基于铜纳米线模板的无机化合物的制备及其性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.硒化铜纳米晶体的尺寸介于分子团簇和块状晶粒之间,具有传导电子的媒介作用,不仅是良好的半导体材料,而且具有可见光吸收、光致发光、大的三阶非线性极化率和快的三阶非线性响应速率等光学特性,被广泛地应用于发光二极管、光催化剂和电化学电池及太阳能电池等方面。但是,金属硒化物纳米晶体并不像金属硫化物那样轻易制得,这主要是因为硒源远比硫源难于获得,并且高温高压等反应条件不易控制等原因造成的。本文通过一种新型溶剂热法,在80℃的乙二醇溶剂中通过一种简易的实验方案可以合成内径为50-120nm,管壁厚为60-100nm的均匀CuSe纳米管。具体过程是在溶剂中利用铜纳米线作为牺牲模板与合适的硒源进行反应。制得的产物具有良好的结晶性和分散性,且制得的硒化铜纳米管表现出优越的紫外可见光吸收性能。另外,在实验中就不同溶剂、不同硒源、反应温度以及碱性条件对于产物形貌的影响也进行了研究。适当的硒源和溶剂在CuSe纳米管的形成中担任了决定性的角色。并用X射线衍射仪(XRD)、透射电子显微镜(TEM)及扫描电镜(SEM)对产品进行了表征。
     2.由于CuO纳米线修饰传感器有较大的比表面积、较好的传输和催化性质等良好的性能,使其具备了较高的灵敏度、电流响应和稳定性。基于纳米氧化铜对葡萄糖具有催化性,选择合适形貌的CuO制作非酶传感器来检测葡萄糖溶液有其重要的意义。本文分别进行了金属铜纳米线、氢氧化铜纳米线、氧化铜纳米线的合成、葡萄糖传感器的制备及电化学性能测试;同时讨论了实验步骤操作与测定实验结果的关系。具体方法是采用水热法以铜纳米线为模板,过氧化钠为氧化剂对铜线侵蚀,氧化生成了海参状氢氧化铜纳米线,对氢氧化铜进行加热原位脱水得到海参状纳米氧化铜。讨论了改变反应条件、反应时间和加入表面活性剂来观察产物形貌的改变情况。对产物分别用X射线粉末衍射仪(XRD)、透射电子显微镜(TEM)和扫描电镜(SEM)进行了表征。利用海参状氧化铜修饰铜基片制备电极,并通过循环伏安曲线进一步探讨了其对葡萄糖溶液的催化氧化效果。
1. The size of copper selenide nanocrystals between molecular clusters and micro-grain fill with the role of conduction media of electrons. It is not only a good semiconductor materials, but also has optical properties in visible light absorption, photoluminescence, large third-order nonlinear polarizability and quick third-order nonlinear response rate and it has been widely used in light-emitting diodes, photocatalyst and electrochemical batteries and solar cells, and so on. However, the metal selenium compounds nanocrystalline is not as easily obtained as metal sulfide for the source of selenium is difficult to prepare than sulfur. Another causes is that the preparation of selenium compounds need high-pressure and high-temperature conditions. This paper mainly discusses a simple experiment which can synthesize uniform CuSe nanotubes of 50–120 nm in inner diameter and 60–100nm in thickness by a new solvothermal method with ethylene glycol at 80°C. The process is using Cu nanowires as sacrificial templates and choosing suitable selenium sources for the reaction. The production has a good crystallinity and dispersion, especially it showing the superior performance of UV-Vis absorption. In addition, the different solvents, different selenium sources, reaction temperature and alkaline conditions determining the morphology of product was also discussed. Suitable selenium sources and solvent played a crucial role in the formation of well-defined CuSe nanotubes. The productions were also characterized by XRD, TEM and SEM.
     2. The sensor modified by CuO nanowire has a greater surface area, better transport , catalytic properties and good performance, making it has high sensitivity, current response and stability. The nano-copper oxide having catalytic property to glucose, selecting the appropriate morphology of CuO as a non-enzyme sensor to detect glucose solution has an important significance. The main aim of this paper is to synthesize copper nanowires, cupric hydroxide nanowires and copper oxide nanowires. The preparation and application of glucose sensor was based on Cu substance. At the same time, it is also discussed the relationship of the steps of the experiment and the experimental results. Cu(OH)2 nanowires with sea-cucumber shape were fabricated by mixing Cu nanowires with Na2O2, then Na2O2 as the oxidant via hydrothermal method. Through further heat treatment, Cu(OH)2 to CuO nanowires without obvious morphological in-situ has been achieved. The morphology of production was discussed owing to the change of reaction conditions, reaction time and the mount of surfactant. The structure and morphologies of production were characterized by X-ray diffraction(XRD), transmiss electron microscopy(TEM) and scanning electron microscopy(SEM). The cyclic voltammograms and electro catalysis of glucose at the CuO nanowires with sea-cucumber modified Cu electrode was also further discussed.
引文
[1].Gleiter H. Materials with ultrafine grain sizes. Dislocations. Aussois France, 1984:457-466.
    [2].白春礼.纳米科技---现在与未来.成都:四川教育出版,2002
    [3].Harris P. Microtechnology vs nanotechnology. Occup Health Saf, 2010, 79(1): 36-7
    [4].曹茂盛,曹传宝,徐甲强,等.纳米材料学.哈尔滨:哈尔滨工程大学出社, 2002.
    [5].Dionysiou DD, Wiesner M. Environmental nanotechnology introduction. environmental engineering. Science, 2007, 24(1) :1-1
    [6].Xu JJ, Ao YH, Fu DG, et al. Synthesis of Bi2O3-TiO2 composite film with high-photocatalytic activity under sunlight irradiation. Applied Surface Science, 2008, 255(5): 2365-2369
    [7].Bai F; Wang DS; Huo ZY, et al. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angewandte Chemie Internationgal Edition, 2007, 46(35):6650-6653
    [8].Liu B, Zeng HC. Mesoscale organization of CuO nanoribbons: Formation of "dandelions". Journal Of The American Chenical Society, 2004, 126(26): 8124-8125
    [9].吴翔.纳米材料(连载三).江南航天科技,2002
    [10].施利毅.纳米科技基础.上海:华东理工大学出版社, 2005.
    [11].Kubo R, Kawabata A, Kobayshi S. Annual review of materials science, 1984,14:49-66.
    [12].张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [13].Chen CP, He L, Lai L, et al. Magnetic properties of undoped Cu2O fine powders with magnetic impurities and/or cation vacancies. Journal of Physics: Condensed Matter, 2009,21(14):25-29
    [14].Warnock J, Awschalom DD. Quantum Size Effects In Simple Colored Glass. Physical Review B, 1985, 32(8): 5529-5531
    [15].Philip Ball, Laura Garwin. Science at the atomic scale.Nature,1992,355:761-766.
    [16].樊世民,盖国胜.纳米颗粒的作用.材料报道, 2001,15(21):29-31
    [17].Zhang YL, Zhang H, Li XF, et al. Mn-doped ZnO nanonails and their magnetic properties. Nanotechnology, 2010,21(9):595-606
    [18].Chen IW, Wang XH. Sintering dense nanocrystalline ceramics withoutfinal-stage grain growth. NATURE, 2000,404(6774):168-171
    [19].Fujishima A, Honda K. Electrochemical Photolysis Of Water At A Semiconductor Electrode. Nature, 1972, 238(5358):73-
    [20].Hu XL, Li GS, Jimmy C. Yu. Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications. Langmuir, 2010,26(5):3031-3039
    [21].王卫华.若干贵金属及合金纳米材料的液相合成、结构表征与性质.合肥:中国科学技术大学,2006
    [22].Jehanathan N, Lebedev O, Gelard I, et al. Structure and defect characterization of multiferroic ReMnO(3) films and multilayers by TEM. Nanotechnology, 2010, 21(7):7570-7575
    [23].许宏飞,史利军,徐振鹏,等. SEM/EDS在案件微量物证鉴定方面的应用.兵器材料科学与工程, 2000,23(2):60-65.
    [24].张建中,杨传铮.晶体的射线衍射基础.南京:南京大学出版社,1992
    [25].Eid Cynthia, Brioude Arnaud, Salles Vincent, et al. Iron-based 1D nanostructures by electrospinning process. Nanotechnology, 2010, 21(12): 125701
    [26].Song YJ, Zheng MJ, Ma L, et al. Anisotropic Growth and Formation Mechanism Investigation of 1D ZnO Nanorods in Spin-Coating Sol-Gel Process. Journal Of Nanoscience And Nanotechnology, 2010,10(1):426-432
    [27].Pruneanu S, Olenic L, Tudoran LB, et al. Preparation of 1D nanostructures using biomolecules. Journal of Physics: Conference Series, 2009,182(1):12-14
    [28].Qin RS, Zhou BL. Size dependence of electrical resistivity 1D-layered nanostructures. Nanostructured Materials, 1996,7(7):741-
    [29].Xia YN, Yang PD, Sun YG, et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 2003,15(5):353-389
    [30].Cheng GS, Zhang LD, Zhu Y, et al. Large-scale synthesis of single crystalline gallium nitride nanowires. Applied Physics Letters, 1999,75(16):2455-2457
    [31].施利毅.纳米材料.上海:华东理工大学出版社,2007
    [32].Lee KH, Lee JY, Kwon YH, et al. Microstructural properties and formation mechanisms of GaN nanorods grown on Al2O3 (0001) substrates Journal Of Materials Research, 2009,24(8):2476-2482
    [33].Klein JD, Herrick RD, Palmer D, et al. Electrochemical Fabrication Of Cadmium Chalcogenide Microdiode Arrays. Chemistry Of Materials, 1993,5(7):902-904
    [34].Chakarvarti SK, Vetter J. Microfabrication of metal-semiconductorheterostructures and tubules using nuclear track filters. Journal Of Micromechanics And Microengineering, 1993,3(2):57-
    [35].Whitney TM, Jiang JS, Searson PC, et al. Fabrication And Magnetic-properties Of Arrays Of Metallic Nanowires. Science, 1993,261(5126):1316-1319
    [36].Sang-Geun Cho, Bongyoung Yoo, Ki Hyeon Kim, et al. Magnetic and microwave properties of NiFe nanowires embedded in anodized Aluminum Oxide (AAO) templates. Ieee Transactions on Magnetics, 2010,46(2):420-423
    [37].Cepak VM, Hulteen JC, Che GL, et al. Fabrication and characterization of concentric-tubular composite micro- and nanostructures using the templatesynthesis method. Journal Of Materials Research, 1998, 13(11): 3070-3080
    [38].Che GL, Lakshmi BB, Fisher ER, et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393(6683): 36-349
    [39].Lin WC, Wong SS, Huang PC, et al. Controlled growth of Co nanoparticle assembly on nanostructured template Al2O3/NiAl(100). Applied Physics Letters, 2006,89(15):153111
    [40].Liu ZG, Zu YG, Fu YJ, et al. Growth of the oxidized nickel nanoparticles on a DNA template in aqueous solution. Materials Letters, 2008,62(16):2315-2317
    [41].Sheikholeslami Z, Vossoughi M, Alemzadeh I. Fabrication of metal nanowires based on self assembly of tryptophan-capped gold nanoparticle onto DNA network template. International Journal Of Nanotechnology, 2009, 10(11): 1041-1049
    [42].Tanaka SI, Fritzsche W, Sako Y, et al. Synthesis of long-template DNA using enzymatic reaction for regular alignment of Au-nanoparticles. Chemistry Letters, 2006,35(11) :1290-1291
    [43].Kuzyk A, Laitinen KT, Torma P. DNA origami as a nanoscale template for protein assembly. Nanotechnology, 2009,20(23):235-305
    [44].Mertig M, Kirsch R, Pompe W. Biomolecular approach to nanotube fabrication.Applied Physics A-materials Science And Processing, 1998, 66: 723-727
    [45].Han FM, Meng GW, Zhao XL, et al. Building desired heterojunctions of semiconductor CdS nanowire and carbon nanotube via AAO template-based approach. Materials Letters, 2009,63(26):2249-2252
    [46].Hoa ND, Van Quy N, Song H, et al. Tin oxide nanotube structures synthesized on a template of single-walled carbon nanotubes. Journal Of Crystal Growth,2009,311(3):657-661
    [47].Du N, Zhang H, Chen BD, et al. Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery. Materials Research Bulletin, 2009,44(1):211-215
    [48].Ji LJ, Wang Z, Li Z, et al. Preparation of aligned titania nanowires with an aligned carbon nanotube composite template. Materials Letters, 2008,62(12-13) :1979-1982
    [49].Gates B, Wu YY, Yin YD, et al. Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. Journal Of The Americal Chemical Soctety, 2001,123(46):11500-11501
    [50].Song JH, Wu YY, Messer B, et al. Metal nanowire formation using Mo3Se3- as reducing and sacrificing templates. Journal Of The Americal Chemical Soctety, 2001,123(42):10397-10398
    [51].Zhang SY, Fang CX, Tian YP, et al. Synthesis and characterization of hexagonal CuSe nanotubes by templating against trigonal Se nanotubes. Crystal Growth And Design, 2006,6(12):2809-2813
    [52].Zhu CL, Chen CN, Hao LY, et al. In-situ preparation of 1D CuO nanostructures using Cu-2(OH)(2)CO3 nanoribbons as precursor for sacrifice-template via heat-treatment. Solid State Communications, 2004,130(10):681-686
    [53].Bai M, Li IL, Tang ZK, et al. Instability of 0.4 nm carbon nanotubes in a zeolite template under ultraviolet laser irradiation. Applied Physics Letters, 2005,86(9): 093108
    [54].Salavati-Niasari M. Template synthesis and characterization of cobalt(II) complex nanoparticles entrapped in the zeolite-Y. Journal Of Inclusion Phenomena And Macrocyclic Chemistry, 2009,65(3-4):317-327
    [55].Pan YC, Ju MH, Yao JF, et al. Preparation of uniform nano-sized zeolite A crystals in microstructured reactors using manipulated organic template-free synthesis solutions. Chem Commun (Camb), 2009,(46):7233-7235
    [56].Heath JR, Legoues FK. A liquid solution synthesis of single crystal germanium quantum wires. Chemical Physics Letters, 1993,208(3-4):263-268
    [57].Xie Y, Qian YT, Wang WZ, Zhang SY, et al. A Benzene-Thermal Synthetic Route to Nanocrystalline GaN. Science, 1996,272:1926-1927
    [58].Xi GC, Peng YY, Wan SM, et al. Lithium-assisted synthesis and characterization of crystalline 3C-SiC nanobelts. Journal Of Physical Chemistry B, 2004,108(52): 20102-20104
    [59].Liu ZP, Peng S, Xie Q, et al. Large-scale synthesis of ultralong Bi2S3nanoribbons via a solvothermal process. Advanced Mterials, 2003,15(11):936+
    [60].Zhang YJ, Wang NL, Gao SP, et al. A Simple Method To Synthesize Nanowires. chemistry of materials, 2002,10:3564-3568
    [61].Red'kin AN, Makovei ZI, Gruzintsev AN, et al. Elemental vapor-phase synthesis of nanostructured zinc oxide. Inorganic Materials, 2009, 45(11): 1246-1251
    [62].Jiang XC, Herricks T, Xia YN, et al. CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air. nano letters, 2002,10:1333-1338
    [63].彭英才,赵新为.气-液-固法在半导体纳米线生长中的应用.功能材料与器件学报,2008,14(5):864-870
    [64].Zhang NJ, Wang NL, Gao SP, et al. A Simple Method To Synthesize Nanowires. Chemistry Of Materials, 2002,14(8):3564-3568
    [65].Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998,279(5348):208-211
    [66].程国娥,王金敏.一维纳米结构的液相合成技术. 2005年无机化学化工学术交流会,2005:379-382.
    [67].Trentler TJ, Hickman KM, Goel SC, et al. Solution-Liquid-Solid Growth Of Crystalline III-V Semiconductors-Ananalogy To Vapor-Liquid-Solid rowth. Science, 1995,270(5243):1791-1794
    [68].Heitsch AT, Fanfair DD, Tuan HY, et al. Solution-liquid-solid (SLS) growth of silicon nanowires. Journal Of The American Chemical Society, 2008, 130(16): 5436+
    [69].吴旭峰,凌一鸣.电弧放电法制备SiC纳米丝的实验研究.真空科学与技术学报,2005,25(1):30-32
    [70].Yu DP, Lee CS, Bello I, et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature. Solid State Communications, 1998,105(6): 403-407
    [71].Zheng KH, Liu Z, Liu J, et al. Synthesis of high-T-C ferromagnetic Mn-doped ZnO nanorods by thermal evaporation. Chinese Physics B, 2010,19(2):026101
    [72].黄在银,柴春芳.直接氧化法制备准一维氧化物纳米材料的研究进展.材料导报,2006,20(3):52-55
    [73].熊宇杰.一维纳米结构的液相化学合成与同步组装.合肥:中国科技大学,2004
    [74].Zheng XW, Hu QT. Facile synthesis and phase control of copper chalcogenides with different morphologies. Applied Physics A-Materials Science And Processing, 2009, 94(4):805-812
    [75].Ni YH, Li H, Jin LA, et al. Synthesis of 1D Cu(OH)(2) Nanowires and Transition to 3D CuO Microstructures under Ultrasonic Irradiation and Their Electrochemical Property. Crystal Growth And Design, 2009, 9(9):3868-3873
    [76].张勇.微波纳米半导体及其高分子复合材料.中山:中山大学博士论,2003.
    [77].Haram SK, Santhanam KSV, Neumanspallart M, et al. Electroless Deposition On Copper Substrates And Characyerization Of Thin-Films Of Copper(I) Selenide. Materials Research Bulletin, 1992.27(10):1185-1191.
    [78].徐立强,钱逸泰.纳米材料化学制备的新技术、新方法研究.纳米材料与技术应用进展, 2005
    [79].Jiang Y, Wu Y, Mo X, et al. Elemental solvothermal reaction to produce ternary semiconductor CuInE2 (E = S, Se) nanorods. Inorganic Chemistry, 2000,39(14):2964+
    [80].LevyClement C, NeumannSpallart M, Haram S K, et al. Thin Solid Films, 1997, 302(1-2):12-16
    [81].Bhuse V M, Hankare P P, Garadkar K M, et al. Materials Chemistry And Physics, 2003, 80(1)82-88
    [82].Xie Y, Zheng XW, Jiang XC, et al. Sonochemical synthesis and mechanistic study of copper selenides Cu(2-x)Se, beta-CuSe, and Cu(3)Se(2). Inorg Chem, 2002,41(2):387-392
    [83].Liao PC, Chen CA, Chi JG, et al. Growth and structural characterization of well-aligned RuO2 nanorods on LiNbO3 (100) via MOCVD. Journal Of Alloys And Compounds, 2009480(1):100-103
    [84].Bayaz AA, Giani A, Khalfioui MA, et al. Growth parameters effect on the thermoelectric characteristics of Bi2Se3 thin films grown by MOCVD system using ditertiarybutylselenide as a precursor. Journal of Crystal Growth, 2003, 258(1-2) :135-140
    [85].Nair G, Bawendi MG. Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Physicl Review B, 2007,76(8):081304
    [86].Palchik O, Kerner R, Zhu Z, et al. Preparation of Cu2-xTe and HgTe by using microwave heating. Journal Of Solid State Chemistry, 2000,154(2): 530-534
    [87].Liu Y, Qian YT. Preparation of MnV2O6 nanoflakes via simple hydrothermal process. Journal Of Inorganic Materials, 2007,22: 1139-1141
    [88].刘兴芝,陈林,房大维,等.微波溶剂热法合成纳米晶Cu2SnSe4及其结构研究.无机化学学报, 2005,21(6):945_948
    [89].李斌.溶剂热及超声化学法合成硫族非氧化物纳米材料的研究.合肥:中国科学技术大学博士论文, 2000.
    [90].Chang Y, Lye ML, Zeng HC. Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires. Langmuir, 2005,21:3746-3748
    [91].Zhang XJ, Cui ZL. Synthesis of Cu nanowires via solventhermal reduction in reverse microemulsion system. Journal of Physics: Conference Series, 2009, 152: 012022
    [92].Deroubaix G, Marcus P. X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides. Surface and Interface Analysis, 1992: 18(1), 39-46
    [93].Gates B, Wu YY, Yin YD, et al. Single-crystalline nanowires of Ag(2)Se can be synthesized by templating against nanowires of trigonal Se. J Am Chem Soc, 2001, 123(46):11500-11501.
    [94].Wen XG, Zhang WX, Yang SH. Synthesis of Cu(OH)(2) and CuO nanoribbon arrays on a copper surface. Langmuir, 2003, 19(14): 5898-5903
    [95].Yin YD, Rioux RM, Erdonmez CK ,et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science, 2004: 304( 5671) , 711-714.
    [96].Wang S, Yang S. Growth of crystalline Cu2S nanowire arrays on copper surface: Effect of copper surface structure, reagent gas composition, and reaction temperature. Chemistry of Materials, 2001,13(12):4794-9.
    [97].洪伟良,赵凤起,刘剑洪,等.制备纳米氧化铜粉体的新方法.火炸药学报,2000,3:7-8
    [98].张娟,吴昊,向群,等.氧化铜纳米棒的水热合成及其气敏性能研究.电子元件与材料,2009,5:27-29
    [99].Singh DP, Srivastava ON. Synthesis and Optical Properties of Different CuO (Ellipsoid, Ribbon and Sheet Like) Nanostructures. Journal Of Nanoscience And Nanotechnology, 2009,9(9): 5345-5350
    [100].Son DI, You CH, Kim TW. Structural, optical, and electronic properties of colloidal CuO nanoparticles formed by using a colloid-thermal synthesis process. Applied Surface Science, 2009,255(21):8794-8797
    [101].贾殿赠,俞建群,夏熙.一步室温固相化学反应法合成CuO纳米粉体.科学通报,1998,43(2): 172-174
    [102].李东升,王文亮,王尧宇,等.固相合成前体法制备纳米CuO粉体.功能材料,2003,34(6):723—724
    [103].张汝冰,刘宏英.纳米材料制备研究(Ⅱ), 2000,23(1):59-61
    [104].Alammar T, Birkner A, Mudring AV. Ultrasound-Assisted Synthesis of CuONanorods in a Neat Room-Temperature Ionic Liquid. European Journal Of Inorganic Chemistry, 2009,19:2765-2768
    [105].Jiang ZA, Chen JT, Wang J, et al. CuO Nanosheets Synthesized by Hydrothermal Process. Chinese Physics Letters, 2009,26(8):086202
    [106].Carnes CL,Stipp J,Klabunde KJ.Synthesis characterization and adsorption studies of nanocrystalline copper oxide and nickel oxide. Langmuir, 2002, 18:1352.
    [107].Yin YD, Li CF, Hou HG, et al. One-Dimensional CuO Nanorods: Preparation by Microemulsion Homogeneous Precipitation and Structure Characte- rization. Chinese Journal Of Inorganic Chemistry, 2010, 26(2): 293-299
    [108].Xia JX, Li HM, Luo ZJ, et al. Microwave-assisted synthesis of flower-like and leaf-like CuO nanostructures via room-temperature ionic liquids. Journal Of Physics And Chemistry Of Solids, 2009, 70(11):1461-1464
    [109].罗元香,汪信,陆路德.纳米氧化铜的制备及应用研究进展.上海化工, 2003,28(2):24-28
    [110].朱俊武,汪信.针状纳米CuO的制备及其催化性能研究.材料科学与工程学报,2004,22(3)∶333-336.
    [111].Shao YF. Anomalous ferromagnetic behavior of CuO nanorods synthesized via hydrothermal method. Solid state communications, 2007,141:431-435.
    [112].Dar MA, Shin HS. Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Applied Surface Science, 2008,254: 7477-7481.
    [113].Zhuang ZJ, Su XD, Yuan HG. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. The Royal Society of Chemistry, 2008, 133, 126–132
    [114].Sysoev V, Kisin V, Frietsch M, et al. The characterization of nanostructured copper-doped tin oxide films for gas sensor microarrays. Proceedings of the IEEE Sensors, 2004,1-3:130-133
    [115].董绍俊,车广礼,谢远武.化学修饰电极.科学出版社,2003
    [116].Song MJ, Hwang SW, Whang DK. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta, 2010,80(5): 1648-1652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700