铜氧族化合物的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属铜氧化物和硒化物半导体纳米材料因其优良的催化、发光、光电转化、气敏、磁性能,成为材料、化学、物理等领域的重要研究方向之一。由于材料的结构、组成、晶型、形貌及尺寸影响材料的性能和应用,因此,设计并控制合成具有特定结构和形貌的铜氧化物和硒化物半导体纳米材料具有重要的理论和实际意义。本论文采用超声微波辅助法,结合热转化反应合成出了方砖状CuO多孔材料;在温和水热条件下制备了具有纳米棒状和纳米片状次级结构的CuO微米球及六角状Cu_(2-x)Se微米板,并对所合成的微纳米材料进行了详细的结构表征、形貌及光学性质研究,探讨了不同反应条件对产物形貌的影响。具体的研究内容包括:
     1、以氯化铜和草酸钾为原料,以价格低廉的十二烷基苯磺酸钠为导向剂,采用超声微波辅助法,合成了草酸铜前驱物,通过在300°C下灼烧草酸铜前驱体快速制得了方砖状CuO多孔材料。通过XRD、SEM、TEM对合成产物的晶型、形貌及颗粒大小进行研究,以XPS研究了产物的元素组成及纯度,通过N2吸附-脱附实验对产物的比表面积和孔径分布进行研究。分别以FT-IR、UV-Vis及PL研究了产物的表面结构、光吸收特性和荧光性质,并研究了产物的表面光伏特性。探讨了不同反应条件对产物形貌的影响,提出了方砖状CuO多孔材料的生成机理。
     2、采用水热合成法,以氯化铜为原料,使用易溶于水且无毒的十二烷基苯磺酸钠SDBS作导向剂在水-氨水体系中,制备出了具有纳米棒状次级结构的CuO微球,并研究反应条件对产物形貌的影响。通过XRD、SEM、TEM等表征了所合成的CuO微球的晶型、结构形貌及颗粒大小,并测试了产物的BET比表面积。采用FT-IR对产物的表面结构进行了研究,以UV-Vis及PL光谱对产物的光吸收特性和荧光性质进行了研究。结果表明,氨水的用量影响微球的结构,SDBS的用量是影响纳米棒自组装成球的关键因素。此外,在水-氨水-氢氧化钠体系中,在低温条件下制备出了具有纳米片状次级结构的CuO微球。
     3、用硒粉、氯化铜为原料,在水-NaOH-N_2H_4·H_2O体系中,以油胺OLA为导向剂,采用水热合成法制备了六角状Cu_(2-x)Se微米板。通过XRD、SEM、TEM对所合成产物的晶型、形貌及颗粒大小进行研究。通过一系列控制实验,得到了最佳反应条件,进而探讨了产物的生成机理。对所制备的Cu_(2-x)Se微米板进行了FT-IR、UV-Vis、PL、SPS测试,研究了产物的表面结构及光电性质。
Metal oxides and semiconductor nanomaterials have become one of importantresearches in fields of materials, chemistry and physics etc. because of their excellentproperties in catalysis, optics, photoelectric conversion, gas sensitivity and magnetism. Due tothe structure, composition, crystal structure, morphology and size of materials influence theperformance and applications of the materials, designing and controlling synthesis ofcopper oxides and copper selenide semiconductor materials with a specific structure andmorphology are of significance from theortical and practical point of view. In this thesis theporous square-brick-like hierarchical CuO was synthesized by ultrasound and microwaveassisted method, combing with thermal conversion reaction. The nanorod and nanosheethierarchical CuO microspheres and hexagonal Cu2-XSe microplates were preparedunder mild hydrothermal conditions. The detailed structure and morphology characterizationand optical properties of the synthesized micro/nano materials were studied. The effect ofdifferent reaction conditions on the morphology was explored and discussed. This thesisincludes the following aspects:
     1. Using low cost SDBS as a directing agent, CuCl_2·2H_2O and K_2C_2O_4as the rawmaterials, square-brick CuC_2O_4.xH_2O precursor were synthesized by ultrasound-microwavemethod. After calcination of the CuC_2O_4.xH_2O precursor at 300℃, the square-brick porousCuO materials were fast obtained. The crystal structure, morphology and particle size of theproducts were characterized by XRD, SEM and TEM, and the elementalcomposition and purity of the products were studied by XPS, the surface area and pore sizedistribution of the products were obtained by N2adsorption - desorption experiments.The surface structure, absorption and fluorescence properties of the products were studied byFT-IR, UV-Vis absorption spectra and PL. The surface photovoltaic property of the productwas also studied. In addition, effect of different reaction conditions on the morphology wasdiscussed and the formation mechanism of square-brick porous CuO materials was proposed.
     2. CuO microspheres with a nanorod-like hierarchical structure were synthesized by mildhydrothermal method in a water-ammonia system, where CuCl_2·H_2O was used as the rawmaterial and non-toxic water soluble SDBS as a directing agent, the dependence of CuOmicrosphere morphology on reaction conditions was investigated. The crystal structure,morphology and particle size of the products were characterized by XRD, SEM and TEM,and the surface area of products were obtained by N2adsorption-desorption experiments.The surface structure, absorption and fluorescence properties of the products were studied byFT-IR, UV-Vis absorption spectra and PL. It was found that the amount of SDBS andammonia plays an important role on formation of spherical CuO by self-assemble ofnanorod-like structures. Moreover, CuO microspheres with a hierarchical nanosheet-like structure were synthesized by mild hydrothermal method in a water-ammonia system at lowtemperature.
     3. Hexaonal Cu_(2-x)Se microplates were synthesized by mild hydrothermal method in awater-NaOH-N2H4·H2O system, where selenium power and CuCl_2·H_2O were used as the rawmaterials and OLA as a directing agent. The crystal structure, morphology and particle size ofthe products were characterized by XRD, SEM and TEM. The effect of differentreaction conditions on the morphology was also discussed and the formation mechanism ofhexaonal Cu_(2-x)Se microplates was proposed. The surface structure, absorption andfluorescence properties of the products were studied by FT-IR, UV-Vis absorption spectraand PL, the p surface hotovoltaic properties of the products was also studied.
引文
[1]方云,杨澄宇,陈明清等.纳米技术与纳米材料(Ⅰ)—纳米技术与纳米材料简介[J].日用化学工业, 2003, 33(1): 55~59.
    [2] Rao C., Cheetham A.. Science and technology of nanomaterials: currentstatus and futureprospects[J]. Journal of Materials Chemistry, 2001, 11: 2887~2894.
    [3] Kumar S. and Nann T.. Shape Control of II–VI Semiconductor Nanomaterials[J]. Wiley, 2006, 2(3):316~329.
    [4] Xia J. X., Li H. M., Luo Z. J., et al. Ionic liquid-assisted hydrothermal synthesis three-dimensionhierarchical CuO peachstone-like architectures[J]. Applied Surface Science, 2010, 256(6):1871~1877.
    [5]郭广生,李强,王志华等.激光蒸凝法制备氧化铜纳米粒子[J].无机材料学报, 2002, 17(2):230~234。
    [6] Eisenreich N., Engel w.. Kinetic study of the solid phase reaction of ammonium nitrate and copperoxide by the use of fast X-ray diffraction[J]. Journal of Thermal Analysis, 1989, 35(2): 577~584.
    [7] Zhou K. B., Wang R. P., Xu B. Q., et al. Synthesis, characterization and catalytic properties of CuOnanocrystals with various shapes[J]. Nanotechnology, 2006, 17(15): 3939~3943.
    [8] Wang W. Z., Zhou Q., Fei X. M., et al. Synthesis of CuO nano- and micro-structures and theirRaman spectroscopic studies[J]. Cryst. Eng.Comm, 2010, 12(7): 2232~2237.
    [9] Singh D. P., Ojha A. K., Srivastava O. N., et al. Synthesis of different Cu(OH)2 and CuO (nanowires,rectangles, seed-, belt-, andsheetlike) nanostructures by simple wet chemical route[J]. Journal ofPhysical Chemistry C, 2009, 113(9): 3409~3418.
    [10] Xu Y. Y., Chen D. R., Jiao X. L., et al. Fabrication of CuO pricky microspheres with tunable sizeby a simple solution route[J]. Journal of Physical Chemistry B, 2005, 109(28): 13561~13566.
    [11] Gao D. Q., Yang G. J., Li J. Y., et al. Room-temperature ferromagnetism of flowerlike CuOnanostructures[J]. Journal of Physical Chemistry C, 2010, 114(43): 18347~18351.
    [12] Zhang F., Zhu A. W., Luo Y. P., et al. CuO nanosheets for sensitive and selective determination ofH2S with high recovery ability[J]. Journal of Physical Chemistry C, 2010, 114(45): 19214~19219.
    [13]周磊,张勇,李建华等.纳米材料合成方法浅析[J].中国粉体工业, 2011,3: 11~14.
    [14] Xiang J. Y., Tu J. P., Qiao Y. Q., et al. Electrochemical impedance analysis of a hierarchical CuOelectrode composed of self-assembled nanoplates[J]. Journal of Physical Chemistry C, 2011,115(5):2505~2513.
    [15] Xiao H. M., Fu S. Y., Zhu L. P., et al. Controlled synthesis and characterization of CuOnanostructures through a facile hydrothermal route in the presence of sodium citrate[J]. EuropeanJournal of Inorganic Chemistry, 2007(14), 1966~1971.
    [16] Wang X. Q., Xi G. C., Xiong S. L., et al. Solution-phase synthesis of single-crystal CuOnanoribbons and nanorings[J]. Crystal Growth & Design, 2007, 7(5): 930~934.
    [17] Li J. Y., Xiong S. L., Xi B.J., et al. Synthesis of CuO perpendicularly cross-bedded microstructurevia a precursor-based route[J]. Crystal Growth & Design, 2009, 9(9): 4108~4115.
    [18] Zou G. F., Li H., Zhang D., et al. Well-aligned arrays of CuO nanoplatelets[J]. Journal of PhysicalChemistry B, 2006, 110(4): 1632~1637.
    [19] Vaseem M., Umar A., Kim S. H., et al. Low-Temperature Synthesis of Flower-Shaped CuONanostructures by Solution Process:Formation Mechanism and Structural Properties[J]. Journal ofPhysical Chemistry C, 2008, 112(15): 5729~5735.
    [20] Gao S. Y., Yang S.X., Shu J., et al. Green Fabrication of Hierarchical CuO HollowMicro/Nanostructures and Enhanced Performance as Electrode Materials for Lithium-ionBatteries[J]. Journal of Physical Chemistry C, 2008, , 112(49): 19324~19328.
    [21] Yu H. G., Yu J. G., Liu S. W., et al. Template-free Hydrothermal Synthesis of CuO/Cu2OComposite Hollow Microspheres[J]. Chem. Mater, 2007, 19(17): 4327~4334.
    [22] Wu X. F., Shi G. Q., Wang S. B., et al. Formation of 3D Dandelions and 2D Nanowalls of CopperPhosphate Dihydrate on a Copper Surface and Their Conversion into a Nanoporous CuO Film[J].European Journal of Inorganic Chemistry, 2005(23): 4775~4779.
    [23] Zhang X. J., Gu A. X., Wang G. F., et al. Fabrication of CuO nanowalls on Cu substrate for a highperformance enzyme-free glucose sensor[J]. Cryst. Eng. Comm, 2010, 12(4): 1120~1126.
    [24] Hu Y. Y., Huang X. T., Wang K., et al. Kirkendall-effect-based growth of dendrite-shaped CuOhollow micro/nanostructures for lithium-ion battery anodes[J]. Journal of Solid State Chemistry,2010, 183(3): 662~667.
    [25] Armelaoa L., Barrecaa D., Bertapelleb M., et al. A sol–gel approach to nanophasic copper oxidethin films[J]. Thin Solid Films 2003, 442(1-2): 48~52.
    [26] Su Y. K., Shen C. M., Yang H. T., et al. Controlled synthesis of highly ordered CuO nanowirearrays by template-based sol-gel route[J]. Transaction of Nanoferrous Metals Society of China,2007, 17(4): 783~786.
    [27] Alammar T., Birkner A., Mudring A.V., et al. Ultrasound-assisted synthesis of CuO nanorods inaneat room-temperature ionic liquid[J]. European Journal of Inorganic Chemistry, 2009, 2009(19):2765~2768.
    [28] Ni Y.H., Li H., Jin L.N., et al. Synthesis of 1D Cu(OH)2 nanowires and transition to 3D CuOmicrostructures under ultrasonic irradiation, and their electrochemical property[J]. Crystal Growth& Design, 2009, 9(9): 3868~3873.
    [29] Deng C. H., Hu H. M., Zhu W. L., et al. Green and facile synthesis of hierarchical cocoon shapedCuO hollow architectures[J]. Materials Letters, 2011,65(3): 575~578.
    [30] Zhao Y., Zhao J. Z., Li Y.L., et al. Room temperature synthesis of 2D CuO nanoleaves in aqueoussolution[J]. Nanotechnology, 2011, 22(11) : 115~604.
    [31] Xu L. P., Sithambaram S., Zhang Y. S., et al. Novel urchin-like CuO synthesized by a facile refluxmethod with efficient olefin epoxidation catalytic performance[J]. Chem. Mater., 2009, 21(7):1253~1259.
    [32] Vinod T.P., Jin X., Kim J. K.. Hexagonal nanoplatelets of CuSe synthesized through facile solutionphase reaction[J]. Materials Research Bulletin, 2011,46(3): 340~344.
    [33] Haram S.K., Santhanam K.S.V., Spallart M.N., et al. Electroless deposition on copper substratesand characterization of thin films of copper (I) selenide[J]. Materials Research Bulletin, 1992,27(10): 1185~1191.
    [34] W hrle , Meissner. Organic solar cells[J]. Advanced Materials, 1991, 3(3): 129~138.
    [35] Kamin R. A., Wilson G. S..Rotating ring-disk enzyme electrode for biocatalysis kinetic studies andcharacterization of the immobilized enzyme layer[J]. Electrochemistry Society, 1980, 52 (8):1198~1205.
    [36] Ishikawa Y., Kido O., Kimura Y., et al. Mechanism of copper selenide growth oncopper-oxide–selenium system[J]. Surface Science, 2004, 548(1-3): 276~280.
    [37] Hirota Y., Isshiki T., Okashita K., et al. High-resolution transmission electron microscopy ofgrowth and structures of Ag-Te and Cu-Se crystals produced by solid-solid reactions[J]. 1991, 112(1): 55~70.
    [38]王新军,李可,董玉涛等. CuSe纳米片、纳米棒簇的水热合成研究[J].河南师范大学学报(自然科学版), 2010,3(38): 86~89.
    [39] Kumar P., Singh K., Srivastava O.N., et al. Template free-solvothermaly synthesized copperselenide (CuSe, Cu2-xSe,β-Cu2Se and Cu2Se) hexagonal nanoplates from different precursors atlow temperature[J]. Journal of Crystal Growth, 2010,312(19): 2804~2813.
    [40] Li D.P., Zheng Z., Lei Y., et al. Design and growth of dendritic Cu2-xSe and bunchy CuSehierarchical crystalline aggregations[J]. Cryst. Eng. Comm., 2010, 12(6): 1856~1861.
    [41] Liu K. G., Liu H., Wang J. Y., et al. Synthesis and characterization of Cu2Se prepared byhydrothermal co-reduction[J]. Journal of Alloys and Compounds, 2009, 484(1): 674~676.
    [42] Chen H.H., Zou R. J., Wang N., et al. Morphology-selective synthesis and wettability properties ofwell-aligned Cu2-xSe nanostructures on a copper substrate[J]. Journal of Materials Chemistry, 2011,21(9): 3053~3059.
    [43] Jagminas A., Ju k nas R., Gailiūt I., et al. Electrochemical synthesis and optical characterization ofcopper selenide nanowire arrays within the alumina pores[J]. Journal of Crystal Growth, 2006,294(2): 343~348.
    [44] Wei W., Zhang S. Y., Fang C. X., et al. Electrochemical behavior and electrogeneratedchemiluminescence of crystalline CuSe nanotubes[J]. Solid State Sciences, 2008, 10(5): 622~628.
    [45]张翠成,陈春年,蒋利民等.牺牲模板法硒化铜纳米管的制备与表征[J].合肥工业大学学报(自然科学版), 2010, 3(33): 449~452.
    [46] Gurin V.S., Alexeenko A.A., Zolotovskaya S.A., et al. Copper and copper selenide nanoparticles inthe sol-gel matrices: Structural and optical[J]. Materials Science and Engineering C 2006, 26(5-7):952 ~955.
    [47] Dhanam M., Manoj P.K., Prabhu R.R.. High-temperature conductivity in chemical bath depositedcopper selenide thin films[J]. Journal of Crystal Growth, 2005, 280(3-4): 425~435.
    [48] Li H. L., Zhu Y. C., Avivi S., et al. Sonochemical process for the preparation of a-CuSenanocrystals and flakes[J]. Journal Materials Chemisity, 2002, 12(12): 3723~3727.
    [49] Xie Y., Zheng X. W., Jiang X. C., et al. Sonochemical synthesis and mechanistic study of copperselenides[J]. Inorganic Chemistry, 2002, 2 (41): 387~392.
    [50] Zhang Y., Qiao Z. P., Chen X. M.. Microwave-assisted elemental direct reaction route toanocrystalline copper chalcogenides CuSe and Cu2Te[J]. Journal Materials Chemisity, 2002, 12(9):2747~2748.
    [51]闫玉林,钱雪峰,印杰等.柠檬酸钠辅助光化学合成Cu2-xSe纳米晶[J].无机化学学报, 2003,10(19): 1133~1136.
    [52] Wang Q. T.. Electrochemical template synthesis of large-scale uniform copper selenides nanowirearrays[J]. Materials Letters, 2009, 63(17): 1493~1495.
    [53] Vinod T.P., Jin X.. Hexagonal nanoplatelets of CuSe synthesized through facile solution phasereaction[J]. Materials Research Bulletin, 2011, 46(3): 340~344.
    [54] Xu J., Zhang W.X., Yang Z. H., et al. Large-scale synthesis of long crystalline Cu2-xSe nanowirebundles bywater-evaporation-induced self-assembly and their application in gas sensing[J].Advanced Function Materials, 2009, 19(11):1759~1766.
    [55] Huang P., Kong Y. F., Li Z. M., et al. Copper selenide nanosnakes: bovine serum albumin-assistedroom temperatur controllable synthesis and characterization[J]. Nanoscale Research Letters, 2010,5(6): 949~956.
    [56] Deng Z., Chen M., Gu G., et al. A facile method to fabricate ZnO hollow spheres and theirphotocatalytic property[J]. Journal of Physical Chemistry B, 2008, 112 (1): 16~22.
    [57] Zhang H., Zhu Q., Zhang Y., et al. One-pot synthesis and hierarchical assembly of hollow Cu2Omicrospheres with nanocrystals-composed porous multishell and their gas-sensing properties[J].2007, 17(15): 2766~2771
    [58] Ma M. Y., Zhu Y. J., Li L., et al. Nanostructured porous hollow ellipsoidal capsules ofhydroxyapatite and calcium silicate: preparation and application in drug delivery[J]. Journal ofMaterials Chemistry, 2008, 18(23): 2722~2727.
    [59] Cao A. M., Hu J. S., Liang H. P., et al. Self-assembled vanadium pentoxide (V2O5) hollowmicrospheres from nanorods and their application in lithium-ion batteries[J]. Angewandte ChemieInternational Edition, 2005, 44(28): 4391~4395.
    [60] Kondo Y., Yoshikawa H., Awaga K., et al. Preparation, photocatalytic activities, and dye-sensitizedsolar-cell performance of submicron-scale TiO2hollow spheres[J]. Langmuir, 2008, 24 (2):547~550.
    [61]刘小娣,金属氧化物和硒化物半导体纳米材料的可控合成与性能研究,博士学位论文,南开大学, 2009.
    [62] Zheng S. F., Hu J. S., Shu L., et al. Introducing dual functional CNTnetworks into CuOnanomicrospheres toward superior electrode materials for lithium-ion batteries[J]. Chemistry ofMaterials, 2008, 20 (11): 3617~3622.
    [63] Jaroniec M., Kruk M. Standard nitrogen adsorption data for characterization of nanoporoussilicas[J].Langmuir, 1999, 15 (16): 5410~5413.
    [64] Braun P. V., Osenar P., Stupp S. I. Semiconducting superlattics templated by molecular assemb-Lies[J]. Nature, 1996, 380(28): 325~328.
    [65] Kang H. S., Kang J. S., Kim J. W., et al. Annealing effect on the property of ultraviolet and greenemissions of ZnO thin films [J]. Journal of Applied Physics, 2004, 95: 1246~1250.
    [66]谢腾峰,王英,王德军等,四甲基—四乙基钯卟啉的表面光伏特性研究[J].高等学校化学学报,1999,20(6):937~940.
    [67] Gatos,H. C., Lagowski,J. Surface photovoltage spectroscopy—a new approach to the study ofhigh-gap semiconductor surfaces[J]. Journal of Vacuum Science Technology, 1973 ,10 :130~135.
    [68] Yan X., He J., Evans D.G., et al. Preparation, characterization and photocatalytic activity of Si-dropand rare earth-droped TiO2from mesoporous precursors [J]. Applied Catalysis B: Envrionmental,2005, 55(4): 243~252.
    [69] Zhang,S.Y., Fang,C.X., Tian,Y.P., et al. Synthesis and characterization of hexagonal CuSenanotubesby templating againest trigonal Se nanotubes[J].Crystal Growth&Design, 2006,6(12):2809~2813.
    [70] Heyding,R.D., Murray R.M.. The crystal structures of Cu1.8Se,Cu3Se2,alpha-and gamma CuSe,CuSe2,and CuSeⅡ[J].Can.J.Chem.1976,54:841~848.
    [71] Lakshmi,M.;Bindu,K.;Bini,S.;et al. Reversible Cu2-xSe←→Cu3Se2 phase transformation incopper selenide thin films prepared by chemical bath deposition[J].Thin Solid Films, 2001, 386(1):127~132.
    [72]郭璇,不同形貌的纳米(亚微米)级YBO3:Eu的水热合成法制备及其发光性能研究,兰州大学,2006.
    [73]曹洪亮,金属硫族半导体纳米材料的液相控制合成及机理研究,上海交通大学, 2006.
    [74]廖鑫,杨峰,蒲明华等.纳米管的制备及其表面光电性质西南交通大学学报[J]. 2011, 1(46):127~131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700