Li_3N团簇储氢反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油资源的日渐匮乏和生态环境的不断恶化,寻找和发展新型能源为全世界所瞩目。人们对新能源的不断探索过程中,氢能被公认为人类未来的理想能源,但氢能的储存限制了其利用。理论储氢量较大的碱金属氮化物成为储氢研究的重点,但碱金属氮化物在反应中有固—固反应,使得反应条件高,反应速率慢,反应难以充分进行。如果碱金属氮化物反应在团簇级别进行,可以降低反应条件,提高反应速度,反应更为充分。但目前在团簇级别研究碱金属氮化物的反应机理很有限。本文采用密度泛函理论(B3LYP)方法,在6-311G*基组水平上对Li_3N与H2以及团簇(Li_3N)_2与H_2反应的微观机理进行了计算分析。
     第一章介绍了发展氢能源的优点和主要的储备材料的研究现状,包括碳质材料、金属-有机物框架材料、金属合金材料、碱金属氮化物材料,重点介绍了Li-N-H系金属络合物储氢材料,以及碱金属氮化物团簇储氢的优点。
     第二章概述了量子化学的发展过程以及应用量子化学对团簇的研究方法,介绍了过渡态理论和内禀坐标理论。
     第三章研究了Li_3N团簇与H_2反应的微观机理,反应式为Li_3N+2H_2-Li_2NH +LiH + H_2-LiNH_2 + 2LiH,反应分两步进行,第一步为Li_3N团簇与H_2反应,第二步为Li_2NH团簇与H_2反应,优化了各步的反应物、中间体、过渡态和产物的几何构型,同时通过振动分析,结果证实了中间体和过渡态的正确性,内禀反应坐标(IRC)计算结果进一步确认了反应路径。确认了此反应为单通道放热反应。计算得到第一步反应的活化能为117.3 kJ/mol,第二步反应的活化能小于第一步仅为5.5136 kJ/mol。
     第四章研究了(Li_3N)_2团簇与H_2反应的微观机理,反应分两步进行,第一步为(Li_3N)_2与H_2反应,第二步为(Li_2NH)_2团簇与H_2反应,优化了反应物、中间体、过渡态和产物的几何构型,同时通过振动分析,结果证实了中间体和过渡态的正确性,内禀反应坐标(IRC)计算结果进一步确认了反应路径。确认了此反应为单通道放热反应。计算得到第一步反应的活化能为77.78 kJ/mol,第二步反应的活化能小于第一步反应为17.07 kJ/mol。
With the dearth of petroleum resources and constantly deteriorating ecological environment, find and develop new energy source become a hot topic all over the world. Hydrogen energy as a new energy source, has been accepted during the process of new energy source’s find. However, the application of energy source is limited by its storage, and the alkali metal compounds which have a vast storage of hydride become a research key point. The big particles of solid are hardly adequate reaction during the reaction. Alkali metals compounds Clusters with small particles, which make the reaction can be carried through easily. The reaction mechanism of alkali metal compounds Clusters and hydrogen is paid more and more attention, and the study about this is limited now. In this paper, by means of the density functional theory (B3LYP) methods,the reaction between Li_3N and H_2, (Li_3N)_2 and H_2 have been calculated and analysis basing on the 6-311G*.
     In the first chapter, the advantages and the current situation of store materials of hydrogen energy has been introduced, which include carbon materials, metal- organic matter frame materials, metal alloy material, alkalis nitride and so on. Furthermore, it is emphatically introduced about the merits of Li-N-H set metal clathrate hydrogen storage material and alkalis nitride.
     In chapter 2, the evolution of quantum chemistry and the research method about apply quantum chemistry to cluster were summarized, and the transition state theory and intrinsic coordinate theory were introduced.
     Micromechanism of the reaction between Li_3N and H_2 has been studied in chapter 3. The formula of the reaction is Li_3N+2H_2 -Li_2NH +LiH + H_2-LiNH_2 + 2LiH. The geometric model of the reactions, intermediate, transition-state and products had been optimized at the same time. The correctness of intermediate and transition-state has been confirmed by the results of vibrational analysis. The pathway was calculated by IRC which has been affirmed as single channel and exothermic reaction. The calculation results indicate that the activation energy of first and second step reaction are 117.3 kJ/mol and 5.5136 kJ/mol. Comparing to the first step reaction, the second step reaction is more easy, which provides a theoretical basis for the further study of the reaction between Li_3N and H_2.
     In chapter 4, Micromechanism of the reaction between (Li_3N)2 Li_3N and H_2 has been studied. The formula of the reaction is Li_3N+2H_2-Li_2NH +LiH + H_2-LiNH_2 + 2LiH. The geometric model of the reactions, intermediate, transition-state and products had been optimized at the same time. The correctness of intermediate and transition-state has been confirmed by the results of vibrational analysis. The pathway was calculated by IRC which has been affirmed as single channel and exothermic reaction. The calculation results indicate that the activation energy of first and second step reaction is 77.78 kJ/mol and 17.07 kJ/mol, and the second step reaction is easier than the first. Comparing the reaction of Li_3N and H_2 to the reaction of (Li_3N)_2 and H_2,we find that the second step reaction of Li_3N and H_2 is the most easy one, and provides a theoretical basis for the further study of the reaction between (Li_3N)_2 , Li_3N and H_2.
引文
[1]陈丹之.氢能.第一版.西安:西安交通大学出版社, 1990, 1-15
    [2]胡子龙.贮氢材料.第一版.北京:化学工业出版社, 2002, 1-18
    [3]申泮文,曾爱东.氢与氢能.第一版.北京:科学出版社, 1988, 1-15
    [4]孙大林,陈国荣,江建军等.材料导报, 2004 ,18 (5) :72-75
    [5]周理.材料导报, 2000, 14 (3) :3-5
    [6] Cao A Y, Zhu H W, Zhang X F, et al. Hydrogen storage of dense-aligned carbon nano-tubes, Chem Phys Lett., 2001, 342:510-514.
    [7]于涛,李金钗,范湘军.电弧法合成C60的工艺研究.武汉大学学报, 1993, 1:20-22.
    [8] Rowsell J L C, Yaghi O M. Strategies for hydrogen storage in metal-organic frame works, Angew. Chem. Int. Edit, 2005, 44(30):4670-4676.
    [9]赖文忠,戈芳,李星国.储氢材料的新载体—金属有机框架材料,今日化学, 2010, 25(3):1-6.
    [10] Zijlstra H, Westendrop F F. Influence of hydrogen on the magnetic properties of SmCo5, Solid State Comment, 1969, 7(12):857-859
    [11]王启东,吴京,陈长聘,方添水.镧稀土金属一镍贮氢材料,稀土, 1984, 3:8-13.
    [12] Balasubramaniam R, Mungole M N, Rai K N. Hydriding properties of MmNi5 system with aluminium manganese and tin substitutions, J. Alloys Compd., 1993, 196(1-2): 63-70.
    [13]王新华. Ml(1-x)CaxNi5合金的氢化物稳定性研究,稀有金属材料与工程, 1998, 27(3): 146-149.
    [14] CorréS, Bououdina M, Fruchart D. Stabilisation of high dissociation pressure hydrides of formula La(1-x)CexNi5(x=0-0.3)with carbon monoxide, J. Alloys Compd., 1998, 275-277:99-104.
    [15] Sandrock G. A panoramic overview of hydrogen storage alloys from a gas reation point of view, J. Alloys Compd., 1999, 293-295:877-888.
    [16]郭生武,张勇,张中平等.掺硅MNi5系稀土贮氢合金电化学性能.中国稀土学报, 2000, 18(4):325-328.
    [17] Reilly J J, Wiswall R H. Formation and properties of iron titanium hydride, Inorg. Chem., 1974, 13(1):218-222.
    [18] Lee S M, Perng T P. Correlation of substitutional solid solution with hydrogenation properties of TiFe1-xM(M=Ni, Co, A1)alloys, Int. J. Hydrogen Energy, 1999, 291(1-2):254-261.
    [19] Choi W K, Tanaka T, Morikawa T, et a1. Effect of surface modification of TiV2.1N0.3 by ball-milling with MgNi on charge-discharge cycle performance, Joural of Alloys and Compounds, 2000, 302:82-86.
    [20] Curtius T, Radenhausen R. Anion of tri-nitrogen. J.Prakt.Chem.,1891,2:207-208
    [21] Dennis L M, Isham H. Hydronitric acid, J. Am.Chem.Sec., 1907,29:216-223
    [22]Ludovic C, Imane S, Gilles D, et al. Improved synthesis of 6-amino-6-deoxy-dgalacto-no-1,6-lactam and d-mannono-1,6-lactam from corresponding unprotected d-hexono-1,4-lactones[J]. Tetrahedron Lett., 2004, 60:2079
    [23] Veronique B, Imane S, Daniel B, et al. An efficient and facile three-step synthesis of 5-ami-no-5-deoxy-D-pentonolactams from unprotected D-pentono-1, 4-lactones[J].Tetra-hedron Lett., 1997, 38:7733
    [24]Christe K O, Wilson W W, Sheehy J A, et al. N5+:A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material[J]. Angew. Chem. Int. Ed., 1999, 38:2004
    [25]Vij A, Wilsom W W, Vij V, et al. Polynitrogen chemistry, synthesis, characteri zation, and crystal structure of surprisingiy stable fluoroantimonate salts of N5+[J]. J. Am. Chem. Soc., 2001, 123: 6308
    [26] Fair H D, Walker R F. Energetic materials.Ⅰ.Physics and chemistry of the inorganic azides[M]. New York:Plenum Press,1977
    [27]Zhu W H, Xiao J J, Xiao H M. Comparative First-principles Study of Structural and Optical Properties of Alkali Metal Azides[J]. J. Phys. Chem. B, 2006,110: 9856-9862
    [28]Armstrong D R , Perkins P G , Walker G T. The electronic structure of the monomers, dimmers, a trimer, the oxides and the borane complexes of the Lithiated ammonias[J]. Journal of Molecular Structure: Theochem,1985 ,122(3-4) :189-204
    [29]肖鹤鸣,李永富,钱建军.碱金属和重金属叠氮化物的感度和导电性研究[J].化学物理学报, 1994,10(3):235-240
    [30]段红霞,李前树.金属富氮化合物N3MN3(M=Be,Mg,Ca)的量子化学研究[J].分子科学学报, 2005,21:56-59
    [31]邵菊香,程新路,杨向东,等.对一些叠氮化合物的叠氮自由基键离能的计算[J].四川师范大学学报, 2007,30:78-82
    [32]居学海,姬广富,肖鹤鸣.碱金属叠氮盐晶体的密度泛函理论[J].科学通报, 2002,47(4):265-256
    [33]高贫,肖鹤鸣,黄寅生.用ab initio方法研究NaN3的几何构型、电子结构和热力学、动力学性质[J].分子科学学报, 1998,14(3):188-192
    [34]Veszpremi T, Pasinszki T, Feher M. The structure of pseudohalides the existence of a new isomer[J]. J.Am.Chem.Soc., 1994,116(14):6303
    [35]陈玉红,任宝兴,曹一杰.碱土金属叠氮化合物(CaN6)n(n=1~5)团簇结构与性质的密度泛函理论研究[J].化学学报, 2010, 68(18): 1793-1801
    [36]任宝兴,陈玉红,曹一杰,等.碱土金属叠氮化合物(MgN6)n(n=1~5)团簇结构与性质的密度泛函理论研究[J].无机化学学报, 2010, 8 :1361-1369
    [37] Xia Q Y, Xiao H M, Ju X H. A density functional theory study of the structures and properties of(H2GaN:3)n (n=1 to 4)clusters J. Phy. Chem. 2004 ,108: 2780-2784
    [38] Xia Q Y, Xiao H M, Ju X H. A density functional theory study of the structures and Properties of(H2A1N:3)n (n=1 to 4)clusters Int. J. Quantum. Chem. 2004,100 :301-305
    [39]吴宇平等.化学世界. 2000, 1:3.
    [40]Dafert, Miklauz F W. Uber einige nene verbindungen von stickstoff and wasserstoff mit lithium, Monatsch. Chem., 1910, 31: 981-996.
    [41] Chen P, Xiong Z, Luo J, et a1. Interaction of hydrogen with metal nitrides and imides, Nature, 2002, 420:302-304.
    [42] Chen P, Xiong Z, Luo J, et a1. Interaction between Lithium Amide and Lithium Hydride, J. Phys. Chem. B, 2003, 107:10967-10970.
    [43] Hino S, Ichikawa T, Leng H Y, et a1. Hydrogen desorption properties of the Ca–N–H system , J. Alloys. Compd., 2005, 398:62-66.
    [44] Chen Y, Wu C Z, Wang P, et a1. Structure and hydrogen storage property of ball-milled LiNH2/MgH2 mixture , Int. J. Hydrogen Energy, 2006, 31(9): 1236-1240
    [45] Liu Y F, Hu J J, Xiong Z T, et a1. Investigations on hydrogen desorption from the mixture of Mg(NH2)2 and CaH2 , J. Alloys. Compd., 2007, 432:298-302.
    [46] Keisuke O, Kazuhiko T, Takayuki I, et a1. A process for synthesizing the Li–Mg–N–H hydrogen storage system from Mg and LiNH2, J. Alloys. Compd., 2007, 432: 289-292.
    [47] Ichkawa T, Isobe S, Hanada N, et al. Lithium nitride for reversible hydrogen storage, J . Alloys . Compd., 2004, 365: 271-276.
    [48] Isob S, Ichikawa T, Hanada N, et al. Effect of Ti catalyst with different chemical form on Li-N-H hydrogen storage properties, J. Alloys. Compd., 2005,404-406: 439-442.
    [49] Yao J H, Shang C, Aguey-Zinsou K F, et al. Desorption characteristics of mechanically and chemically modified LiNH2 and (LiNH2 + LiH), J. Alloys. Compd., 2007, 432: 277-282.
    [50] Noritake T, Nozaki H, Aoki M, et al. Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction, J. Alloys Compd., 2005, 393(1-2): 264-268.
    [51] Kojima Y, Kawai Y. IR characterizations of lithium imide and amide, J. Alloys Compd., 2005, 395(1-2):236-239.
    [52]Novak P, Wagner F R. Electronic structure and magnetism of 3d metal substituted Li3N, J . Magn. Magn. Mater., 2004,272-276: e269-e270.
    [53]Sarnthein J, Schwarz K, Blochl P E. Ab initio molecular-dynamics study of diffusion and defects in solid Li3N, Phys . Rev. B, 1996, 53: 9084-9091.
    [54]陈玉红,康龙,张材荣. (Li3N)n (n=1-5)团簇结构与性质的密度泛函研究,物理学报, 2008, 57: 4174-4178.
    [55] Tsumuraya T, Shishidout T, Oguchi T. First-principles study on lithium and magnesium nitrogen hydrides for hydrogen storage, J. Alloys Compd., 2007, 446-447: 323-327.
    [56] Gupta M, Gupta R P. First principles study of the destabilization of Li amide-imide reaction for hydrogen storage, J. Alloys Compd., 2007, 446-447: 319-322.
    [57] Wurthwein E U, Sen K D, Pople J A Lithiated Ammonia, Amide Anions, and Ammonium Ions. An ab Initio Study of Structures, Bonding, and Energetic Relationships, Inorg.Chem., 1983 22:496-503.
    [58] Hinchliffe A. A localised orbital study of bond properties in LiNH3+,LiNH2 and Li2NH, Chemical Physics Letters, 1977, 45(1): 88-91.
    [59]于大龙,陈玉红,曹一杰等. Li2NH晶体结构建模和电子结构的第一性原理研究,物理学报, 2010, 59(03):1991-1996.
    [60] Lazzara, M. G.; Harrison, J. J.; Rule, M.; Hilinski, E. F.; Berson, J. A. J. Am. Chem. Soc. 1982, 104, 2233.
    [61] Hassall, C. H.; Reyle, K.; Feng, P. Nature 1954, 173, 356
    [62] Noyori, R.; Hayashi, N.; Kato, M. J. Am. Chem. Soc. 1971, 93, 4948. (b) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1986, 25, 1.
    [63]Yamago, S.; Nakamura, E. J.Am. Chem. Soc. 1989, 111, 7285. (d) Brandi, A.; Goti, A. Chem. Rev. 1998, 98,589.
    [64]徐光宪,黎乐民,王德民.量子化学—基本原理和从头计算法.北京:科学出版社, 1985,749-1010
    [65]唐敖庆.量子化学.北京:科学出版社, 1982,211-258,295-327
    [66] Wolfram Koch, Max C Holthausen. A chemist’s guide to density functional Frost. Pearson. Kinetics and mechanism. 1961.
    [67] Johnson, B. G.; Frisch, M. J. J. Chem.1994, 100, 7429.
    [68] Labanowski, J. K.; Andzelm, J. W. eds. Densi Functional Methods inChemistry, Springer-Verlag: New York, 1991.
    [69] theory. Second Edition,Wiley-VCH Verlag GmbH, 2001 ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700