MicroRNA-133b在结直肠癌细胞系中靶基因的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:结直肠癌(Colorectal carcinoma, CRC)是常见的消化道恶性肿瘤之一,全球CRC的发病率均呈上升趋势。CRC的发生发展过程与众多肿瘤相关因子的异常表达及功能改变有关。
     miRNA是一类内源性的非编码单链RNA,由22个左右核苷酸组成,其靶向抑制mRNA的翻译或直接将其降解,使靶基因在转录后水平的表达受到抑制,从而起到基因表达的调控作用。2003年,Michael等最早报道了miRNA在人结直肠癌组织和正常结直肠黏膜中的差异表达,检测到28种miRNAs表达发生了变化,其中miR-143和miR-145在癌组织中表达较正常组织明显降低。随后的研究发现众多miRNA参与了CRC的发生发展过程,并与CRC的诊断、分期、治疗与预后等密切相关。miRNA通过调控不同的靶基因在肿瘤中起到类似于原癌基因或抑癌基因的作用。miR-133b最初被认为是一种心肌特异性的miRNA,在心肌的发育和功能维持方面起重要作用。近年有研究小组几乎同时发现miR-133b在肺癌、食道癌、舌癌、胃癌、膀胱癌等不同肿瘤中表达失调,并具有明确的肿瘤抑制效应。胡桂等首次通过研究证实了miR-133b在结直肠癌组织及细胞系中的表达明显下调,且与结直肠癌细胞的恶性程度密切相关;功能实验进一步证实miR-133b可抑制结直肠癌细胞的侵袭和迁移,并具有明显的细胞周期阻滞的作用;动物实验发现在裸鼠体内同样有明确的肿瘤抑制作用。尽管如此,miR-133b在CRC中的作用机制仍不明确,需进行进一步研究。
     研究目的:本实验在前期实验的基础上,通过细胞转染建立miR-133b高表达的结直肠癌细胞系,并与未转染的结直肠癌细胞对比进行基因芯片高通量测序及基因的功能注释,筛选出miR-133b在CRC中可能相关的靶基因。
     材料与方法:本研究选用两种购白ATCC细胞库的结直肠癌细胞系SW620及HT29,将细胞分成4组进行细胞转染。实验分组为miR-133b mimics转染组(用Lipofectamine2000即Lipo2000转染miR-133b mimics),NC转染组(用Lipo2000转染miR negative control),空白组(Blank,加入与前2组等量的Lipo2000,无niRNA片段),对照组(Control,细胞常规培养,不加入Lipo2000和miRNA片段)。将转染后细胞进行倒置荧光显微镜下的荧光显色情况观察,并采用real-time PCR的方式检测各组细胞中miR-133b的表达情况,评价其转染效率。将成功转染了miR-133b mimics的两种细胞分别与相应细胞的NC转染组配对进行Agilent人全基因表达谱芯片的高通量测序。检测出的差异基因初步根据基因在miR-133b组中表达下调、P<0.05、FC (abs)≥1.5这几个条件进行筛选,然后进一步与miRNA靶基因预测软件(miRBase, PicTar, TargetScan)进行比对,最终筛选出的基因行GO分子功能和Pathway信号通路富集度统计分析。
     结果:
     1.转染结直肠癌细胞系后miR-133b表达的检测
     miR-133b mimics转染CRC细胞系SW620及HT29的最佳浓度为80nM,转染效率可达50%左右。通过Real-time PCR法检测miR-133bmimics转染组,NC转染组,空白组及对照组中miR-133b的相对表达率(RQ)。以对照组中miR-133b相对表达率为1,以RQ=2-△△CT为公式计算其他各组的RQ值,在SW620细胞系中,miR-133b mimics转染组miR-133b的表达(502.461±16.837)显著上调(P=0.000563);NC转染组miR-133b的表达(0.841±0.305)无明显改变(P=0.537648);空白组miR-133b的表达(0.803±0.284)无明显改变(P=0.431831);NC转染组与空白组比较miR-133b的表达无明显差异(P=0.910242)。在HT29细胞系中,miR-133b mimics转染组miR-133b的表达(332.386±13.039)显著上调(P=0.000773);NC转染组miR-133b的表达(0.870±0.219)无明显改变(P=0.490357);空白组miR-133b的表达(0.767±0.356)无明显改变(P=0.451923);NC转染组与空白组比较miR-133b的表达无明显差异(P=0.807844)。
     2.人全基因表达谱筛选靶基因的分析
     运用Agilent人全基因表达谱芯片标记出的差异基因数,SW620细胞系为34364个,HT29细胞系为39443个。符合在miR-133b组中表达下调、P<0.05.FC(abs)≥1.5这几个标准的差异基因数,SW620细胞系有346个,HT29细胞系有354个。运用三种不同的microRNA靶点预测软件(miRBase, PicTar, TargetScan)最终筛选出9个相关靶基因,SW620细胞系有7个靶基因:latent transforming growth factor beta binding protein1(NM_206943), contactin associated protein1(NM_003632), human immunodeficiency virus type I enhancer binding protein2(NM_006734), dual specificity phosphatase5(NM_004419) connective tissue growth factor (NM_001901), yippee-like2(Drosophila)(NM_001005404),GABA(A) receptor-associated protein like1(NM_031412)。 HT29细胞系有2个靶基因:family with sequence similarity19(chemokine (C-C motif)-like), member A5(NM_015381), beta-1,3-N-acetylgalactosaminyltransferase1(globoside blood group)(NM001038628)。
     将以上9个靶基因经分子功能注释系统(Molecule Annotation System,MAS3.0)进行相应的GO分子功能和Pathway信号通路富集度统计分析。B3GALNT1主要定位在高尔基体膜上,与镁离子结合有关,参与部分糖蛋白的代谢过程,并有转移酶活性。CNTNAP1主要定位于细胞膜上,为一种细胞粘附分子,有受体活性,有信号传导功能,并与SH2/SH3结合有关。CTGF主要定位于细胞膜上或细胞间质中,是一种生长因子,与整合素、胰岛素样生长因子、成纤维细胞生长因子等信号通路有关,还与细胞形态、运动、粘附、迁移、分化,表皮生长,组织形成,血管生成,骨化、软骨缩合等多种生物学过程有关。DUSP5定位于细胞核,主要参与氨基酸去磷酸化,还有酪氨酸磷酸酶、MAPK磷酸酶、水解酶等活性,并与MAPK信号通路有关。GABARAPL1在细胞内各处均存在,能调节自噬作用,与蛋白结合,如GABA受体、β-微管蛋白等。HIVEP2主要定位于细胞核上,与DNA连接,金属离子的结合有关,调控转录过程。LTBP1定位于细胞间质、细胞质和细胞核上,与钙离子、生长因子等结合有关,有TGF-β受体活性,并参与其信号通路。FAM19A5主要定位于细胞间质或者细胞膜上,YPEL2主要定位于细胞核上。
     结论:1.miR-133b mimics可成功转染于结直肠癌细胞系SW620及HT29,且在这两种细胞系中高表达。2.经过基因芯片及靶基因预测软件筛选出miR-133b相关的9个靶基因,分别为B3GALNT1、 CNTNAP1、CTGF、DUSP5、GABARAPL1、HIVEP2、LTBP1、 FAM19A5及YPEL2,通过功能注释后发现其中有部分基因功能可能参与了结直肠癌的发生发展、侵袭转移等重要过程。
Background:Colorectal carcinoma (CRC) is one of the common malignant tumors of the digestive tract and the incidence of CRC is on the rise worldwide. The development of CRC is related to abnormal expression and functional changes of tumor factors. MicroRNAs is a sort of endogenous non-coding RNA which consists of about22nucleotides and it regulates gene expression in a posttranscriptional manner by inhibiting translation of target mRNAs or even degrading them. In2003, Michael first reported that MicroRNAs are differentially expressed between human colorectal cancer and normal colorectal mucosa, and he detected expression changes in28kinds of miRNAs, among which the expression of miR-143and miR-145in cancerous tissue decreased obviously than that of normal tissue. Subsequent studies found numerous MicroRNAs involved in the development process of CRC and closely related to the diagnosis, staging, treatment and prognosis of CRC. MicroRNAs played a part in tumors as proto-oncogenes or cancer suppressor genes by regulating different target genes. miR-133b was initially considered to be a muscle-specific miRNA which was playing an important role in cardiac development and function maintenance. In recent years many research teams have found miR-133b which especially had a clear tumor inhibition effect expressed disorder in lung cancer, esophageal cancer, tongue carcinoma, gastric cancer, bladder cancer and so on. In China, Hu G confirmed that miR-133b in colorectal cancer tissues and cell lines significantly downgraded which was closely related to the degree of malignant colorectal cancer cells. Functional experiments further confirmed that miR-133b could inhibit the invasion and migration colorectal of cancer cells and had obviously effect in cell cycle blocking. Animal experiments also found that miR-133b had definite inhibitory effect on the tumor of nude mice. However, the precise role of miR-133b in CRC remains largely unknown and needs to be studied further.
     Objectives:This experiment was on the basis of preliminary experiments and intended to establish the colorectal cancer cell lines which miR-133b expressed highly by cell transfection, then compared with non-transfection of colorectal cancer cells for gene chip of high-throughput sequencing and gene function annotation until the target genes of miR-133b probably related to CRC were selected.
     Materials and Methods:Two colorectal cancer cell lines SW620and HT29were chosen in our study bought from ATCC cell bank, and divided into four groups to be transfection. They were experimental group for miR-133b mimics transfection group (Lipofectamine2000means Lipo2000transfection miR-133b mimics), NC transfection group (Lipo2000transfection miR negative control), Blank group (Blank, add an equal amount with the former two groups of Lipo2000, without miRNAs), and Control group (Control, routine culture cells, without Lipo2000and miRNAs). The cells were inverted after transfecting in fluorescence microscope to observe the fluorescent chromomeric condition used the method of real-time PCR to detect the expression of miR-133b in each cell, and evaluated its transfection efficiency. The two kinds of cells which were successful transfected by miR-133b mimics matching to corresponding NC transfection group were taken to do the Agilent SurePrint G3Human Gene Expression8x60K. The differential genes which detected according to the gene microarray were screened by the conditions such as down-regulated expression in miR-133b, P<0.05, FC (abs)≥1.5, and further compared with the miRNA target genes prediction software(miRBase, PicTar, TargetScan). Finally the screened genes would be taken to GO molecular functions and Pathway signal Pathway enrichment degree of statistical analysis.
     Results:
     1. Detection of the expression of miR-133b in colorectal cancer cell line after transfecting
     The optimal concentration of miR-133b mimics transfecting CRC cell line SW620and HT29was80nM and the transfecting efficiency could reach about50%. We detected the relative expression rate of miR-133b(RQ) in miR-133b mimics transfection group, NC transfection group, blank group and control group by Real-time PCR. Taken the relative expression rate of miR-133b in the control group to1, and we calculated RQ (RQ=2-△△CT) values of other groups. In cell line SW620, the expression of miR-133b (502.461±16.837) increased significantly in miR-133b mimics transfection group (P=0.000563), the expression of miR-133b (0.841±0.305) in NC transfection group had no significant change (P=0.537648), the expression of miR-133b (0.803±0.284) in Blank group had no significant change (P=0.431831), and the expression of miR-133b had no difference between NC transfection group and Blank group(P=0.910242). In cell line HT29, the expression of miR-133b (332.386±13.039) increased significantly in miR-133b mimics transfection group (P=0.000773), the expression of miR-133b (0.870±0.219) in NC transfection group had no significant change (P=0.490357), the expression of miR-133b (0.767±0.356) Blank group had no significant change (P=0.451923), and the expression of miR-133b had no difference between NC transfection group and Blank group(P=0.807844).
     2. Analysis of Agilent SurePrint G3Human Gene Expression8x60K
     We used the Agilent SurePrint G3Human Gene Expression8x60K to detect the number of genetic differences, and34364genes in cell line SW620and39443in cell line HT29were detected. Under the conditions such as gene down-regulated expression in miR-133b, P<0.05, FC(abs)≥1.5, there were346genes in cell line SW620and354in cell line HT29. After using the miRNA target genes prediction software (miRBase, PicTar, TargetScan), there were finally9genes.7genes in cell line SW620were:latent transforming growth factor beta binding protein1, contactin associated protein1, human immunodeficiency virus type I enhancer binding protein2, dual specificity phosphatase5(NM_004419), connective tissue growth factor, yippee-like2(Drosophila), GABA(A) receptor-associated protein like1.2genes in cell line HT29were:family with sequence similarity19(chemokine (C-C motif)-like), member A5, beta-1,3-N-acetylgalactosaminyltransferase1(globoside blood group). The9target genes were analysed by GO molecular functions and Pathway signal Pathway enrichment degree statistically of Molecule Annotation System (MAS3.0). B3GALNT1mainly located in the golgi membrane, related to magnesium ion binding, joined part of protein amino acid glycosylation and had transferase activity. CNTNAP1mainly located in cell membrane, as a kind of cell adhesion molecules, had receptor activity and signal transduction, and related to SH2/SH3binding. CTGF mainly located in cell membrane or cytoplasm, it was a kind of growth factor, related to integrin, insulin-like growth factor, fibroblast growth factor signaling pathway and cell morphology, motion, adhesion, migration, differentiation, epidermal growth, organization form, angiogenesis, ossification, cartilage condensation and other biological processes. DUSP5located in cell nucleus, mainly joined amino acid dephosphorylation and related to the activity of tyrosine phosphatase, hydrolase and MAP kinase phosphatase, and associated with signal pathway. GABARAPL1existed in everywhere in the cell, it could help regulate autophagy, combined with proteins such as GABA receptors, beta-tubulin and so on. HIVEP2mainly located in cell nucleus, related to DNA binding, metal ions binding and regulated the transcription process. LTBP1located on mesenchymal, cytoplasm and nucleus, related with calcium ion binding, growth factors binding, had the TGF-beta receptor activity, and participated in its signal path. FAM19A5mainly located in mesenchymal or membranes. YPEL2mainly located in the nucleus.
     Conclusion:1.We successfully transfected miR-133b mimics in colorectal cancer cell line SW620and HT29, and made miR-133b express highly in both of them.2.We screened9target gene of miR-133b by gene chip and target gene prediction software, as B3GALNT1, CNTNAP1, CTGF, DUSP5, GABARAPL1, HIVEP2, LTBP1, FAM19A5and YPEL2. After functional annotation we found some of them might participate in the development, invasion, metastasis and other important process of colorectal cancer.
引文
[1]Selbach, M., et al. Widespread changes in protein synthesis induced by microRNAs. Nature.2008,455(7209):p.58-63.
    [2]Michael, M. Z., et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res.2003,1(12):p.882-91.
    [3]Lanza, G., et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer.2007,6:p.54.
    [4]Lee, H. C., et al. Prognostic impact of microRNA-related gene polymorphisms on survival of patients with colorectal cancer. J Cancer Res Clin Oncol.2010,136(7):p.1073-8.
    [5]Croce, C.M. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet.2009,10(10):p.704-14.
    [6]Schipper, M. E., et al. Changes in regulatory microRNA expression in myocardium of heart failure patients on left ventricular assist device support. J Heart Lung Transplant.2008,27(12):p.1282-5.
    [7]Sucharov, C., M. R. Bristow and J. D. Port. miRNA expression in the failing human heart:functional correlates. J Mol Cell Cardiol.2008, 45(2):p.185-92.
    [8]Crawford, M., et al. MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun.2009,388(3): p.483-9.
    [9]Kano, M., et al. miR-145, miR-133a and miR-133b:Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer.2010,127(12):p.2804-14.
    [10]Wong, T. S., et al. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer.2008,123(2):p.251-7.
    [11]Guo, J., et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009,24(4):p.652-7.
    [12]Ichimi, T., et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer.2009,125(2): p.345-52.
    [13]. 胡桂等.microRNA-133b抑制人结直肠癌裸鼠皮下种植瘤生长.第三军医大学学报[J].2012(16).
    [14]Hu, G., et al. miR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol Ther.2010,10(2):p.190-7.
    [15]Ferlay, J., et al. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008. Int J Cancer.2010,127(12):p.2893-917.
    [16]Akao, Y., Y. Nakagawa and T. Naoe. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006,29(5):p.903-6.
    [17]Tazawa, H., et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A.2007,104(39):p.15472-7.
    [18]Nagel, R., et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res.2008,68(14): p.5795-802.
    [19]Asangani, I. A., et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008,27(15):p.2128-36.
    [20]胡桂等.microRNA-133b抑制人结直肠癌细胞迁移和侵袭的研究[J].中国普通外科杂志.2010(04).
    [21]Jemal, A., et al. Global cancer statistics. CA Cancer J Clin. 2011,61(2):p.69-90.
    [22]Parkin, D. M., et al. Global cancer statistics,2002. CA Cancer J Clin.2005,55(2):p.74-108.
    [23]Labianca, R. and B. Merelli. Screening and diagnosis for colorectal cancer:present and future. Tumori.2010,96(6):p.889-901.
    [24]Sonachalam, M., et al. Systems biology approach to identify gene network signatures for colorectal cancer. Front Genet.2012,3:p.80.
    [25]Malumbres, M. miRNAs and cancer:An epigenetics view. Mol Aspects Med.2012.
    [26]Xiao, X., et al. Screening for cancer associated MiRNAs through co-gene, co-function and co-pathway analysis. Comput Biol Med.2012, 42(5):p.624-30.
    [27]Drakaki, A. and D. Iliopoulos. MicroRNA Gene Networks in Oncogenesis. Curr Genomics.2009,10(1):p.35-41.
    [28]Tang, J. T. and J. Y. Fang. MicroRNA regulatory network in human colorectal cancer. Mini Rev Med Chem.2009,9(8):p.921-6.
    [29]Li, X. M., et al. Down-regulation of miR-126 expression in colorectal cancer and its clinical significance. Med Oncol.2011,28(4): p.1054-7.
    [30]Valeri, N., et al. Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci U S A.2010,107(15):p.6982-7.
    [31]Akcakaya, P., et al. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol.2011,39(2):p.311-8.
    [32]胡桂.microRNA-133b在结直肠癌中的表达及功能研究.中南大学.2010.
    [33]张艳飞,刘莉与丁彦青.具有相同遗传背景的人结肠癌细胞系生物学特性的鉴定[J].临床与实验病理学杂志.2008(01).
    [34]Deleavey, G. F. and M. J. Damha. Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol.2012,19(8):p. 937-54.
    [35]Noble, J.E., et al. The effect of overhanging nucleotides on fluorescence properties of hybridising oligonucleotides labelled with Alexa-488 and FAM fluorophores. Biophys Chem.2005,113(3):p.255-63.
    [36]Painter, H. J., et al. Whole-genome analysis of Plasmodium spp. Utilizing a new agilent technologies DNA microarray platform. Methods Mol Biol.2013,923:p.213-9.
    [37]Thadani, R. and M. T. Tammi. MicroTar:predicting microRNA targets from RNA duplexes. BMC Bioinformatics.2006,7 Suppl 5:p. S20.
    [38]Volinia, S., et al. Identification of microRNA activity by Targets' Reverse EXpression. Bioinformatics.2010,26(1):p.91-7.
    [39]Hu, Z. Insight into microRNA regulation by analyzing the characteristics of their targets in humans. BMC Genomics.2009,10:p. 594.
    [40]Zheng, H., et al. Advances in the Techniques for the Prediction of microRNA Targets. Int J Mol Sci.2013,14(4):p.8179-87.
    [41]John, B., C. Sander and D. S. Marks. Prediction of human microRNA targets. Methods Mol Biol.2006,342:p.101-13.
    [42]Sethupathy, P., M. Megraw and A. G. Hatzigeorgiou. A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods.2006,3(11):p.881-6.
    [43]Kozomara, A. and S. Griffiths-Jones. miRBase:integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res.2011, 39(Database issue):p. D152-7.
    [44]Griffiths-Jones, S., et al. miRBase:tools for microRNA genomics. Nucleic Acids Res.2008,36(Database issue):p. D154-8.
    [45]Lewis, B. P., C. B. Burge and D. P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell.2005,120(1):p.15-20.
    [46]Lewis, B. P., et al. Prediction of mammalian microRNA targets. Cell.2003,115(7):p.787-98.
    [47]Krek, A., et al. Combinatorial microRNA target predictions. Nat Genet.2005,37(5):p.495-500.
    [48]Sood, P., et al. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A.2006,103(8):p.2746-51.
    [49]Li, L. and A. H. Ross. Why is PTEN an important tumor suppressor? J Cell Biochem.2007,102(6):p.1368-74.
    [50]Cully, M., et al. Beyond PTEN mutations:the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer.2006, 6(3):p.184-92.
    [51]Yoshioka, K. Scaffold proteins in mammalian MAP kinase cascades. J Biochem.2004,135(6):p.657-61.
    [52]Kohno, M. and J. Pouyssegur. Pharmacological inhibitors of the ERK signaling pathway:application as anticancer drugs. Prog Cell Cycle Res.2003,5:p.219-24.
    [53]Hoshino, R., et al. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene.1999,18(3):p.813-22.
    [54]Murat, C. B., et al. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas. Braz J Med Biol Res.2012, 45(9):p.851-5.
    [55]Vogt, P. K., et al. Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem Sci,2007.32(7):p.342-9.
    [56]Reif, K., et al. Cutting edge:differential roles for phosphoinositide 3-kinases, p110gamma and p110delta, in lymphocyte chemotaxis and homing. J Immunol.2004,173(4):p.2236-40.
    [57]Saito, T., et al. Expression of EphA2 and E-cadherin in colorectal cancer:correlation with cancer metastasis. Oncol Rep.2004, 11(3):p.605-11.
    [58]Ryden, M., et al. Adipose zinc-alpha2-glycoprotein is a catabolic marker in cancer and noncancerous states. J Intern Med.2012, 271(4):p.414-20.
    [59]Bing, C., et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci U S A.2004,101 (8):p.2500-5.
    [60]Mizoguchi, T., et al. Expression of the MDR1 gene in human gastric and colorectal carcinomas. J Natl Cancer Inst.1990,82(21):p.1679-83.
    [61]Liotta, L.A., et al. Tumor cell autocrine motility factor. Proc Natl Acad Sci U S A.1986,83(10):p.3302-6.
    [62]Restucci, B., et al. Expression of E-cadherin, beta-catenin and APC protein in canine colorectal tumours. Anticancer Res.2009,29(8): p.2919-25.
    [63]Eble, J. A. and J. Haier. Integrins in cancer treatment. Curr Cancer Drug Targets.2006,6(2):p.89-105.
    [64]Mizejewski, G. J. Role of integrins in cancer:survey of expression patterns. Proc Soc Exp Biol Med.1999,222(2):p.124-38.
    [65]Bilgic, I., et al., Serum bFGF concentrations in gastric cancer patients. Bratisl Lek Listy,2008.109(1):p.8-9.
    [66]Elagoz, S., et al. The intratumoral microvessel density and expression of bFGF and nm23-H1 in colorectal cancer. Pathol Oncol Res. 2006,12(1):p.21-7.
    [67]El-Assal,0. N., et al. The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma. Clin Cancer Res.2001,7(5):p.1299-305.
    [68]de la Torre, N. G., et al. Angiogenesis and lymphangiogenesis in thyroid proliferative lesions:relationship to type and tumour behaviour. Endocr Relat Cancer.2006,13(3):p.931-44.
    [69]Kudo-Saito, C., et al. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009,15(3):p.195-206.
    [70]Nakazawa, Y., H. Arai and N. Fujita. The novel metastasis promoter Merml/Wbscr22 enhances tumor cell survival in the vasculature by suppressing Zacl/p53-dependent apoptosis. Cancer Res.2011,71(3):p. 1146-55.
    [71]Fang, Y. J., et al. Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer. Int J Colorectal Dis.2009,24(8):p.875-84.
    [72]Roger, L., et al. Gain of oncogenic function of p53 mutants regulates E-cadherin expression uncoupled from cell invasion in colon cancer cells. J Cell Sci.2010,123(Pt 8):p.1295-305.
    [73]Suzuki, H., et al. Nuclear beta-catenin expression at the invasive front and in the vessels predicts liver metastasis in colorectal carcinoma. Anticancer Res.2008,28 (3B):p.1821-30.
    [74]Wang, S. C., et al. Nuclear expression of CXCR4 is associated with advanced colorectal cancer. Int J Colorectal Dis.2010,25(10):p. 1185-91.
    [75]Jiang, Y., et al. Phosphatase PRL-3 is a direct regulatory target of TGFbeta in colon cancer metastasis. Cancer Res.2011,71 (1):p.234-44.
    [76]Pancione, M., et al. Prognostic role of beta-catenin and p53 expression in the metastatic progression of sporadic colorectal cancer. Hum Pathol.2010,41(6):p.867-76.
    [1]Malumbres, M. miRNAs and cancer:An epigenetics view. Mol Aspects Med.2012.
    [2]Rajewsky, N. microRNA target predictions in animals. Nat Genet. 2006,38 Suppl:p. S8-13.
    [3]Li, S. C., P. Tang and W. C. Lin. Intronic microRNA:discovery and biological implications. DNA Cell Biol.2007,26(4):p.195-207.
    [4]Selbach, M., et al. Widespread changes in protein synthesis induced by microRNAs. Nature.2008,455(7209):p.58-63.
    [5]Pillai, R. S. MicroRNA function:multiple mechanisms for a tiny RNA? RNA.2005,11(12):p.1753-61.
    [6]O'Hara, A. J., W. Vahrson and D. P. Dittmer. Gene alteration and precursor and mature microRNA transcription changes contribute to the miRNA signature of primary effusion lymphoma. Blood.2008,111(4):p. 2347-53.
    [7]Chuck, G., H. Candela and S. Hake. Big impacts by small RNAs in plant development. Curr Opin Plant Biol.2009,12(1):p.81-6.
    [8]Hackenberg, M., et al. miRanalyzer:a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res.2009,37(Web Server issue):p. W68-76.
    [9]Ambros, V., et al. A uniform system for microRNA annotation. RNA. 2003,9(3):p.277-9.
    [10]Meltzer, P. S. Cancer genomics:small RNAs with big impacts. Nature.2005,435(7043):p.745-6.
    [11]Ambros, V. MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing. Cell.2003,113(6):p.673-6.
    [12]Sempere, L. F., et al. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev Biol.2003,259(1):p.9-18.
    [13]Ahmed, F. E., et al. Differences in mRNA and microRNA microarray expression profiles in human colon adenocarcinoma HT-29 cells treated with either Intensity-modulated Radiation Therapy (IMRT), or Conventional Radiation Therapy (RT). Cancer Genomics Proteomics.2009, 6(2):p.109-27.
    [14]Liang, Y., et al. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics.2007,8:p.166.
    [15]Yang, H., et al. Direct, electronic microRNA detection for the rapid determination of differential expression profiles. Angew Chem Int Ed Engl.2009,48(45):p.8461-4.
    [16]Volinia, S., et al. Identification of microRNA activity by Targets' Reverse EXpression. Bioinformatics.2010,26(1):p.91-7.
    [17]Grun, D., et al. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol. 2005,1(1):p. e13.
    [18]Chen, C. H., M. Guo and B. A. Hay. Identifying microRNA regulators of cell death in Drosophila. Methods Mol Biol.2006,342:p.229-40.
    [19]Devor, E. J. Primate microRNAs miR-220 and miR-492 lie within processed pseudogenes. J Hered.2006,97(2):p.186-90.
    [20]Kawasaki, H., R. Wadhwa and K. Taira. World of small RNAs:from ribozymes to siRNA and miRNA. Differentiation.2004,72(2-3):p.58-64.
    [21]Meister, G., et al. Sequence-specific inhibition of microRNA-and siRNA-induced RNA silencing. RNA.2004,10(3):p.544-50.
    [22]Xiao, C. and K. Rajewsky. MicroRNA control in the immune system: basic principles. Cell.2009,136(1):p.26-36.
    [23]Kotaja, N., et al. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci U S A.2006,103(8):p.2647-52.
    [24]Liu, J., et al. A role for the P-body component GW182 in microRNA function. Nat Cell Biol.2005,7(12):p.1261-6.
    [25]Inomata, M., et al. MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood.2009, 113(2):p.396-402.
    [26]Tang, Y., et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res.2008,32(2):p.355-64.
    [27]Yao, Q., et al. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun.2009,388(3):p. 539-42.
    [28]Naguibneva, I., et al. The microRNA miR-181 targets the homeobox protein Hox-All during mammalian myoblast differentiation. Nat Cell Biol. 2006,8(3):p.278-84.
    [29]Fazi, F., et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell.2005,123(5):p.819-31.
    [30]Takanabe, R., et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun.2008,376(4):p.728-32.
    [31]Yang, H., et al. MicroRNA expression profiling in human ovarian cancer:miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res.2008,68(2):p.425-33.
    [32]Meyers, B.C., S. A. Simon and J. Zhai. MicroRNA processing:battle of the bulge. Curr Biol.2010,20(2):p. R68-70.
    [33]Ferlay, J., et al. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008. Int J Cancer.2010,127(12):p.2893-917.
    [34]Jemal, A., et al. Global cancer statistics. CA Cancer J Clin. 2011,61(2):p.69-90.
    [35]Michael, M. Z., et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res.2003,1(12):p.882-91.
    [36]Xi, Y., et al. Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights.2006,2:p.113-121.
    [37]Monzo, M., et al. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res,2008.18(8):p.823-33.
    [38]Bandres, E., et al., Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer.2006,5:p.29.
    [39]Chen, W. C., et al. microRNA expression pattern and its alteration following celecoxib intervention in human colorectal cancer. Exp Ther Med. 2012,3(6):p.1039-1048.
    [40]Lanza, G., et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer.2007,6:p.54.
    [41]Nagel, R., et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res.2008,68(14): p.5795-802.
    [42]Akao, Y., et al. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther.2010,17(6):p.398-408.
    [43]Kulda, V., et al. Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet.2010,200(2):p.154-60.
    [44]Chen, X., et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene.2009,28(10):p.1385-92.
    [45]Tsang, W. P. and T. T. Kwok. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis.2009, 30(6):p.953-9.
    [46]Zhang, H., Y. Li and M. Lai. The microRNA network and tumor metastasis. Oncogene.2010,29(7):p.937-48.
    [47]Hugo, H., et al. Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol.2007, 213(2):p.374-83.
    [48]Gregory, P.A., et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol.2008,10(5):p.593-601.
    [49]Burk, U., et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008,9(6):p.582-9.
    [50]Kulda, V., et al. Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet.2010,200(2):p.154-60.
    [51]Michael, M. Z., et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res.2003,1(12):p.882-91.
    [52]Selcuklu, S. D., M. T. Donoghue and C. Spillane. miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans.2009,37(Pt 4):p. 918-25.
    [53]Chang, K. H., et al. MicroRNA-21 and PDCD4 expression in colorectal cancer. Eur J Surg Oncol.2011,37(7):p.597-603.
    [54]Shweiki, D., et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature.1992, 359(6398):p.843-5.
    [55]Yamakuchi, M., et al. MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PLoS One.2011,6(5):p. e20291.
    [56]Dumoutier, L., et al. Cutting edge:STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol. 2001,167(7):p.3545-9.
    [57]Dews, M., et al. The myc-miR-17-92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res.2010,70(20):p.8233-46.
    [58]De Angelis, P.M., et al. Chromosomal gains and losses in primary colorectal carcinomas detected by CGH and their associations with tumour DNA ploidy, genotypes and phenotypes. Br J Cancer.1999,80(3-4):p. 526-35.
    [59]Yamakuchi, M., et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A,2010.107(14):p.6334-9.
    [60]Leslie, A., et al., The colorectal adenoma-carcinoma sequence. Br J Surg.2002,89(7):p.845-60.
    [61]Park, S. Y., et al. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol.2009,16(1):p.23-9.
    [62]Raver-Shapira, N., et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell.2007,26(5):p.731-43.
    [63]Tazawa, H., et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A.2007,104(39):p.15472-7.
    [64]Bommer, G. T., et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol.2007,17(15):p.1298-307.
    [65]Yamakuchi, M., M. Ferlito and C. J. Lowenstein. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A.2008, 105(36):p.13421-6.
    [66]Braun, C. J., et al. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res.2008,68(24):p. 10094-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700