氢键对吡啶和水二元溶液费米共振的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
费米(Fermi)共振是一种分子内部或分子之间的振动耦合和能量转换现象,费米共振不论在物理、化学、材料、生物学还是在医学、地质学、声学、光学领域均有广泛的应用和发展,随着科学的进步和时代的发展,费米共振为更多的人所重视,越来越多的人发现费米共振蕴含的丰富的理论和它的发展潜力,从而使研究费米共振成为一个热门课题。与此同时,氢键也是当前最热门的研究领域之一,它是存在于分子内部和分子之间的弱相互作用,氢键现象在自然界中是普遍存在的,并且对物质的性质有着很深的影响。所以研究氢键对物质费米共振的影响,具有十分巨大的应用潜力,对于科学的进步和人类的发展,都具有十分深远的意义。
     本论文讨论了氢键对吡啶和水二元溶液费米共振的影响,研究内容如下:
     前三章分别介绍了研究氢键的发展现状及意义,总结了研究氢键的方法;介绍费米共振的研究方法和意义,从量子力学的角度进一步分析了费米共振的原理;还介绍了研究分子振动光谱这一研究费米共振的工具,主要探讨了红外和拉曼光谱技术的原理和特征,列举了研究费米共振的几种光谱技术。
     在本文的第四章,首先对密度泛函理论和其推导过程进行了介绍,还分析了密度泛函理论的国内外研究现状。之后我们使用密度泛函理论对吡啶和水的几种聚合物的结构进行了优化,得到比较理想的优化结果。
     第五章我们通过向纯吡啶中逐步加入蒸馏水的实验方法,分别测得了三十组不同体积比(水与吡啶的体积比)的溶液的拉曼光谱,对实验数据进行整理作图,并详细分析了所观察到的现象,阐述了氢键对吡啶和水二元溶液拉曼光谱的影响,最后提出了两种从费米共振角度判断实验过程中每一阶段聚合物的主要成分的方法。
     综上所述,本文首先阐述了研究所用到的经典理论,然后利用密度泛函理论进行分子结构的优化,应用上述计算结果解释了实验现象,并在最后提出了两种行之有效的判断实验过程中所形成的聚合物主要成分的方法。
The Fermi resonances is a vibration coupling and energy conversionphenomenon that exists inter and intra molecular. Due to the scientificprogress and development of the times, Fermi resonance is becoming moreand more important. Because of its potential for development, the research ofFermi resonance has became a hot topic. On the other hand, the hydrogenbond is another one of the hottest topics. Hydrogen bonding is a commonphenomenon in nature, and has a deep impact to the nature of the substance.Therefore, to study how the hydrogen bonding can affect the Fermiresonances has enormous potential for applications, and have far-reachingsignificance for scientific progress and human development.
     This paper discussed the impact of hydrogen bond to the Fermiresonance of pyridine and water binary solution.
     In the first three chapters, we discussed the Research methods andsignificance of the study of the hydrogen bond and Fermi resonance. Exceptthis, we also discussed Molecular Vibrational Spectra, such as Raman Spectraand Infrared Spectroscopy.
     In the chapter four of this paper, we use the Density Functional Theory tooptimize the structure of several polymers of pyridine and water, and got somesatisfactory results.
     Finally, we measured30Raman spectra which belong to30sets ofsolution by the method of gradually adding distilled water into pure pyridine,that can make the volume ratio (water:pyridine) of each set of solution aredifferent. Then, we discussed the experimental results and explained thephenomenon we had observed.
引文
[1]刘靖疆.基础量子化学与应用[M].北京:高等教育出版社2004.
    [2] Remer, L. C., Jensen, J. H. Toward a General Theory of Hydrogen Bonding:The Short, Strong Hydrogen Bond [HOH···OH]-[J]. Phys. Chem. A2000,104,9266.
    [3] Pudzianowski, A.T. A Systematic Appraisal of Density FunctionalMethodologies for Hydrogen Bonding in Binary Ionic Complexes [J].Phys.Chem.1996,100,4781.
    [4] Rablen,P.R., Lockman, J.W., Jorgensen,W.L. Ab Initio Study ofHydrogen-Bonded Complexes of Small Organic Molecules with Water [J].Phys.Chem. A1998,102,3782.
    [5] Tuma,C.,Boese,A.D., Handy,N.C. Predicting the binding energies ofH-bonded complexes: A comparative DFT study.[J]. Phys. Chem. Chem.Phys.1999,1,3939.
    [6] Simon,S., Bertran,J., Sodupe, M. Effect of Counterpoise Correctionon the Geometries and Vibrational Frequencies of Hydrogen BondedSystems [J]. Phys.Chem. A2001,105,4359.
    [7]周宏伟,周歌,郑文旭,田安民.量子化学计算中基组效应对几何结构和性质影响的研究[J].化学研究与应用,第18卷,第9期,2006年9月.
    [8] Gordon,R.G. Molecular Motion in Infrared and Raman Spectra [J]. Chem.Phys.1965,43,1307.
    [9] Bartoli, F. J., Litovitz, T.A. Analysis of Orientational Broadeningof Raman Line Shapes [J]. Chem.Phys.1972,56,404,413.
    [10] Takahashi,H, Mamola,K., Plyler,E.K. Effects of hydrogen bondformation on vibrations of pyridine, pyrazine, pyrimidine, andpyridazine [J]. Mol.Spectrosc.1966,21,217.
    [11] Asthana,B.P., Takahashi,H., Kiefer,W. Study of vibrationaldephasing and frequency shifts in hydrogen-bonded systems byfour-channel raman difference spectroscopy [J]. Chem. Phys. Lett.1983,94,41.
    [12]Kreyenschmidt,M., Eysel,H.H., Asthana,B.P. Study of thepyridine–methanol system using four-channel Raman spectroscopy:Concentration dependence of frequencies, line widths and integratedintensities [J]. Raman Spectrosc.1993,24,645.
    [13] Cabaco,M.I., Besnard,M., Yarwood, J. Raman spectroscopic studies ofvibrational relaxation and chemical exchange broadening in hydrogenbonded systems [J]. Mol.Phys.1992,75,139,157.
    [14] Zoidis,E., Yarwood, J., Danten,Y., Besnard, M. Spectroscopic studiesof vibrational relaxation and chemical exchange broadening inhydrogen-bonded systems. III. Equilibrium processes in thepyridine/water system [J]. Mol. Phys.1995,85,373,385.
    [15] Deckert,V., Asthana,B.P., Mishra,P.C., Kiefer,W. Dimer and Trimerin Pyridine–Ethanol Mixture Reinvestigated Applying the ScanningMulti-Channel Raman Difference Technique and AM1Molecular OrbitalCalculations [J]. Raman Spectrosc.1996,27,907.
    [16] Dkhissi,A., Adamowicz,L., Maes,G. Density Functional Theory Studyof the Hydrogen-Bonded Pyridine H2O Complex: A Comparison with RHFand MP2Methods and with Experimental Data [J]. Phys.Chem. A2000,104,2112.
    [17]吴国桢.分子振动光谱学——原理与研究[M].北京:清华大学出版社,2001.
    [18]姜永恒.络合物的形成对对苯醌的费米共振的影响[D].长春,吉林大学,2011年6月.
    [19] AMAT G. PIMBERT M. On Fermi Resonance in Carbon Dioxide [J]. MolecularSpectroscopy.1964,16:278-290.
    [20] BERERAN J F. BALLESTER L and DOBRIHAOVAN L. Study of Fermi Resonanceby The Method of Solvent Variation [J]. Spectrochim. Acta part A.1968,24:1765-1776.
    [21] MCHALE J L. Molecular Spectroscopy [M]. Beijing: Science Press,2003.
    [22]薛奇.高分子结构研究中的光谱方法[M].北京:高等教育出版社
    [23]程昱川.几类层状超薄膜结构的分子光谱研究[D].长春:吉林大学,2006.
    [24] LEVIS R. Handbook of Raman Spectroscopy: From the Research Laboratoryto the Process Line [M]. New York: Marcel Dekker,2001.
    [25] SMITH E, DENT G. Morden Raman Spectroscopy: A Practical Approach [M].Chichester: John Wiley&Sons,2005.
    [26]吴征铠.唐敖庆主编.分子光谱学专论[M].济南:山东科学技术出版社,1999.
    [27]吴国桢.分子振动光谱学[M].北京:清华大学出版社,2001.
    [28]钱伯初.量子力学[M].北京:高等教育出版社,2006.
    [29]欧阳顺利.溶液中类胡萝卜素的结构与光谱性质研究[D].长春,吉林大学,2011年6月.
    [30]柯以侃.董慧茹.分析化学分册:第三册光谱分析[M].北京:化学工业出版社,1998.
    [31]王兆民.吴宗凡.王奎雄.红外光谱学[M].北京:人民教育出版社,1995.
    [32]陆婉珍.当代中国近红外光谱技术[M].北京:中国石化出版社,2007.
    [33]郑顺旋.激光拉曼光谱学[M].上海:上海科学技术出版社,1985.
    [34]曾谨言.量子力学导论[M].北京:北京大学出版社,2004.
    [35] STUART B. Infrared Spectroscopy: Fundamentals and Applications [M].New Jersey:John Wiley&Sons,2004.
    [36] AVIEMORE. SCOTLAND U K. Laser Spectroscopy [M]. World Scientific,2005.
    [37]乔惠君,李雪飞,黄洪亮.傅立叶变换近红外拉曼光谱技术研究介绍[J].河北建筑工程学院学报,2007,25:45-47.
    [38] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas [J]. Phys. Rev.136(1964) B864.
    [39] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchangeand Correlation Effects [J]. Phys. Rev.140(1965) A1133.
    [40] Li-Feng Cui,Xin Huang, Lei-Ming Wang, etal. Sn: Stannaspherene [J].American Chemical Society,2006,128(26):8390-8391.
    [41]赵蔡斌,郭小华,孙妩娟,葛红光,周科. Al掺杂Sn-12团簇结构及电子性质的密度泛函理论研究[J].分子科学学报,2011年12月,第27卷,第6期.
    [42] Liu K H,Pu M,Chen B H. DFT study on the structure of ionic liquid1-ethyl-3-methylimidazolium hexafluorophosphate [J]. Chinese JStruct Chem,2005,24(5):576-580.
    [43]刘坤辉,蒲敏,李会英等.1-乙基-3-甲基咪唑四氟硼酸盐离子液体的量子化学研究[J].化学物理学报,2005,18:331-336.
    [44]戴鹏飞,何国田,谷明信,蒋和伦.1-乙基-3-甲基咪唑四氟硼酸盐的密度泛函研究[J].重庆师范大学学报(自然科学版),2011年11月,28卷,第6期.
    [45]张致龙,陈玉红,任宝兴,张材荣,杜瑞,王伟超.(HMgN3)n(n=1—5)团簇结构与性质的密度泛函理论研究[J].物理学报ActaPhys. Sin. Vol.60,No.12(2011)123601.
    [46] Gaussian03User Refrence,2004.5.
    [47] M.R. Zakin, S.G. Grubb, H.E. King, and D.R. Herschbach. High pressurestudy of associated media:Raman scattering of pyridine complexes inaqueous solution.[J]. Chem. Phys.84(3),1February1986.
    [48] S.Schlucker,Ranjan K.Singh, B.P. Asthana, J.Popp, W.Kiefer.Hydrogen-Bonded Pyridine-Water Complexes Studied by DensityFunctional Theory and Raman Spectrocopy [J]. Phys.Chem. A2001,105,9983-9989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700