快速式换热器的传热与流动特性和温度控制技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速式换热器能够对由于流体流量的变化导致的流体温度变化进行快速调节而保持在设定的温度范围内。与普通换热器不同,快速式换热器不是单一的换热器,而是一个由基于前馈控制原理的温度控制阀和热交换器所组成的换热系统。由于快速式换热器具有体积小、重量轻、安装方便、占地面积小、无需常用的感温装置、反应速度快、节约能源等优点,广泛应用于石化、采暖、制冷空调、洗浴、生产及生活热水供应等系统中,是宾馆饭店、办公楼、小区、企业等部门常用的换热设备之一。
     快速式换热器的核心部件—温度调节混合阀是采用前馈式控制原理对温度进行控制的。它使用一种带有压差感应装置的混合阀替代传统的温度控制阀和温度传感器来实现温度的自动控制。在使用过程中通过感应混合阀出口的压力来调节冷、热水的流量,通过调节冷、热水的混合比对出口水的温度进行调节,无温度响应的时间延迟。因而能够快速的满足温度调节的要求,并具有较高的温度调节精度。
     本文的主要目的是对快速式换热器的传热和流动特性进行研究,并探讨螺旋管换热器的曲率比、倾斜度等参数对换热器传热和流动特性的影响。采用传热有效度一传热单元数(ε—NTU)的方法建立了快速式换热器的传热和流动数学模型,通过MATLAB的SIMULINK建立了相应的仿真模型,对传热和流动模型进行模拟分析,得到了换热器的出口温度和压降随流量的变化关系以及热水温度和压降随流量及进入混合阀的冷、热水混合比的变化关系,并进一步分析了快速式换热器的传热特性。
     快速式换热器模拟分析的结果表明,在水需求负荷保持一定和发生变化时,换热器出口混合水的温度随着进入换热器的冷水流量及进入混合阀的冷、热水的流量和混合比之间具有确定的函数变化关系。对换热器流动特性的分析表明,混合阀进出口的压降与进入换热器的冷水流量之间具有确定的函数变化关系。因此,得到了换热器出口混合水的温度与质量流量和混合阀进出口压降之间的函数关系。当水的需求量(负荷)发生变化或进入换热器的水流量变化而使快速式换热器的混合水温偏离设定值时,可以通过混合阀进出口的压降变化对流量进行自动调节,从而实现对混合水温度的快速自动调节。研究结果表明,基于前馈原理的换热器温度控制技术可以实现流体混合温度的快速自动调节。
     本文为快速式换热器的传热和流动特性及温度控制技术提供了一种比较实用有效的分析方法,为快速式换热器的优化设计分析与安全经济运行提供了基本数据和分析依据。
Instantaneous steam-water is a completely engineered system designed to provide accurately-controlled temperatures for hot water applications. Instantaneous steam-waters provide instant hot-water supplies,always at the preset temperature ranges.The heat exchanger transfers thermal energy from steam of low pressures and delivers hot water with accurate temperatures. Different from the ordinary water heaters,the instantaneous steam-water is actually a heat-exchanging system composed of a compact heat exchanger and a temperature regulating device of feed-forward control mechanism instead of a single heat exchanger.It has been widely employed in a variety of applications, such as petroleum and chemical engineering,food processing,heating, refrigeration and air-conditioning,hot water supplies for domestic and official buildings,and many others.
     The heart of the instantaneous water heater is a unique blending device that automatically proportions hot and cold water to produce the hot water of desired outlet temperature.The temperature blending valve based on feed-forward control mechanism is actuated by the demand for hot water.An impulse line to the top of the blender's differential sensing head comes from a connection to the cold water supply line.Blended water is sensed under the diaphragm through ports in the blending valve.The feed-forward blending device ensures that the hot and cold water blend ratio is accurately proportioned to maintain the set temperature for all flow demands.Water is blended instantly automatically,with virtually no lag in response time to demand,and increased efficiency is obtained by blending the water instantly.The heat exchanger, blending valve and intermediate piping act to produce an engineered pressure drop so that each increment in flow represents a specific water pressure differential.
     The main objective of this paper is to study the heat transfer and flow characteristics of the instantaneous steam-water and the effect of curvature ratios and other relevant parameters on the heat transfer and flow characteristics.
     A mathematical model is developed for the heat transfer and flow characteristics of the instantaneous steam-water by using theε-NTU method. The effect of blending ratio of cold and hot water and the cold water mass flow rates of the heat exchanger on the heat transfer and flow characteristics are investigated in detail.By numerical simulating with the SIMULINK in MATLAB,the variation of the final blended hot water temperature of blending valve is determined with different water flow and the blending ratio of cold and hot water when the blended hot water demand is changed or maintained at a fixed level.The variation of the outlet pressure drop of the blending valve is can be also obtained with the blending ratio of cold and hot water.As a result, the empirical correlation of temperature,mass flow rate,pressure drop can be further developed.When the final blended hot water or the incoming cold water into the heat exchanger is changed,the water flow is adjusted according to the pressure drop across the bleeding valve to regulate the blended hot water temperature to the desired temperature range.
     The developed simulating method obtained results can be used for the investigation of heat transfer and flow characteristics of instantaneous water heaters and the optimal design and safe and effective operations.
引文
[1] Paisarn Naphon and Somchai Wongwises, A review of flow and heat transfer characteristics in curved tubes, Renewable and Sustainable Energy Reviews, 2006, 10(5): 463-490
    [2] R. A. Seban, E. F. McLaughlin, Heat transfer in tube coils with laminar and turbulent flow, International Journal of Heat and Mass Transfer, 1963,6(5):387-395
    [3] Srinivasan, P.S.,Nandapurkar, S.S.,Holland, F.A..Pressure drop and heat transfer in coils. Chemical Engineer, 1968, (218):CE113-CE119
    
    [4] C. E. Kalb, J. D. Seader. Heat and mass transfer phenomena for viscous flow in curved circular tubes, International Journal of Heat and Mass Transfer, 1972, 15(4):801-817
    [5] C. E. Kalb, J. D. Seader. Entrance region heat transfer in a uniform wall-temperature helical coil with transition from turbulent to laminar flow, International Journal of Heat and Mass Transfer, 1983, 26(1):23-32
    [6] R. C. Xin, A. Awwad, Z. F. Dong, M. A. Ebadian, H. M. Soliman, An investigation and comparative study of the pressure drop in air-water two-phase flow in vertical helicoidal pipes, International Journal of Heat and Mass Transfer, 1996,39(4):735-743
    [7] C. X. Lin, P. Zhang , M. A. Ebadian, Laminar forced convection in the entrance region of helical pipes, International Journal of Heat and Mass Transfer, 1997,40(14):3293-3304
    [8] R. C. Xin, A. Awwad, Z. F. Dong, M. A. Ebadian, An experimental study of single-phase and two-phase flow pressure drop in annular helicoidal pipes, International Journal of Heat and Fluid Flow, 1997, 18(5):482-488
    [9] C.J. Bolinder, B. Sunden, Numerical prediction of laminar flow and forced convective heat transfer in a helical square duct with finite pitch, International Journal of Heat and Mass Transfer, 1996, 3(15):3101-3115
    [10] Mohamed E. Ali, Laminar natural convection from constant heat flux helical coiled tubes, International Journal of Heat and Mass Transfer, 1998,41(14):2175-2182
    [11] B. Zheng, C.X. Lin, M.A. Ebadian, Combined laminar forced convection and thermal radiation in helical pipe, International Journal of Heat and Mass Transfer, 2000, 43(7): 1067-1078
    [12] Shaukat Ali, Pressure drop correlations for flow through regular helical coil tubes, Fluid Dynamics Research, 2001, 28(4):295-310
    [13] D.G. Prabhanjan, G.S.V. Raghavan, T.J. Rennie, Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger, International Communications in Heat and Mass Transfer, 2002, 29(2):185-191
    [14] Devanahalli G. Prabhanjan, Timothy J. Rennie and G. S. Vijaya Raghavan, Natural convection heat transfer from helical coiled tubes, International Journal of Thermal Sciences, 2004, 43(4):359-365
    [15] T.H. Ko, K. Ting, Entropy generation and thermodynamic optimization of fully developed laminar convection in a helical coil, International Communications in Heat and Mass Transfer, 2005, 32(1-2):214-223
    [16] T.H. Ko, K. Ting, Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube, Energy, 2006, 31(12): 2142-2152
    [17] T.H. Ko, Thermodynamic analysis of optimal curvature ratio for fully developed laminar forced convection in a helical coiled tube with uniform heat flux, International Journal of Thermal Sciences, 2006, 45(7):729-737
    [18] T.H. Ko, Thermodynamic analysis of optimal mass flow rate for fully developed laminar forced convection in a helical coiled tube based on minimal entropy generation principle, Energy Conversion and Management, 2006, 47(18-19):3094-3104
    [19]郭烈锦,陈学俊,张鸣远,卧式螺旋管内汽水两相流沸腾传热特性研究,西安交通大学学报,1994,28(5):120 -124
    [20]毕勤成,陈听宽,田永生,陈学俊,高温气冷堆蒸汽发生器螺旋管汽水两相流摩擦阻力特性实验,研究核动力工程,1996,17(5):425-430
    [21]白博峰,郭烈锦,冯自平,陈学俊,卧式螺旋管内紊流传热,化工学报,1997,48(1):16-21
    [22]白博峰,郭烈锦,卧式螺旋管内流动沸腾传热研究,核科学与工程,1997,17(4):302-307
    [23]李广军,郭烈锦,陈学俊,卧式螺旋管气液两相流摩擦阻力特性研究,动力工程,1997,17(4):28-32
    [24]李广军,郭烈锦,陈学俊,立式螺旋管气液两相流摩擦阻力特性研究,化学工程,1998,26(4):30-31
    [25]张西民,郭烈锦,冯自平,不同倾角放置螺旋管汽液两相摩擦阻力特性,化工学报,1999,50(3):373-379
    [26]徐峰,郭烈锦,超临界压力下水在螺旋管内的混合对流换热,西安交通大学学报,2005,39(9):978-981
    [27]李隆键,辛明道,自然对流对螺旋管内紊流对流换热影响,大连理工大学学报,2001,41(1):50-53
    [28]周云龙,孙斌,陈听宽,陈学俊,螺旋管中汽-水两相流强制对流沸腾传热研究,核科学与工程,2002,22(3):217-219
    [29]周云龙,孙斌,张玲,李岩,洪文鹏,多头螺旋管式换热器换热与压降计算,化学工程,2004,32(6):27 -30
    [30]周云龙,洪文鹏,孙斌,张玲,陈听宽,螺旋管内高压汽液两相强制对流沸腾传热试验,工程热物理学报,2006,27(1):97-99
    [31]韩吉田,苏国萍,制冷剂R-134a在螺旋环形通道内凝结换热的实验研究,热能动力工程,2005,20(2):134-137
    [32]韩吉田,具有过热蒸汽的R-134a在螺旋管內凝结换热的实验研究,制冷学报,2005,26(3):6 -11
    [33]Noble M.A.,Kamlani J.S.,McKetta Jr.J.J.,Heat transfer in spiral coils,Petroleum Engineer,1952,24(4),Various pages
    [34] Kubair V.,Kuloor N.R., Pressure drop and heat transfer in spiral tube coils,Indian Journal of Technology, 1963, l(9):336-338
    [35] J.C. Ho, N.E. Wijeysundera, S. Rajasekar, T.T. Chandratilleke, Performance of a compact spiral coil heat exchanger, Heat Recovery Systems and CHP, 1995, 15(5):457-468
    [36] N.E.Wijeysundera, J.C.Ho, S.Rajasekar, The effectiveness of a spiral coil heat exchanger, International Communications in Heat and Mass Transfer, 1996, 23(5):623-631
    [37] J.C. Ho, N.E. Wijeysundera, Study of a compact spiral-coil cooling and dehumidifying heat exchanger unit, Applied Thermal Engineering, 1996,16(10):777-790
    [38] J.C. Ho, N.E. Wijeysundera, An unmixed-air flow model of a spiral cooling dehumidifying heat transfer, Applied Thermal Engineering, 1999, 19(8):865-883
    [39] P. Naphon, S. Wongwises, Investigation of the performance of a spiral-coil finned tube heat exchanger under humidifying conditions, Inzhenerno-Fizicheskii Zhurnal, 2003, 76 (1):71-79
    [40] P. Naphon, S. Wongwises, An experimental study on the in-tube heat convective heat transfer coefficients in a spiral-coil heat exchanger, International Communications in Heat Mass Transfer, 2002, 29(6):797-809.
    [41] P. Naphon, S. Wongwises, Experimental and theoretical investigation of the heat transfer characteristics and performance of a spiral-coil heat exchanger under dry-surface conditions, 2nd International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics, 2003: 24-26
    [42] Paisarn Naphon, Somchai Wongwises, Heat transfer coefficients under dry and wet-surface conditions for a spirally coiled finned tube heat exchanger, International Communications in Heat and Mass Transfer,2005,32 (3-4):371-385
    [43]Paisarn Naphon,Somchai Wongwises.A study of the heat transfer characteristics of a compact spiral coil heat exchanger under wet-surface conditions,Experimental Thermal and Fluid Science,2005,29(4):511-521
    [44]Wongwises Somchai,Naphon Paisarn,Heat transfer characteristics and performance of a spirally coiled heat exchanger under sensible cooling conditions,JSME International Journal,Series B:Fluids and Thermal Engineering,2006,48(4):810-819
    [45]Wongwises Somchai,Naphon Paisarn,Heat transfer characteristics of a spirally coiled,finned-tube heat exchanger under dry-surface conditions,Heat Transfer Engineering,2006,27(1):25-34
    [46]Paisarn Naphon,Jamnean Suwagrai,Effect of curvature ratios on the heat transfer and flow developments in the horizontal spirally coiled tubes,International Journal of Heat and Mass Transfer,2007,50(3-4):444-451
    [47]Liu Zhen-Hua,Yi Jie,An experiment on forced convection in a combined-intensification heat-transfer tube incorporating an electric field and spiral coils,Reneng Dongli Gongcheng/ Journal of Engineering for Thermal Energy and Power,2002,17(5):475-477+541-542
    [48]Bowman Anthony J,Park Hyunjae,CFD study on laminar flow pressure drop and heat transfer characteristics in toroidal and spiral coil systems,American Society of Mechanical Engineers,Process Industries Division,PID,Proceedings of the ASME Process Industries Division - 2004,2004:11-19
    [49]王新晶,宋忠喜,国春凤,新型螺旋管式换热器的设计,节能,2003,250(5):10-11
    [50]韩志航,孙奉仲,韩吉田,史月涛,螺旋管式换热器防止蒸汽随凝水排出的方案研究,热能动力工程,2004,19(6):645-647
    [51]韩志航,孙奉仲,韩吉田,史月涛,螺旋管式换热器的过冷凝结方法研究,节能,2004,265(8):37 -39
    [52]江斌,陈则韶,陈建新,盘状螺旋管双旋流换热器研究与实验,中国工程热物理学会第十一届年会,1713-1716
    [53]尾花英朗,热交换器设计手册(下),北京:烃加工出版社,1987
    [54]程卫军,前馈式蒸汽快速热水器的原理和应用,上海节能,2005:66-69
    [55]朱聘冠,换热器原理及计算,北京:清华大学出版社,1987
    [56]王沫然,MATLAB与科学计算,北京:电子工业出版社,2003
    [57]王林,崔岩,孙翠霞,汪宏伟,俞坚,马重芳,微型螺旋管蒸发器的沸腾换热与阻力特性实验研究,节能,2006(6):4 -6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700