-34.
    [125]Ullrich S M., Tanton T W, Abdrashitova S A. Mercury in the aquatic environment:a review of factors affecting methylation[J]. Critical Reviews in Environmental Science and Technology, 2001(31):241-293.
    [126]刘永懋,王稔华,翟平阳.中国松花江甲基汞污染防治与标准研究[M].北京:科学出版社,1998.
    [126]邹婷婷.桦甸市金矿开采区汞的时空分布规律及生态风险评价[D].东北师范大学硕士学位论文.2009年6月.
    [127]Hakanson L. An ecological risk index for aquatic pollution control:a sediment ological app roach[J]. Water Research,1980,14:975-1001.
    [128]冉祥滨,于志刚,陈洪涛,等.三峡水库蓄水至135m后坝前及香溪河水域溶解无机汞分布特征研究[J].环境科学,2008,29(7):1775-1779.
    [129]白薇扬,冯新斌,金志升,等.河流对阿哈水库汞迁移转化过程的影响矿物学报[J].矿物学报,2007,27(2):218-224.
    [130]Heaven S, Ilyushchenko M A., Tanton T W., et al. Mercury in the river Nura and its floodplain, Central Kazakhstan:River sediments and water [J].The Science of the Total Environment,2000,260:35-44.
    [131]高博,孙可,任明忠,等.北江表层沉积物中铊污染的生态风险[J].生态环境,2008,17(2):528-532.
    [132]Wong C S C,Duzgoren-Aydin N S,Aydin A,et al. Evidence of excessive releases of metals from primitive e-waste processing in Guiyu, China[J].Environmental Pollution,2007, 148:62-72.
    [133]Ebinghaus R, Wilken R D, Gisder, P. Investigations on the formation of monomethyl mercury (II) in the Elbe[J]. Vom Wasser,1994,82:19.
    [134]Tomiyasu T, Nagano A, Yonehara N, et al. Mercury contamination in the Yatsushiro Sea, South-western Japan:spatial variations of mercury in sediment[J]. The Science of the Total Environment,2000,257:121-132.
    [135]李学杰.广东大亚湾底质重金属分布特征与环境质量评价[J].中国地质,2003,30(4):429-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700