青木关地下河岩溶系统中的氮循环及其相关微生物作用与示踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
约占中国国土面积1/3的岩溶区蕴藏着大约1/4的地下水资源,岩溶地下水是中国西南岩溶区的重要水源。但是,由于岩溶系统的脆弱性,现阶段工业、农业、矿业以及人类生活污水对岩溶地下水造成的污染,使得中国岩溶区的地下水资源已经全面告急。尤其农业生产中使用无机化肥和有机肥等造成的地下水氮污染更加广泛,影响更加深远。了解岩溶系统中氮素的迁移转化途径,有利于减少和控制地下水污染,保护地下水环境提供,有利于解决岩溶地区人畜饮水问题,维持岩溶区人民生活安定和社会稳定。
     关于土壤和地下水中的“三氮”污染以及氮循环过程的机理研究已有较多报道。对北方旱地、潮棕壤以及水稻田系统中“三氮”的迁移转化过程已经有很详细的研究,并且已经建立了数值模拟模型对土壤和地下水中氮素的输入输出过程进行控制,但是对岩溶系统中的氮循环研究报道有限。本文以岩溶较为发育的青木关地下河流域为例,研究其土壤和地下水的氮循环过程,为石漠化治理过程中的氮素管理,石漠化地区地下水水质和水源的保护提供理论基础。
     本文通过对青木关岩溶槽谷区10种不同土地利用方式的土壤采集土壤60个,分析土壤样品中的14种元素和微生物指标,应用因子分析法对土壤中氮素转化的主要影响因子进行归纳。然后,选择具有代表意义的两种典型土地利用方式,每15cm采集土壤样品至60cm以下,检测土壤的营养元素、“三氮”以及微生物含量,利用拟合曲线分析土壤中氮素的垂直迁移转化过程,并分析相关微生物在其中的作用。在线监测地下水出口和入口的流量以及研究区的降雨量,至少每月一次采集地下河入口和出口的水样,监测地下水中氮素以及其它无机离子的年度变化动态,结合地下河示踪试验结果,分析地下水中的氮素迁移过程。分析地下水水样中的微生物含量,结合样品中的“三氮”含量,使用相关分析了解微生物与“三氮”之间的关系,分析示踪地下河岩溶系统中土壤—地下水氮的补给途径,研究地下水微生物示踪研下河的地表径流补给,出口处微生物与硝态氮之间没有相关关系,类似落水洞处;旱季时地下水主要是经过岩溶裂隙进入土壤渗透水补给的,出口处硝态氮与微生物之间存在较好的相关关系。地下水中氮素的补给途径与水的补给途径相同:旱季土壤渗透水中硝态氮高达16mg/L,与地下水中的含量相近;雨季主要从落水洞补给。
     以上研究结果表明,由于岩溶系统中硝态氮与地下水一并漏失,而非如非岩溶区中硝态氮在土壤中积累,需要与非岩溶区区别对待;微生物对地下水及氮素的示踪实验表明雨季和旱季它们的补给途径不同;也证明微生物示踪在岩溶地下水研究中具有可行性。但是对于岩溶系统氮循环和微生物示踪的研究都不深入,在将来的研究中,可在不同岩溶系统中研究氮循环过程,了解不同水文地质背景下土壤氮循环的过程和机理,并建立相关的数值模拟模型,以控制系统中氮素的输入和输出;对于微生物示踪研究,需要应用更多先进的技术如基因组学方法,全面了解地下水中微生物的特异性,用于更细致示踪实验的进行。
Karst groundwater pollution in China has been so serious that the usable quantities of groundwater resources are very little. Thus, protection of karst groundwater resources couldn't be delayed any more. In the karst area, groundwater is an important water resource of local people life and agriculture, but nitrogen pollution caused by fertilization is very common. Therefore, reducing nitrogen pollution in karst groundwater is very important to ensure the people's livelihood, and social harmony and stability. The situation of "3-N" pollution and nitrogen cycling process in soil and groundwater were reported a lot, but most of them were focus on non-karst area and few studies with regard to karst area have been documented.
     The contaminations transferring has its unique characters for the special hydrogeology background in karst area. In the transferring processes, contaminations couldn't be absorbed or degraded, which will transfer to a place far away in short time after they leaching into ground river and discharging to non-karst area. Thus the accumulation of nitrogen pollution isn't of great notability in soil and groundwater in karst area, but the occurrence of nitrogen pollution may be even worse. In this paper, a case of a typical karst valley in Qingmu Guan, Chongqing, has been employed to investigate the nitrogen transferring and transforming processes in soil and groundwater, and give some suggestion for nitrogen management in management of rocky desertification and protection of groundwater and drinking water sources.
     Soil elements and microorganisms have been measured in ten kinds of soil samples within different land use, and also principal factor analysis was used to conclude the main affecting factor of soil nitrogen cycling. Two of the ten soil samples, representation of typical land uses, were specially sampled to analyze the characteristics of nitrogen transferring and transforming in vertical been concluded. First, in the rainy season, protection zones and adaptations in land use practices around the swallow holes and sinking streams, and within their hydrologic catchments, need special attention and must help to reduce microbiological contaminations of spring. Second, in the dry season, protection zones and adaptations in land use practices should be better attention in the whole watershed, which including control the use of pesticides and fertilizers and sewage irrigation. Third. if possible, using soil situ ecological repairing to degrade contaminations and reduce contaminations transferring to underground flows.
     Generally, the nitrogen cycling in karst area is different from that in non-karst area, and need to pay more attention. In the future, some researches should be done in different karst system to find out the nitrogen cycling mechanisms in different hydrogeology background. Numerical simulation model about nitrogen cycling in karst area should be established to help reduce the ground water nitrogen pollution in rocky desertification management projects. Otherwise, the preliminary study of soil microorganism tracer test shows the character of soil microorganism community is useful in groundwater tracer test, but it needs more research in detail, such as the detail of microorganism community composition and characteristic in different soil, which more advanced technology should participates.
引文
Ahmed W, Tucker J, Harper J, et al.Comparison of the efficacy of an existing versus a locally developed metabolic fingerprint database to identify non-point sources of faecal contamination in a coastal lake[J].Water Research.2006.40:2339 - 2348
    Ahmed W, Hargreaves M, Goonetilleke A, et al.Population similarity analysis of indicator bacteria for source prediction of faecal pollution in a coastal lake[J].Marine Pollution Bulletin, 2008: in press
    Allen O N, Allen E K.The Leguminosae: A Source Book of Characteristics, Uses and NodulationfM].The University of Wisconsin Press, Wisconsin.1981
    Andersen LJ, Kristansen H.Nitrate in groundwater related to landuse in the Karup Basin, Denmark[J].Environmental Geology, 1984, 5(4): 207-212
    Aquavic Water Solution Inc.Description of Aqua Vic TM Specialized Services [EB/OL].2005.online: http://www.aquavic.com/Services/services.html
    Arrigo K.2005.Marinemicro organisms and global nutrient cycles [J].Nature, 437: 349-355
    Boopathy R.Factors limiting bioremediation technologies[J].Bioresource Technology.2000.74(1):63-67.
    Bossio D A, Fleck J A, Scow K M, etal.Alteration of soil microbial communities and water quality in restored wetlands[J].Soil Biology and Biochemistry.2006, 38(6): 1223-1233.
    Boylea A T, Yarwooda R.R., Bottomleya J.P..et al.2008.Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon[J].Soil Biology & Biochemistry.40: 443-451
    Buzady A, Erostyak J, Pa(?)l G.Determination of uranine tracer dye from underground water of Mecsek Hill, Hungary[J].Journal of Biochemical and Biophysical Methods.2006.69(1-2):207-214
    Chilton P J, Foater S S D.Control of ground water nitrate pollution in British by land use change Bogardi and R.D.Kuzelka.Nitrate contamination: exposure, consequence and control[A].NATO ASI Ser.G: Ecological Science 30[C].Springer-Verlag, Berlin, 1991: 333-347
    Cortez J, Bouch(?) M.Decomposition of Mediterranean leaf litters by Nicodrilus meridionalis (Lumbricidae) in laboratory and field experiments [J].Soil Biology and Biochemistry.2001,33(15):2023-2035.
    Chander K, Goyal S, Nandal DP, etal.Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system[J].Biology and Fertility of Soils, 1998.27(2):168-172.
    Dilly O, Munch JC.Ratios between estimates of microbial biomass content and microbial activity in soils[J].Biology and Fertility of Soils.1998.27(4):374-379.
    Doran J W, Coleman DC, Bezdicek DF, etal.Defining Soil Quality for a Sustainable Environment,Soil Society of America Special Publication[J].Madison,Wisconsin.1994: 3-234..
    Francis C A, Beman JM, KuypersM M M.2007.New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation [J].The ISME Journa,11: 19-27
    Ganoulis J G.Nitrate contamination of surface and ground water in Greece.Bogardi and R.D. Kuzelka.Nitrate contamination: exposure, consequence and control[A].NATO AS1 Ser.G:Ecological Science 30[C].Springer-Verlag, Berlin, 1991: 55-64
    Geng Q Z, Irard G Q Ledoux E.Modeling of Nitrogen Cycle and Nitrate Transferin Regional Hydrogeolog Systems[J].Groundwater, 1996, 34(2): 293-304.
    Gillham R W.Nitrate contamination of ground water in southern Ontario and the evidence for denitrification.Bogardi and R.D.Kuzelka.Nitrate contamination: exposure, consequence and controlfA].NATO ASI Ser.G: Ecological Science 30[C].Springer-Verlag, Berlin, 1991:181-198
    Goldscheider N, Meiman J, Pronk M(2008)Tracer tests in karst hydrogeology and speleology [J].International Journal of Speleology, 37(1): 27-40
    Green R T, Painter S L, Sun A, Worthington S.Groundwater Contamination in Karst Terranes[J].Water, Air, and Soil Pollution: Focus.2006,6(1-2): 157-170
    Harris JA.Measurements of the soil microbial community for estimating the success of restoration[J].European Journal of Soil Science.2003.54: 801-808.
    Harrison JA.The Nitrogen Cycle: Of Microbes and Men.Visionlearning[EB/OL].Vol.EAS-2(4), 2003.http://www.visionlearning.com/library/module_viewer.php?mid=98
    Heckman D S, Geiser D M, Eidell B R, etal.2001.Molecular evidence for the early colonization of land by fungi and plants[J].Science, 293(5532): 1129-1133.
    Hiscock KM, Lloyd JW, Lerner N.An engineering solution to the nitrate pollution of bore hole at Swaffham, Norfolk, U.K[J].Journal of Hydrology, 1989, 107: 267-281
    James N.Galloway, Alan R.Townsend, Erisman JW, etal.2008.Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential SoIutions[J].Science.320(5878): 889-892
    Katz B G, Griffin D W.Using chemical and microbiological indicators to track the impacts from the land application of treated municipal wastewater and other sources on groundwater quality in a karstic springs basin[J].Environmental Geologly.2008, 55 (206) :801—821
    Lee L.K, Groundwater Pollution and treatment fee that aroused by agriculture[J].Journal of soil and Water Concervation.1987, 42(1): 1-8
    Lutzoni F, Pagel M, Reeb V.Major fungal lineages are derived from lichen symbiotic ancestors[J].Nature.2001.411(7): 937-940.
    Macilwain C.US report raises fears over nitrate levels in water[J].Nature, 1995, 377: 4
    Maga E, Weisbrod N, Yakirevich A, Yechieli Y.The use of fluorescent dyes as tracers in highly saline groundwater[J].Journal of Hydrology.2008, vol 358(1-2): 124-133
    Manr Y J.Evaluation of the DiversiLab Systeme as a method for comparing genetic variation in Escherichia colifrom various carrier sources [J].South west Association of Clinical Microbiology (SWACM) Baton Roug.2002, 9(7) :427.
    Mohapatra BR, Broersmab K, Mazumder A.Differentiation of fecal Escherichia coli from poultry and free-living birds by (GTG)_5-PCR genomic fingerprinting[J].International Journal of Medical Microbiology.2008.298: 245-252
    Munoz L B, Blanch A R,.Machine learning methods for microbial source tracking[J].Environmental Modelling & Software, 2008.23(167):741-750
    Mulder A, Van deGraaf A A, Robertson L A, etal.1995.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J], FEMS Microb Eco, 116(3): 177-183
    Neely K W.Nitrate Overview for the Statewide Ambient Ground Water Quality Monitoring Program, 1990 - 2003 [EB/OL].Idaho Department of Water Resources Ground Water Quality Technical Brief.2005.online: http://www.idwr.idaho.gov
    Nesbitt H W, Markovics G Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of silici clastic sediments[J].Geochimica et Cosmochimica Acta, 1997,61: 1653-1670.
    Nguyet VTM, Goldscheider N Tracer tests, hydrochemical and microbiological investigations as a basis for groundwater protection in a remote tropical mountainous karst area, Vietanm[J].Hydrogeology Journal.2006,14(7): 1147-1159.
    Paul EA, Clark FE.Soil microbiology and Biochemistry[M], 1989.San Diego:Academic Press
    Plummera D J, Longb CS.Monitoring source water for microbial contamination:Evaluation of water quality measures[J].Water Research,2007, 41(589):3716-3728
    Pronk M, Goldscheider N, Zopfi J.Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system[J].Hydrogeology Journal, 2006,14(256): 473-484.
    Powlson D S, Brookes P C, Christensen B T.Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J].Soil Biology and Biochemistry.1987.19(3): 159 - 164.
    Rivett M O, Buss S R, Morgan P, et al.Bemment C D.Nitrate attenuation in groundwater: a review of biogeochemical controlling processes[J].Water Resources,2008, 42(16):4215-32.
    Roy S, Singh J S.Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest[J].Journal of Ecology.1994.82, 503-509.
    Sato K, Lwasa Y.Groundwater Updates[M].HongKong: Bestset Typesetter Ltd., 2000: 462-465.
    Satyendra Kumar, Khalid Habib, Tasneem Fatma.Endosulfan induced biochemical changes in nitrogen-fixing cyanobacteria[J].Science of the Total Environment, 2008, 403(1-3): 130-138
    Scholle G, Wolters V, Joergensen R G.Effects of mesofauna exclusion on the microbial biomass in two modern profiles[J].Biology and Fertility of Soils, 1992.12(1): 253-260.
    Schloter M, Dilly O, Munch JC.Indicators for evaluating soil quality[J].Agriculture, Ecosystems and Environment.2003.98(1-3): 255-262.
    Simpson J M.Microbial source tracking: State of the science[J].Environmental Science & Technology.2002, 36(24): 5279-5288
    Singh J S, Raghubanshi A S, Singh R S, Srivastava SC Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J].Nature, 1989.338(2):499-500.
    Shen Z L.Zhong Z X, Wang M, et al.Nitrogen pollution and transformation in groundwater system in urban area[A].The Proceedings of Scope Workshop on Groundwater Contamination in China.Beijing, 1995
    Smart P L, Laidlaw 1 M S, An evaluation of some fluorescent dyes for water tracing[J].Water Resources Research, 1977, 13(1): 15-33
    Smith K A, Ball T, Conen F, etal.Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes[J].European Journal of Soil Science.2003.54(4):779-791.
    Source Molecular.Source molecular corporation microbial source tracking[EB/OL].2005.online: http://www.sourcemolecular.com/.
    Spalding R F, Exner M E.Occurrence of Nitrate in Groundwater-A Review[J].J.Environ.Qual.1993,22:392-402
    Shurbaji A R M,Philips F M.A numerical model for the movement of H_2O,H_2~(18)O,and ~2HHO in the unsaturated zone[J].Journal of Hydrology.1995,171:125-142
    The ribo printer microbial characterization system[EB/OL].2004.online:http://www2.dupont.com/Qualicon/en_US/assets/downloads/rpbroch.pdf.
    Van Bruggen AHC,Semenov AM.In search of biological indicators for soil health and disease suppression[J].Applied Soil Ecology.2000,15:13-24
    Vincenzi V,Gargini A,Goldscheider N.Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the Northern Apennines(Italy)[J].Hydrogeology Journal.2009,17(1):135-150
    Vincent JM.Nitrogen Fixation in Legumes.National Library of Australia Cataloguing in Publication Data,Australia.1982
    Vossbrinck CR,Co leman DC,Woolley TA.A biotic and biotic factors in litter decomposition in a semiarid grassland[J].Ecology,1979.60,265-271.
    White WB.Karst hydrology:recent developments and open questions[J].Engineering Geology 2002,65(8):85-105
    Winogradsky S.1890.Recherches surles organismes de la nitrification[J].Ann Inst Pasteur,4:259-270
    World Health Organization(WHO).Environmental levels and human exposure[EB/OL].http://www.who.int/water_sanitation_health/GDWQ/Chemicals/nitratenitritefull.htm Environmental,http:PPwww.who.int/,2001.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社.1991.1:19-29
    蔡晓布,冯固,钱成,等.丛枝菌根真菌对西藏高原草地植物和土壤环境的影响[J].土壤学报.2007.144(1):63-73
    蔡明刚,黄奕普,陈敏等.厦门岛南岸地下水的氢氧同位素的示踪研究[J].海洋科学.2003,27(9):1-61
    陈效民;吴华山;孙静红.太湖地区农田土壤中铵态氮和硝态氮的时空变异[J].环境科学.2006,vol 27(6):1217-1222
    陈子明,袁锋明,姚造华,等.氮肥施用对土体中氮素移动利用及其对产量的影响[J].土壤肥料.1995,4:36-42
    陈玉奇.索风营水电站导流洞岩溶管道封堵处理[J].贵州水力发.2003,17(2):42-45
    仇少君,彭佩钦,刘强,等.土壤微生物生物量氮及其在氮素循环中作用[J].生态学杂志.2006.25(4):443-448
    崔剑波,庄季屏.田间非饱和流条件下土壤硝态氮运移的模拟[J].应用生态学报.1997,8(1):49-54
    丁坚平,毛健全,杨先寿,王伍军.大干沟岩溶地下水磷污染评价[J].贵州工业大学学报(自然科学版).2001,vol 3(01):16-20
    丁坚平,毛健全等.贵阳大坝地区岩溶地下水氟污染及其防治[J].贵州环保科技,1998,4(3):5-8
    丁坚平,蔡良钧,毛健全,等.扎塘赤泥库渗漏污染评价及治理研究[J].中国岩溶.2003,22(2):124-129
    党民团.氮素化肥的污染现状与防治对策[J].渭南师范学院学报.2003.18(2):50-51
    董章杭,李季,孙丽梅,集约化蔬菜种植区化肥施用对地下硝酸盐污染影响的研究——以“中国蔬菜之乡”山东省寿光市为例[J],农业环境科学学报,2005,24(6):1139-1114.
    董悦安.温度变化对地下水中微生物影响的研究[J].勘察科学技术.2008.2:15-19
    高雪峰,韩国栋,张功,等.放牧对荒漠草原土壤微生物的影响及其季节动态研究[J].土壤通报.2007,38(1):145-148
    巩建华,柯尊伟,李季,等.河北省藁城市蔬菜种植区化肥施用与地下水硝酸盐污染研究[J],农村生态环境,2004,20(1):56-59.
    苟莎,黄钧.异养硝化细菌脱氮特性及研究进展[J].微生物学通报.2009,36(2):255-260
    顾慰祖,陆家驹,赵霞,Peters NE.无机水化学离子在实验流域降雨径流过程中的响应及其示踪意义[J].水科学进展.2007.18(1):1-7
    顾慰祖,林曾平,费光灿等.环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J].水科学进展.2000,11(1):14-20
    郭天财,宋晓,马冬云,等.氮素营养水平对小麦根际微生物及土壤酶活性的影响[J].水土保持学报.2006.20(3):129-132
    韩兴国,王智平.土壤生物多样性与微量气体(CO_2、CH_4、N_2O)代谢[J].生物多样性.2003.11(4):322-332.
    何宇彬.关于“喀斯特水系统”研究[J].中国岩溶.1997.16(1):67-73
    姜翠玲,夏自强,刘凌等.污水灌溉土壤及地下水三氮的变化动态分析[J].水科学进展.1997.8(2):183-187.
    金赞芳,叶红玉.氮同位素方法在地下水氮污染源识别中的应用[J].环境污染与防治.2006.vol 28(7):531-535
    姜勇,郝伟,张玉革,梁文举.北方潮棕壤的营养元素随土壤剖面的深度变化特征[J].水土保持学报.2006.20(3):93-97
    姜成林.放线菌研究[M].北京:科学出版社.1985
    郎赟超,刘丛强,李思亮.贵刚地表水)地下水的硫和氯同位素组成特征及其污染物示踪意义[J].地球科学进展.2008.23(2):151-160
    梁文举,施春健,姜勇.长期定位试验地耕层土壤氮素空间变异性及其应用[J].水土保持学报.2005.19(1):79-83
    雷宝坤,刘宏斌,段宗颜,张维理,杜彩艳.滇池流域设施条件下氮磷对土壤硝酸盐累积的影响[J].云南农业大学学报.2004.19(3):330-334
    李平,庞鸿宾,齐学斌,等.不同潜水埋深污水灌溉氮素运移试验研究[J].灌溉排水学报.2007.26(3):1-5
    李越中,郑是琳,姜广正.毛白杨落叶的分解及叶上小型真菌种群的演替[J].微生物学报.1992,32(4):299-304.
    李阜棣.当代土壤微生物学的活跃研究领域[J].土壤学报.1993.30(3):229-236
    李庆逵.我国土壤科学发展与展望[J].土壤学报.1989.26(3):207-216.
    李思亮刘丛强肖化云等.δ~(15)N在贵阳地下水氮污染来源和转化过程中的辨识应用[J].地球化学.2005,34(3):257-262
    李为,余龙江,袁道先,等.西南岩溶生态系统土壤微生物的初步研究[J].生态学杂志.2004,23(2):136-140
    李为,余龙江,李涛,等.岩溶生态系统土壤酶活性的时空动态及其与土壤肥力的关系--以桂林丫吉村岩溶试验场为例[J].农业环境科学学报.2008,27(1):260-266
    李丹,何腾兵,刘丛强,等.喀斯特山区土壤酶活性研究回顾与展望[J].贵州农业科学.2008,36(2):87-90
    李苍松,何发亮,梅志荣.昆仑山隧道渗漏水连通试验研究[J]现代隧道技术.2004,41(5):56-64
    李敬兰,李益民.广西龙布排泥库地下水多元示踪试验研究[J].安全与环境工程.2004, 11(1):59-62
    李政红,王东升.人为因素影响下浅层地下淡水氮浓度的演变[J].勘察科学技术.1999,1:37-41
    李晓明.西南岩溶区地下水环境告急[N].科学时报.2009.2.19,A1.北京:科学时报社
    黎宁,李华兴,朱凤娇,等.菜园土壤微生物生态特征与土壤理化性质的关系[J].应用生态学报.2006,17(2):285-290
    刘兴云,曾昭建.地下水多元示踪试验在岩溶地区的应用[J].岩土工程技术.2006.20(2):67-70
    刘文桃,林亚萍,李家鹏,等.扬州市蔬菜硝酸盐污染现状调查及分析[J].安徽农业科学.2005.14(3):75-79
    刘骅,林英华,张云舒,等.长期施肥对灰漠土生物群落和酶活性的影响[J].生态学报.2008.28(8):3898-3905
    刘江霞,罗泽娇,靳孟贵,等.地下水有氧反硝化的固态有机碳源选择研究[J].生态环境2008,17(1):41-46
    刘培斌,丁跃元,张瑜芳.田间一维饱和一非饱和土壤中氮素运移与转化的动力学模式研究[J].土壤学报.2000.37(4):490-498
    刘光尧,陈建生.同位素示踪测井[M].南京:江苏科学技术出版社,1999:15-18
    娄隆厚.微生物在土壤养分转化中的作用.北京:科学出版社.1962
    刘凌,王瑚.地下水污染趋势预测研究[J].水文,1998,2:26-30.
    罗安程,孙羲.施肥土壤中微生物区系和无机磷溶解及有机磷矿化的影响[J].土壤通报.1995,26(2):73-751
    罗泽娇,靳孟贵.地下水三氮污染的研究进展fJ].水文地质工程地质.2002.4:65-69
    马宗斌,熊淑萍,何建国,等.氮素形态对专用小麦中后期根际土壤微生物和酶活性的影响[J].生态学报.2008.28(4):1544-1551
    毛健全.钡渣的浸出淋溶试验及渣场防渗处理[J].贵州化工,2000,25(71):26-29.
    牛红榜,刘万学,万方浩.紫茎泽兰(Agera tina adenophora)入侵对土壤微生物群落和理化性质的影响.生态学报.2007,27(7):3051-3061
    乔光建,张均玲,唐俊智.地下水氮污染机理分析及治理措施[J],水资源保护,2000,3:140-144.
    瞿思敏,包为民,McDonnel JJ,余钟波,石朋.同位素示踪剂在流域水文模拟中的应用[J1].水科学进展.2008.19(4):587-597
    任福弘,孙继朝,张胜,等.包气带土体生物地球化学特征与氮转化研究--以河北平原正定试验场剖面为例.地球学报.2001.22(4):324-328
    申宏岗,曹建华,潘根兴.岩溶生态系统中土壤微生物量氮含量及其变化规律.生态环境2007,16(6):1728-1732
    沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社.1993:136-141
    孙波,郑宪清,胡锋,等.水热条件与土壤性质对农田土壤硝化作用的影响[J].环境科学.2009,30(1):206-213
    汪进良,姜光辉,侯满福,等.2005.自动化监测电导率在盐示踪试验中的应用--以云南八宝水库盐示踪试验为例[J].地球学报.26(4):371-374.
    汪华,杨京平,金洁,等.不同氮素用量对高肥力稻田水稻-土壤-水体氮素变化及环境影响分析[J].水土保持学报.2006.vol 20(4):123-126
    汪华,杨京平,徐伟,等.分次施氮对水稻根际土壤微生物生态效应的影响[J].水土保持学报.2006.vol 20(1):50-55
    王耀兵,关道明.2006.我国近岸海域微生物源示踪监测技术的研发[J].海洋环境科学.25(3):67-70
    王朝辉,李生秀,王西娜,苏涛.旱地土壤硝态氮残留淋溶及影响因素研究[J].土壤,2006,38(6):676-681
    王世杰,孙承兴,冯志刚,刘秀明.发育完整的灰岩风化壳及其矿物学与地球化学特征[J].矿物学报.2002.22(1):19-29.
    王家玉.土壤微生物的数量与土壤肥力的关系[J].土壤通报.1984,5:274-278
    王国祥,濮培民,黄宜凯,等.太湖反硝化、硝化、亚硝化及氨化细菌分布及其作用[J].应用与环境生物学报.1998,5(2):190-194
    吴耀国.地下水环境中的反硝化作用[J].环境污染治理技术与设备.2002.3(3):27-31
    薛璟花,莫江明,李炯,等.氮沉降增加对土壤微生物的影响[J].生态环境.2005,14(5):777-782
    许光辉,郑洪元,张德生,等.长白山北坡自然保护区森林土壤微生物生态分布及其生化特性的研究[J].生态学报.1984,4(3):207-223.
    杨琰,蔡鹤生,刘存寓,等.NO_3~-中~(15)N和~(18)O同位素新技术在岩溶地区地下水氮污染研究中的应用--以河南林州食管癌高发区研究为例[J].中国岩溶,2004.9,23(3):141-147.
    杨涛,赵东力,王让,等.焦作市岩溶地下水污染状况分析及防治措施[J].环境保护与循环经济.2008,10:52-55
    杨立铮,刘俊业.试用示踪剂浓度--时间曲线分析岩溶管道的结构特征[J].成都理工大学学报(自然科学版).1979.4:43-49
    扬天珩,王运国.水环境中三氮转化的化学动力学规律及其在环境评价中的应用[J].吉林地质,1990.2:13-28
    余龙江,李为,栗茂腾,等.西南岩溶生态系统脆弱性的生物学诊断及其治理的生物技术[J].地球科学进展.2006,21(3):228-234
    于乃琇,李宽良,韦漫春.三氮迁移转化过程中的质量不守恒问题及其石柱模拟方法途径[J].成都地质学院学报.1993.20(3):108-115
    袁道先等.中国岩溶学[M],北京:地质出版社.1993:
    袁道先等.中国岩溶动力系统[M],北京:地质出版社.2002:
    袁道先,刘再华等.碳循环与岩溶地质环境[M],北京:科学出版社.2003:
    袁锋明,陈子明,姚造华等,北京地区潮土表层中NO_3~--N的转化积累及其淋失损失[J].土壤学报.1995,32(4):388-398.
    曾庆武.反硝化细菌的分离筛选及应用研究.硕士学位论文.武汉:华中农业大学.2008:1-80
    张翠云,钟佐燊,沈照理.地下水硝酸盐中氧同位素研究进展[J].地学前缘.2003.10(2):287-291
    张大捷,王陶亮,翟辉.娘子关泉域岩溶地下水水质污染现状及成因分析[J].安全与环境工程.2004,vol 11(1):57-59
    张萍,郭辉军,刀志灵,等.高黎贡山土壤微生物的数量和多样性[J].生物多样性.1999,7(4):294-302.
    张艳芬,辛明秀,高文臣等,硝化细菌及其在污水脱氮中的作用[J].环境污染与防治(网络版).2007.37(6):http://www.zjepc.com/upload/rudearticle/2007/200771611811.doc
    赵其国.民以食为天,食以净为本[J].土壤,2005,37(1):1-7
    赵慧斌.龙子祠泉岩溶水污染成因及防治对策[J].科技情报开发与经济.2006.16(17):179-181
    郑凤英,罗伟雄,李乐,等.威海市区黑松沿海防护林土壤养分和微生物的研究[J].生态环境.2008,17(4):1590-1594
    郑宪清,孙波,胡锋,等.中亚热带水热条件对农田置换土壤硝化强度的影响[J].生态学报.2009,29(2):1024-1031
    郑克勋.地下水人工化学连通示踪理论及试验方法研究[硕士学位论文].南京:河海大学,2007:16-19
    周立,黄峰源,王世梅.好氧反硝化菌的分离及其在土壤氮素转化过程中的作用[J].土壤学报.2006,43(3):430-435.
    中华人民共和国国土资源部,2006年度中国地质环境公报[EB/OL],2007,on line:http://wcm.mlr.gov.cn/html/specialtopic/dlc/communique/geo-environment_2006/default.htm
    邹汉玄,孙定国,杨先跃,等.土壤微生物对柑橘生长及产量的影响[J].果树科学.1984,11(1):19-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700