点带石斑鱼组织中一氧化氮合成酶活性及免疫反应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1、研究点带石斑鱼不同组织器官中一氧化氮(NO)含量和不同类型一氧化氮合酶(NOS)活性,采用Griess试剂法测定NO含量,采用化学比浊法测定NOS的活性。研究结果表明:诱导型一氧化氮合酶(iNOS)在头肾组织中活性最高,依次为肌肉、肝脏、脾脏、肠、胃、胰脏、眼睛、脑、心脏、鳃、中肾。结构型一氧化氮合酶(cNOS)在脑组织中活性最高,依次为眼睛、肠、肝脏、胃、肌肉、头肾、鳃、胰脏、中肾、心脏、脾脏。NO含量在脾脏中最高,依次为肝脏、头肾、中肾、心脏、胰脏、肠、脑、眼睛、胃、鳃、肌肉、血清。
     2、通过使用免疫组织化学SP(链霉菌抗生物素蛋白-过氧化物酶连结法)法以及NADPH-d(还原型尼克酰胺腺嘌呤二核苷酸脱氢酶)酶组织化学染色法测定神经型一氧化氮合成酶(nNOS)在点带石斑鱼各组织中的分布及定位。酶免疫组织化学定位结果表明,nNOS阳性结果分布在间脑中的神经元,大脑和中脑的神经元和神经纤维中,小脑的颗粒细胞、阳性纤维和普肯野细胞;视网膜的视锥视杆细胞层,外核层,外网层、内核层、内网层、节细胞层和视神经纤维层;中肾组织的近曲小管和远曲小管;头肾组织的前肾间组织和网状细胞;心脏组织的神经纤维和心肌纤维;脾脏的血窦中的红细胞和脾索的网状细胞;肠组织的纹状缘、神经元和基膜;肝脏中的肝细胞和中央静脉壁;肌肉组织中的肌纤维处;鳃丝的上皮细胞,沿动脉血管延伸的神经纤维和红细胞。NADPH-d酶组织化学染色结果表明,NOS分布在间脑神经元、大脑和中脑的神经元和神经纤维、小脑神经元和颗粒细胞、神经纤维和普肯野细胞;视网膜中视锥视杆细胞层,外核层,外网层,内核层、内网层、节细胞层和视神经纤维层;中肾的近曲小管、远曲小管,神经纤维和血管壁中;头肾的前肾间组织、动脉血管的神经纤维、神经元和网状细胞;心脏的心肌纤维和神经纤维;脾脏的红细胞和网状细胞中;肠组织中的纹状缘、神经元和肌间神经纤维;肝脏的肝细胞、中央静脉、神经纤维,枯否氏细胞,小叶间动脉,小叶间静脉和小叶间胆管;肌肉组织的肌纤维处;鳃丝的上皮细胞,沿动脉血管延伸的神经纤维、红细胞、泌氯细胞和柱细胞。利用Western Blot技术对各组织中的nNOS蛋白分子量进行测定,结果表明,脑,眼睛,头肾、中肾、心脏、鳃和胃中有三条带,对应分r量分别为130kD、120 kD和80kD,而在肠、脾脏、肝脏、胰脏和肌肉中有两条带,对应分子量120kD和80kD。
     3、研究刺激物对点带石斑鱼血清和头肾NO含量和iNOS活性的影响,刺激物包括:脂多糖(LPS)、酵母多糖(zymosan)和嗜水气单胞菌。体外培养头肾巨噬细胞,利用LPS刺激头肾巨噬细胞,检测NO含量和iNOS活性,结果表明,LPS能诱导巨噬细胞iNOS的表达,催化产生大量的NO,L-单甲基-精氨酸(L-NMMA)和L-硝基-精氨酸甲脂(L-NAME)能抑制NO的产生,iNOS最大活性出现在刺激后的12h,NO的最大产量出现在刺激后的24h。利用zymosan和嗜水气单胞菌对点带石斑鱼进行腹腔注射,检测头肾和血清中的NO含量和iNOS活性,结果表明,iNOS最大活性同样出现在刺激后的12h,NO的最大产量也出现在刺激后的24h。这证明体内和体外的iNOS活性增长和NO含量的增加具有同样的趋向性,体内和体外的iNOS活性增长和NO含量的增加具有同样的时效性。
     4、利用免疫组化sp法以及NADPH-d酶组织化学染色法测定诱导型一氧化合酶(iNOS)在点带石斑鱼各组织中的分布及定位。酶免疫组织化学定位结果表明,iNOS主要存在于脑的阳性神经元、神经纤维和小脑浦肯野细胞中;视网膜的视锥视杆细胞层,外网层,内核层、内网层、竹细胞层和视神经纤维层中;中肾组织中近曲小管、远曲小管和巨噬细胞中;头肾的前肾间组织、巨噬细胞、中性粒细胞和淋巴细胞中;心脏中心肌纤维;脾脏的巨噬细胞、中性粒细胞和淋巴细胞中;肠中纹状缘和巨噬细胞;肌肉组织中肌纤维处;肝脏的肝细胞和枯否氏细胞中;鳃的神经纤维、上皮细胞和血细胞中。NADPH-d酶组织化学染色结果表明,NOS分布在脑的神经元、神经纤维和小脑浦肯野细胞;视网膜的视锥视杆细胞层、外核层、外网层、内核层、内网层、节细胞层和视神经纤维层;中肾的近曲小管、远曲小管和巨噬细胞中:头肾的前肾间组织、淋巴细胞、巨噬细胞和中性粒细胞;心脏中心肌纤维处;脾脏中巨噬细胞、中性粒细胞和淋巴细胞中;肠组织中纹状缘和巨噬细胞;肌肉中肌纤维处;肝脏的肝细胞和枯否氏细胞中;鳃组织中神经纤维,上皮细胞和泌氯细胞中。利用Western Blot技术对各组织中的iNOS蛋白分子量进行测定,试验结果显示,iNOS在脑、眼睛、肌肉、鳃、头肾、胃、肝脏、脾脏、中肾、肠中有120 kD和80 kD两条带,在心脏只有一条带80kD,而在胰脏中没有带出现。
1. To study nitric oxide production and nitric oxide synthase activity in the organizations of Epinephelus malabaricus. Griess Reagent was used to determinate the nitric oxide (NO) production, and the method of chemical colorimetry was used to measure the nitric oxide synthase (NOS) activity. Inducible NOS (iNOS) activity was highest in the head-kidney, followed by the muscle, liver, spleen, intestine, stomach, pancreas, eye, brain, heart, sill and kidney. The constitutive NOS (cNOS) activity was highest in the brain, followed by the eye, intestine, liver, stomach, muscle, head-kidney, sill, pancreas, kidney, heart and spleen. The spleen was found to have the highest level of NO production, followed by the liver, head-kidney, kidney, heart, pancreas, intestine, brain, eye, stomach, sill, muscle and serum.
     2. Immunohistochemical localization SP (streptavidin-perosidase) method and NADPH-diaphorase (nicotinamide adenine dinucleotide hydrogen phosphate-diapho-rase) staining were used to study distribution and localization of neuronal NOS (nNOS) in the organizations of Epinephelus malabaricus. The results of enzyme immunohistochemical localization showed that the positive results of nNOS were located in neurons of the diencephalons. in neurons and nerve fibers of brain and mesencephalon. in granular cells, nerve fibers purkinje cells of the cerebellum; in the retina, layer of cones and rods, outer nuclear layer, outer plexiform layer, inner nuclear layer, inner plexiform layer, layer of ganglion cell and layer of optic nerve fibers; in the kidney, proximal convoluted tubule and distal convoluted tubule; in the head kidney, anterior interrenal tissues and reticular cells; in the heart, nerve fibres and myocardial fibers; in the spleen, red cells of splenic sinusoids and the reticular cells of splenic cord; in the intestine, striated border, neurons and basement membrane; in the liver, liver cells and central vein; muscle fibres of the muscle; in the gill, epithelial cells of the filament, nerve fibers run along vein blood and red cells. The results of NADPH-d histochemical staining showed that NOS were distributed in neurons of the diencephalons, neurons and nerve fibers of brain and mesencephalon, granular cells, nerve fibers purkinje cells of the cerebellum; in the retina. layer of cones and rods, outer nuclear layer, outer plexiform layer, inner nuclear layer, inner plexiform layer, layer of ganglion cells and layer of optic nerve fibers; in the kidney, proximal convoluted tubules, distal convoluted tubules, nerve fibres and vessel wall; in the head kidney, anterior interrenal tissues, nerve fibers of arteries, neurons and reticular cells; in the heart, nerve fibers and myocardial fibers; the red cells and the reticular cells of the spleen; in the intestine, striated border, neurons and myenteric nerve fibers; in the liver, liver cells, nerve fibers, kupffer cells, interlobular artery, interlobular vein and interlobular bile duct; muscle fibres of the muscle; in the gill, epithelial cells of the filament, nerve fibers run along vein blood, chloride cells and red cells. Western Blot was used to analysis protein molecular weight of nNOS in organizations, the results show that there were three belts in the brain, eye, head kidney, kidney, heart, gill and stomach, respectively, corresponding molecular weight were 30 kD,120 kD and 80 kD. However, there were two belts in the intestine, spleen, liver, pancreas and muscle, respectively, corresponding molecular weight were 120 kD and 80 kD.
     3. To study the effect of irritants about nitric oxide production and nitric oxide synthase activity in the serum and head kidney of Epinephelabaricus. Irritants include:lipopolysaccharide (LPS), zymosan and Aeromonas hydrophila. The macrophages of head kidney were cultured in vitro, to study NO production and iNOS activity, the macrophages of head kidney were stimulated by LPS, the results show that iNOS of macrophages could be induced by LPS, a large amounts of NO could be catalyzed by iNOS. however, NG-minomethyl-L-arginine (L-NMMA) and L-NG-nitroarginine methylester (L-NAME) could inhibit the production of NO. The most of iNOS activity appeared at 12 hour after stimulated, the most of NO production appeared at 24 hour after stimulated. To study NO production and iNOS activity in the serum and head kidney, zymosan and Aeromonas hydrophila were injected in abdominal cavity of Epinephelus malabaricus, the results show that the most of iNOS activity also appeared at 12 hour after stimulated, the most of NO production also appeared at 24 hour after stimulated. The study proved that growth of iNOS activity and increase of NO production had the same tendency in vivo and in vitro, growth of iNOS activity and increase of NO production had the same timeliness in vivo and in vitro.
     4. Immunohistochemical localization SP method and NADPH-diaphorase staining were used to study distribution and localization of inducible NOS (iNOS) in the organizations of Epinephelus malabaricus. The results of enzyme immunohistochemical localization showed that iNOS were distributed in neurons and nerve fibers of the brain, purkinje cells of the cerebellum; in the retina, layer of cones and rods, outer plexiform layer, inner nuclear layer, inner plexiform layer, layer of ganglion cells and layer of optic nerve fibers; in the kidney, proximal tubules, distal convoluted tubules and macrophages; in the head kidney, anterior interrenal tissues, macrophages and neutrophils; myocardial fiber of the heart; in the spleen, the macrophages, neutrophils and lymphocytes; in the intestine, the striated border and macrophages; muscle fibres of the muscle; in the liver, liver cells and kupffer cells; in the gill, nerve fibers, epithelial cells and red cells. The results of NADPH-d histochemical staining showed that NOS were distributed in neurons and nerve fibers of the brain, purkinje cells of the cerebellum; in the retina, NOS were distributed in the cone and rod layer, outer nuclear layer, outer plexiform layer, inner nuclear layer, the network layer, ganglion cell layer and optic nerve fiber layer; in the kidney, the proximal tubules, distal convoluted tubules and macrophages; in the head kidney, anterior interrenal tissues, macrophages and neutrophils; myocardial fiber of the heart; in the spleen, macrophages. neutrophils and lymphocytes; striated border and macrophages of the intestine; in muscle fibres of muscle; liver cells and kupffer cells of the liver; in the gill, nerve fibers, epithelial cells and chloride cells. Western Blot was used to determine protein molecular weight of iNOS in organizations, the results show that there were two belts in the brain, eye, muscle, gill, head kidney, stomach, liver, spleen, kidney and intestine, respectively,120 kD and 80 kD. There was one belt in the heart,80 kD. however, there was no belt appeared in the pancreas.
引文
[1]白杰.李彦东.一氧化氮生物学特性研究进展.中国商界.2009.(174):154-155
    [2]蔡文琴.李海标.发育神经生物学.北京:科学出版社,1999,315-316
    [3]曹伟标.朱元珏.罗慰慈等.内源性一氧化氮对犬急性缺氧性肺动脉高压的影响.中华核和呼吸杂志.1994.17(3):148-151
    [4]陈玲.朱东亚.一氧化氮合酶及药物设计.药学进展.1996.20(2):69-73
    [5]陈小网.张家兴.方志是.一氧化氮合酶阳性神经元在鱼脑的分布.浙江帅范大学学报(自然科学版).2002.25(2):163-165
    [6]杜少辉.黄彬.陈东风等.牛珀至宝微丸对内毒索休克大鼠脑诱导型一氧化氮合酶表达的影响.中国中西医结合急救杂志.2004.11(2):77-79
    [7]高博.尹桂山.神经系统中的一氧化氮.生物化学与生物物理展.1999.26(1):31-32
    [8]郭建.周开亚.陈泳宏.应激大鼠脾脏内诱导型一氧化氮合酶活性变化及其意义术.应用与环境生物学报.2005.11(4):474-476
    [9]郭玫.陈广文.翟心慧.牛蛙视网膜诱导型一氧化氮合酶免疫组化定位.动物学杂志.2002.37(1):6-8
    [10]韩太真.吴馥梅.学习与记忆的神经生物学,北京:北京医科大学、中国协和医科大学联合出版社.1998.206-322
    [11]韩一平.刘忠令.张世明.脂多糖对大鼠血清及内脏组织一氧化氮产物水平的影响.中国病理生理杂志.1997.13(3):274-277
    [12]侯敢.黄迪南.祝其锋等.香菇多糖对巨噬细胞一氧化氮合酶活性和还原型谷胱甘肽的影响.中国老年学杂志.2002.22(5):392-397
    [13]胡尚嘉.李丽晶.胡春林. 一氧化氮的生理作用.吉林医学院报.1998.18(3):82-84
    [14]火村英.周国勤.杜宣.酵母多糖的提取及其对鱼类非特异性免疫功能的影响.生物技术.2004.14(3):45-47
    [15]姜国建.于仁诚.王云峰等.中国明对虾(Fenneropenaeus chinensis)血细胞中一氧化氮合成酶的鉴定及其在白斑综合症病感染过程中的变化.海洋与沼泽,2004.35(4):342-350
    [16]金惠铭.卢建.殷莲华.细胞分子病理生理学.郑州:郑州大学出版社.2002:225-235
    [17]柯开富.包仕尧.一氧化氮在缺血性脑损伤中的作用.国外医学脑血管疾病分册.2008.8(2):82-85
    [18]黎庶.汪正清.LPS诱导巨噬细胞凋亡的研究.中华微生物学和免疫学杂志.2003.23(7):540-543
    [19]李邦杰.王丽景.刘建设.一氧化氮在抗寄生虫感染过程中的作用.河南畜牧兽医.2007(6):20-21
    [20]李凡.石艳春.官显智等.啤酒酵母多糖对小鼠免疫细胞功能的影响.白求恩医科大学学报.1998.2(4):124-126
    [21]龙中奇.一氧化氮在中枢神经系统中的作用.四川生理科学杂志.1998.20(1):12-14
    [22]潘玲梅.石放雄.曹文等.一氧化氮信号通路关键酶在猪肌肉系统中的定位.南京农业大学学报.2010,33(2):79-82
    [23]邱德全.何建国.钟英长等.嗜水气单胞菌的致病性和免疫性研究.中山大学学报论丛.1996.(增刊):98-106
    [24]邱建华,尹逊河,王树迎.兔脑NOS阳性神经元的总体分布和形态、结构的研究.畜牧兽医学报,2005,36(11):1159-1162
    [25]沈伟哉,郭国庆,邢旭光等.大鼠脑干神经元型一氧化氮合酶免疫阳性神经元的分布.解剖学研究,2002,24(2):138-140
    [26]盛雨辰,夏玉叶,闵旸.羟基红花黄素A对局灶性脑缺血后大鼠脑组织诱导型一氧化氮合酶的影响.中国药理学报,2006,22(9):1134-1137
    [27]孙虎山,王宜艳,王晓安等.栉孔扇贝(Chlamysfarreri)血淋巴中一氧化氮和一氧化氮合酶的研究.海洋与湖沼,2005,34(7):36-56
    [28]谭湘陵,陈曹逸,顾晓松.大鼠坐骨神经损伤后神经与肌肉中一氧化氮合酶基因的表达,临床神经病学杂志,2003,16(1):12-15
    [29]王广军,谢骏,余德光.副溶血弧菌对斜带石斑鱼血清中一氧化氮合酶活力的影响.海洋渔业,2005,27(1):60-63
    [30]王广军,谢骏,余德光等.副溶血弧菌对九孔鲍血清中一氧化氮及一氧化氮合酶活力的影响.上海水产大学学报,2005,14(3):238-241
    [31]王广军,谢骏,余德光等.杂色鲍血细胞中一氧化氮合酶活性的鉴别.海洋水产研究,2007,28(16):34-44
    [32]王宜艳,孙虎山,王晓安.栉孔扇贝鳃、唇瓣和口唇一氧化氮合酶活性.海洋湖沼通报,2007,(3):63-68
    [33]王义华,徐梅珍,江萍等.啤酒酵母多糖的提纯、化学组成及抗氧化性质鉴定.微生物学通报,2003,30(4):51-54
    [34]王逸民.一氧化氮的生物医学.临床检验杂志,1998,16(1):60-62
    [35]王勇军,王长法,张士璀.水产动物中一氧化氮合酶的研究概况.海洋水产研究,2003,24(2):88-93
    [36]谢兴国,蔡文琴,张吉强等.NOSt免疫阳性细胞在猕猴中枢神经系统内的分布.第三军医大学学报,2001,23:1078-1080
    [37]徐军发,侯敢,黄迪南等.酵母多糖对小鼠腹腔巨噬细胞产生一氧化氮和白细胞介索-1的影响.中国生化药物杂志,2002,23(2):67-68
    [38]杨卫忠,陈春美,王春华等.一氧化氮和一氧化氮合酶在大鼠局灶性脑缺血中的表达特点.中国神经精神疾病杂志,2007,33(6):335-339
    [39]张洁,周彩存,栗波等.一氧化氮在巨噬细胞的细胞毒效应中的作用.细胞与分子免疫学杂志(Chin J Cell Mol Immunol).2003.19(6):604-605
    [40]张文中,崔世昌,王景泉等.重型肝炎肝组织中诱导型一氧化氮合酶的分布.中华传染病杂志,2005,23(1):38-39
    [41]张永安,孙宝剑,聂晶.鱼类免疫组织和细胞的研究概况.水生生物学报,2000,24(6):648-654
    [42]赵慧卿.一氧化氮合酶的作用机制《生命的化学》,1998,18(1):22-24
    [43]赵佐庆,朱文侠,张志培.犬小肠缺血再灌注后NO和SOD的改变基因的表达.第四军医大学学报,2003,24(18):1700-1703
    [44]朱宏友,邓岳松.水温变化对凡纳滨对虾溶菌活力、一氧化氮合酶活性的影响.内陆水产,2005,11:39-40
    [45]朱宏友.余德光.王广军等.富溶血弧菌.脂多糖和嗜酸小球菌对凡纳滨对虾血清一氧化氮合酶的影响.热带海洋学报.2006.25(1):27-32
    [46]Ando H. Shim Q. Kusakabe T, et al. Iocalizattion of mRNAs encoding alpha and beta subunits of soluble guanylyl cyclase in the brain of rainbow trout:comparison with the distribution of neuronal nitric oxide synthase. Brain Res.2004,101:313-329
    [47]Balligand J L. Kelly R A. Marsden P A. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA.1993.90:347-351
    [48]Balligand J L. Ungureanu-Longrois D. Simmons W W. et al. Cytokine-inducible ni trie oxide synthasc(iNOS) expression in cardiac myocytes:characterizati on and regulation of iNOS expression and detecti on of iNOS acti-vity in single cardiac myocyte in vitro. J Biol Chem.1994.269(44):27580-27588
    [49]Belvisi M G. Miura M. (Endogenous vasoactlve intestinal pepude and nitric oxide modulate cholinecgic neuroeransmswn in guinea-pig trachea. Eur J Pharmacol.1993.231:97-102
    [50]Bredt D S. Hwang P M. Snyder S H. Localization f nitric oxide synthase indicating a neural role for nitric oxide. Nature.1990.347:768-770
    [51]Bredt D S. Snyder S H. Isolation of nitric oxide synthase. a calmodulin-requiring enzyme. Proc. Nat. Acad. Sci. USA.1990.87:682-685
    [52]Bredl D S. Isolation of nitric oxide synthetase. Nature.1991.351:714-718
    [53]Bredt D S. Snyder S H. Isolation of nitric oxide synthase. a calmodulin-requlringenlne. Proc Natl Acad Sci USA.1990.871:682-685
    [54]Bruning G. Katzbach R. Mayer B. Histochemical and immunocylochemical localization of nitric oxid e synthase in the CNS of the goldfish. Carassius auratus.J. Comp. Neurol.1995.358:353-382
    [551 Campos-Perez J J. Laing K J. Ellis A E, et al. The role of inducible nitric oxide synthase and nitric oxide in the immune system of rainbow trout. Developmental and Comparative Immunology.1997.21 (2):173-173(1)
    [56]Carthwaite J. Glutamate. nitric oxide and cell-cell signalling in the nervous system. Trend Neurosci. 1991.14(2):60-67
    [57]Chakravortty D. Hensel M. Inducible nitric oxide synthase and control of intracellular bacterial path-ogens. Microbes and Infection.2003.(5):621-627
    [58]Cho H J. Xie Q W. Calaycay J. et al. Calmodulin is a subunit of nitric oxide synthase from macr-ophages..1 Exp Med.1992.176:599-604
    [59]Comwell T L. Arnold E. Boerth N J. et al. Inhibition of smooth muscle cell growth by nitric oxiede and actuation of cAMP-dependent protein kinase by cGMP. Am.J Physiol.1994.267:1405-1413
    [160]Corg U C. Hassid A. Mechanism of nitrosothiol-induced antimitogenesis inaortic smooth muscle cells. Eur J Pharmacol.1993.137:243-249
    [61]Crowell J A. Steele V E. Sigman C C. et al. Is Inducible Nitric Oxide Synthase a Target for Chemoprevention. Mol Cancer Ther.2003.2(8):815-823
    [62]Cunha F Q. Moss D W. Leal L M et al. Induction of macrophage parasiticidal activity by staphylococcus aureus and exotoxins through the nitric oxide synthesis pathway. Immunology.1993.78(4):563-567
    [63]David L. Dennis J S. Syun-Ru Y. et al. Heme Distortion Modulated by Ligand-Protein Interactions n Ind-ucible Nitric-oxide Synthase. Biol Chem.2004,279(25):26489-26499
    [64]Dennis J S. Hearn.1 C. Kwon. N S. et al. Purification and characterization of the cytokine-induced ma-crophage nitric oxide synthase:An FAD-and FMN-containing flavoprotein. Proc. Natl. Acad. Sci..199 1.88:773-7777
    [65]Dugas B. Mossalayi M D. Damais C. Nitric oxide production by human monocytes:evidence for a role of CD23. Immunol Today.1995.16:574-580
    [66]Duvic B. Soderhall K.. Purification and characterization of β-1.3-gluean binding protein membrane receptor from blood cells of the crayfish Pacifastacus leniusculus. EurJ Biochem.1992.207:223-228
    [67]Eiscnstein I K. Huang D. Meissler J J. et al. Maerophage nitric oxide mediates immunosuppression in infectious inflammation. Immunobiology.1994.191:411-417
    [681 Evans D H. Rose R E. Roeser J M. et al. NaCI transport across the opercular epithelium of Fundulus heteroclitus is inhibited by an endothelin to NO. superoxide and prostanoid signaling. Am. J. PhysioL Regul. Integr. Comp. Plnsiol..2004.286:560-568
    [69]Franchini A. Conte A. Nitric oxide:An ancestral immunocyte effector molecule. Adv. Neuroimmunol. 1995.5:463-478
    [70]Fritsche R. Schwerte J. Pelster B. Nitric oxide and vascular reactivity in developing zebra fish. Daniorerlo. Am.J. Physiol. Regul. Integr. Comp.2000.279:200-207
    [71]Furchgott R F. Zawadzki J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature.1980.288:373-376
    [72]Garcia X. Stein F. Nitric oxide. Semin Pediatr Infect Dis.2006.23(8):55-57
    [73]Garthwaite J. Charles S L. Chess-Willams R. Endothelium derived relaxing factor release on aetivati o-n of NMDA receptors suggests roles as intercellular messenger in the brain. Nature.1988.336(6l97):385-388
    [74]GiraldeZ-PercZ R M. Giaytan S P. TORRES B. et al. Co-localization of nitric oxide synthase and c-holine acetyluansferase in the brain of the goldfish (Carassius auratus).J Chemical Neuroanat.2009:37(1) 1-17
    [75]Gregory B. Fhomas E./hang H Y. et al. Nitric oxide production by coelomoeytes of Aste-rias forb esi. Developmental and Comparative lmmunology.2001.25:1-10
    [76]Gustafsson I.E. I.cone A M. Persson M G. et al. Biochemical and Biophysical Research Communities. 1991.181:852-857181:852-857
    [77]Hibbs.1 B. Taintor R R. Vavarin Z. et al. Nitric oxide:A cytototic activated macrophagc effector molecule. Biochcm Biophys Res Comm.1998.157:87-94
    [78]Hui H. Pavel M Roman L J. et al. N -nitroarginine-containing dipeptide amides. Potent and highlv selective inhibitor of neuronal nitric oxide synihase.J Med Chem.1999.42(16):3147-3153
    [79]Huber A. Saur D. Kurjak M. et al. Characterization and splice variants of neuronal nitric oxide synathase in rat small intestine. Am J Physiol.1998.275(5):1146-1151
    [80]Jadhao A G. Malz R. Localization of the neuronal form of nitric oxide synthase (bNOS) in the dienccphalon and pituitary gland of the cattish. Synodontis multipunctatus:an immunocytochemical study. General and Comparative Endocrinology.2003 132:278-283
    [81]Jennings B L. Broughton B R. Donald J A. Nitric oxide control of the dorsal aorta and the intestinal vein of the Australian short-tinned eel Anguillci australis. J. Exp. Biol..2004.207:1295-1303
    [82]Jimenez A. Esleban F J. Sanchez-Lopez A M. Immunohislochemical localisation of neuronal nitric oxide synthase in the rainbow trout kidney. Journal of Chemical Neuroanatomy.2001.21:289-294
    [83]Kelly A II. Keith P C. Justin C H. et al. Neuronal nitric oxide synthase in the gill of the killifish. Fimdulus heleroclilus. Comparative Biochcmistn and Physiology.2006.144:510-519
    [84]Knowles R G. Skinner R I). Powell R M. et al. Formation of nitric oxide from l.-arginine in the central nervous system:A transduction mechenism for stimulation of the solube guanglate eyelase. Proc Natl Acad Sci USA.1989.86:5195-5200
    [85]Kohji 1. Stuehr D J. Atkinson R N. et al. Synthesis and evaluation of new sulfur-containing L-arginine-derived inhibitors of nitric oxide synthase.J Med Chem.l999.42(10):1842-1848
    [86]Kroncke K D. Fehsel K. Kold-Bachofen V. Inducible nitric oxide synthase in human diseases, din Lxp Immunol.1998.113:147-156
    [87]Laing K J. Grabowski P S. Belosevic M. et al. A partial sequence for nitric oxide synthase from a goldfish Carassius auratus macrophagecell line. Immunology and Cell Biology.1996.74:374-379
    [88]Laing K J. Hardie L J. Aartsen W. et al. Expression of an inducible nitric oxide synthase gene in rainbow trout Oncorhynchus mykiss. Developmental and Compara-live lmmunology.1999.23:71-85
    [89]Levy R M. Prince J M. Billiar T R. Nitric oxide:a clinical primer. Crit Care Med.2005.33:492-495
    [90]Li Z S. Furness J B. NOS in the enteric nervous system of the rainbow trout. Satmo gairclneri. Ar-ch. Ilistol. Cytol..1993.56:185-193
    [91]Lorsbach R B. Murphy W J. Lowen stein C J. et al. Expression of the nitric oxide synthase gene in mouse macrophage activated for tumor cell killing. Moleculur basis for the synergy between interferonr and lipopolysaecharide.J Biol Chem.1993.268:1908-1913
    [92]Luigi V. Tiziana G. Localization of nitric oxide synthase in the goldfish retina. Brain Research.1996.743:353-3 56
    [93]Marco V. Alessandro P. Alina B. et al. Regional distribution of nitric oxide synthase and NADPH-d iaphorase activities in the central nervous system of teleosts. Brain Research.2001.901:202-207
    [94]Mizukawa K. Vincent S R. McGeer P L. et al. Distribution of reduced nicotinamide adenine dinucleotide phosphat ediaphorase positive cells and fibers in the cat central nervous system. Camp Neurol.1989.279:281-311
    [95]Moncada S. Palmer R M J. Higgs E A. Nitric oxide:physiology. pathophysiology and pharmacology. Phamacol Rev.1991.43:109-142
    [96]Morris B J. Stimulation of immediate early gene expression in striatal neurons by nitric oxide.J Biol Chem.1995.270:24740-24744
    [97]Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J..1992.6:3051-3064
    [98]Neelima D P. Bechan L. Nitric oxide:An autocrine regulator of Leydig cell steroidogenesis in the Asian catfish. Clarias batrachus. General and comparative Endocrinology.2008(158):161-167
    [99]Neumann N F. Belosovic M. Deactivation of primed respiratory burst response of goldfish macropha-ges by leukocyte-derived macrophage activating factor(s). Developmental and Comparative Immunology. 1996.20:427-439
    [100]Ottaviani E. Paeman L R. Cadet P. et al. Evidence for nitric oxide production and utilization as a bacteriocidal agent by invertebrate immunocytes. Eur. J. Phar macol.1993.248:319-324
    [101]Palmer R M. Ferrige A G. Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature.1987.327:524-526
    [102]Petra S. Ricarda D. Nae J D. et al. Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circulation Research.1995.77:841-848
    [103]Peunova N. Scheinker V. Cline H. et al. Nitric oxide is an essential negative regulator of cell pro-liferation in Xenopus brain.J. Neurosci.2001.15:8809-8818
    [104]Pollock J S. Forstermann U. Mitchell J A. et al. Purification and characterization of particulate end othelium-derived relaxing factor synthase from cultured and native aortic endothelial cells. Proc. Nat. Acad. Sci. USA.1991.88.10480-10484
    [105]Saeij J P. Ster R J. Groeneveld A. et al. Molecular and functional characterization of a fish indue-ible-type nitric oxide synthase. Immunogenetics.2000.51:339-346
    [106]Schmetter L. Polak K. Role of nitric oxide in the control of ocular Blood flow. Progress in Retin-al and Eye Research.2001.20(6):823-847
    [107]Schober A. Malz C R. Meyer D L. Enzymehistochcmical demonstration of nitric oxide synthase int he diencephalon of the rainbow trout (Oncorhynchus mickiss). Neuro science Lett.1993.151:67-70
    [108]Secombes C J. Wang T. Hong S. et al. Cytokines and immunity of fish. Developmental and Comp arative Immunology.2001.25:713-723
    [109]Southan G J. Szabo C. Selective pharmaceutical inhibition of distinct Nitric oxide synthase iso-forms. Biochcm pharmacol.1996.51:383-394
    [110]Stangel M. Zetd U K. Mix E. et al. H2O2 and nitric oxidc-mediated oxidative stress induce apoptosis in rat skeletal muscle myoblasts. Neuropathol Exp Neurel.1996.55:36-43
    [111]Stuehr D J. Kwon. N S. Nathan C F. et al. N"'-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine.J Biol Chem.1991.266:6259-6236
    [112]Tafalla C. Figueras A. Novoa B. Role of nitric oxide on the replication of Viral haemorrhagic virus(VIISV). a fish rhabdovirus. Veterinary immunology and immunopathology.1999.72:249-256
    [113]Tafalla C. Gomez-Leon J. Novoa B. et al. Nitric oxide production by carpet shell clam (Ruditapes clecussatus) hemocytes. Developmental and Comparative Immunology.2003.27:197-205
    [114]Tews D S. Goebel H H. Sebeider I. et al. Expression of different isolbrms of nitric oxide synthase in experimentally denervaled and reinnervated skeletal muscle.J Neurepathol Exp Neurel.1997.56.1283-1289
    [115]Tripathi V. Krishna A. Changes in nitric oxide (NO) synthase isoforms and NO in the ovary of H eteropnenstes fossilis (Bloch) during the reproductive cycle. J Endocrinol,12008.199(2):307-316
    [116]Ursell P C. Mayes M. Anatomic distribution of nitric oxide synthase in the heart. International Journal of Cardiology.1995.50:217-223
    [117]Vincent S R. Kimura H. Ilistochemical mapping of nitric oxide synthase in the rat brain. Neuroseienee.1992.46:755-784
    [118]Wang Y. Marsden P A. Nitric oxide synthase:Biochemical and molecular regulation. Curr. Opin. Nephrol. I lypertens..1995.4:12-22
    [119]Wang W S. Hung S W. Lin Y H. et al. Purification and Localization of Nitric Oxide Synthases f-rom Hybrid Tilapia (Nile filapia Mozambique Tilapia). Journal of Aquatic Animal Health.2007.19:168-1 78
    [120]Wong H Y. Fung L Y. Kwok F. et al. Constitutive nitric oxide synthase (NOS) activities in big-head carp (Aristichthys nobilis). Fish Physiology and Biochemistry.1998.19:171-179
    [121]Yvonne M K. Erik P R. Robert W C. et al. Sarcolemma-localized nNOS is required to maintain actiy after mild exercise. Nature.2008.456:511-515
    [122]Zhuang J C. Wogan G N. Growth and viabilty of macrophage continunously stimulated to produce nitric oxide. Proc Nat Acad Sci USA.1997.94(10):118-125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700