干湿循环作用下含盐类遗址土盐渍劣化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在西北干旱和半干旱地区独特气候条件下遗存了大量珍贵的土遗址,如长城、故城等。这些宝贵的文化遗产不仅是智慧的结晶,也是政治、军事、科学、文化、经济和社会发展进程的历史见证,具有极其重要的意义。土遗址长期处在极端恶劣的气候环境之中,导致土体发育各种病害,其根本原因是土体劣化致使抵抗外界破坏能力下降所致。集中降雨和强烈蒸发的气候改变不但加剧了区域内的干湿循环,还加剧土的盐渍化,盐渍劣化成为西北地区土遗址中典型的工程地质问题之一。因此,加强干湿循环作用下盐分对遗址土的影响研究为预防这些建筑文物发生更大的变形破坏具有科学的指导性,同时也可为文物保护工作提供有效的具有针对性的理论依据。
     在对西北地区遗址土盐渍劣化定性认识的前提下,选择合理的盐分含量、类别开展干湿循环作用下的含盐遗址土盐渍劣化试验。通过对不同盐分类别、不同盐分含量的试块,在三次干湿循环后所进行的直接剪切试验、无侧限抗压试验以及抗拉试验,较为直观的认识不同盐分类别、盐分含量对含盐遗址土的盐渍劣化程度;通过声波试验,测试在干湿循环过程中含盐遗址土的结构变化,从宏观的角度表现遗址土盐渍劣化过程;通过微结构观测揭示含盐遗址土力学特性与其微结构各参数之间的内在联系,建立具有微结构变化特征背景的关系式,从微观层面研究干湿循环对遗址土盐渍劣化。
     主要研究成果为:(1)盐渍劣化后的遗址土力学性能测试表明:随着含盐量的增多,试样的黏聚力、抗压以及抗拉强度逐渐减小,内摩擦角则呈现先增大后减小的变化规律;掺入Na2SO4盐分的试样劣化程度更为严重,其表现出的力学性能也相应的比掺入NaCl盐分的试样有所降低;掺入复合盐(Na2SO4+NaCl)的试样,因为NaCl盐分的存在,致使Na2SO4的溶解度明显降低而提前析出,不具有表聚性,对试样整体破坏性最大,表面强度则介于掺入单盐的试样之间。(2)声波测试结果表明:经过三次干湿循环后的纵波波速相比第一次干湿循环后的纵波波速减小了10%以上,且随着含盐量的增加,波速减小幅度逐渐增大,从侧面证实了干湿循环作用下的含盐遗址土确实存在盐渍劣化的过程;经过回归分析发现,试样纵波波速与抗压、抗拉强度之间存在良好的幂指数关系,与抗剪强度之间的关系则表现较强的离散性。(3)通过微观结构观测,孔隙中确实存在针状的Na2SO4晶体以及颗粒状的NaCl晶体;随着含盐量的增加,微观结构类型由骨架状向基质状过渡,土颗粒表面的亮点增多,颗粒粒径趋于均一化,整体结构较为松散;利用多元逐步回归分析方法,分析盐渍劣化后遗址土力学强度参数与微结构参数之间的相关性,得出具有一定参考价值的回归方程和模型。
A large amount of precious relics of ancient earthen architecture sites have been saved under arid and semi-arid climatic conditions in Northwest, such as the Great Wall and the Jiaohe Ruins. These precious cultural heritages which are of extremely important, not only representative the achievement of wisdom, but also the historical evidence of the development process in political, military, scientific, cultural and economic. The reduction of the capacity to resist external damage is the root cause of the development of various diseases in soil site, which at the long-term adverse climate change in extreme environment. Evaporation of rainfall and a strong focus on climate change increased the wet and day cycles and salinization of soil, the latter becomes the typical engineering problems of soil sites in Northwest. Above all, concentrating on the research of wet and dry cycles of soil salinity on the soil site to prevent more damage to the heritage has a great significance, what' more, the research can provide effective theoretical basis on the protection of cultural relic.
     Choosing a reasonable salt content, the purpose is to do research on salt saline soil degradation test site by wet and day cycles under a premise of qualitative understanding to the soil salinity of sites in Northwest region. First, we may have a more intuitive understanding of influence about different types and contents of salt on soil saline by direct shear test, unconfined compression test and tensile test on various salt types and contents test blocks after three wet and dry cycles; Second, the process of soil salinization deterioration may display from a macro point by doing acoustic experiment to test changes in the structure of soil sites contained with salts under wet and dry cycles; Third, we could establish relationship with micro-structure changes and carry out intensive study on effect of wet and dry cycles on the site of degradation of soil salinization in micro point by reveal the mechanical properties of soil salinity sites and the intrinsic link between the micro-structure of the various parameters.
     The follows are positive results:1. The mechanics performance testing of the test sample after salinized deterioration shows:With the increase of salt content, the cohesion of the sample, compressive and tensile strength decreases, the internal friction angle of the show is decreases after increase; The sample mixed with Na2SO4 salt deterioration far more serious, compared to the sample adding NaCl salt, its mechanical properties is reduced; Because the existence of NaCl salt, causing the solubility of Na2SO4 reduced significantly, and crystallized early, make the surface strength of the samples mixed with complex salts between incorporation of a single salt while the strength of entire sample is the lowest.2. Acoustic test results show that:Compared with one Dry-Wet cycle, the longitudinal wave of samples decreased by 10% after three cycles, and reduction is increased gradually with the increase of the salt content, from the side confirmed to the salinized deterioration of the ancient relics soil by dry-wet cycle; After regression analysis found that power exponent relationship between longitudinal wave and compressive, tensile strength, the relationship between the longitudinal wave and shear strength is discreteness.3. By microstructure observation, granular Na2SO4 and needle like NaCl are exist in the pores. The type of microstructure change from the matrix to the skeleton-like as the increase of salt content, what is more, the highlight of the surface of soil particles increased and the particle size tends to homogenization, whereas the overall structure is loose. Using multiple regression analysis, we will get certain reference value obtained regression equations and models after analysis of soil salinity deterioration of mechanics strength and the correlation between parameters.
引文
[1]铁道部.铁路工程土工试验规程(TB10102-2004)[S].中国铁道出版社.2007.
    [2]中华人民共和国建设部.岩土工程勘察规范(GB50021-2001)[S].中国建筑工业出版社.2002.
    [3]行业标准.公路路基设计规范(JTGD30-2004)[S]北京:人民交通出版社.2004.
    [4]温利强.我国盐渍土的成因及分布特征[D].合肥:合肥工业大学.2010.
    [5]中国土壤学会盐渍土专业委员会.中国盐渍土分类分级文集[M].南京:江苏科技出版社.1989.
    [6]王东.土壤盐渍化.中国建筑网.2005.
    [7]铁路工程特殊岩土勘察规程(TB10038-2001、J126-2001)[S]北京:中国铁道出版社.2004.
    [8]交通部第二公路勘察设计院.公路设计手册·路基(第二版)[S].北京:人民交通出版社.2004.
    [9]柴寿喜.固化滨海盐渍土的强度特性研究[D].兰州:兰州大学.2006.
    [10]熊毅.中国盐渍土之初步研究[J].土壤专报.1936(15):39-43.
    [11]卢肇钧,杨灿文.盐渍土工程性质的研究[J].铁道研究通讯.1956,2(3):15-20.
    [12]铁道部第一勘察设计研究院.盐渍土地区铁路工程[M].北京:铁道出版社.1980.
    [13]徐攸在.盐渍土地基[M].北京:中国建筑工业出版社.1993.
    [14]王遵亲.中国盐渍土[M].北京:科学出版社.1993.
    [15]张虎元,赵天宇,王旭东.中国古代土工建造技法[J].敦煌研究.2008,(5):81-90.
    [16]Telfair D, Gardner MR, Miars D. The restoration of a structurally degenerated soil [J]. Soil Sci Soc Am Proc 1957;21(1):131-4.
    [17]Reid I, Parkinson RJ. The wetting and drying of a grazed and ungrazed clay soil [J]. Journal Soil Sci 1984;35(3):607-14.
    [18]Towner GD. Anisotropic shrinkage of clay cores, and the interpretations of field observations of vertical soil movement [S]. Soil Sci 1986;37(2):363-71.
    [19]Dexter AR, Kroesbergen B, Kuipers H. Some mechanical properties of aggregates of top soils from the Ijsselmeer polders. Remoulded soil aggregates and the effects of wetting and drying cycles [J]. Netherlands Journal Agric Sci 1984;32(2):215-27.
    [20]Barzegar AR, Oades JM, Rengasamy P. Soil structure degradation and mellowing of compacted soils by saline-sodic solutions [J]. Soil Sci Soc Americ Journal 1996;60(2):583-8.
    [21]Yoshida I, Kouno H, Chikushi J. The effects of hysteresis in soil water-suction upon soil strength [J]. Journal Faculty Agric Tottori University 1985;20(1):41-4.
    [22]Truman CC, Bradford JM, Ferris JE. Antecedent water content and rainfall energy influence on soil aggregate breakdown [J]. Soil Sci Soc Americ Journal 1990;54(5):1385-92.
    [23]Satricka JA. Freeze-drying effects on wet and dry soil aggregate stability [J]. Soil Sci Soc Americ Journal 1995;59:218-33.
    [24]Tisdall JM, Cockcraft B, Uren NC. The stability of soil aggregates as affected by organic materials, microbial activity and physical disruption [J]. Australian Journal Soil Res 1978;16(1):9-17.
    [25]曾召天.膨胀土干湿循环效应与微观机制研究[D].南宁:广西大学.2007.
    [26]廖济川.六安粘土的工程性质及滑坡成因分析[J].勘察科学技术.1985,(1):13-19.
    [27]Li,T.D. Method of Determining the Shear Strength for Cut Slope in Expansive soil [J]. Proc. of ICEPRS,IAP,1988.
    [28]刘特洪.工程建设中膨胀土问题[M].北京:中国建筑工业出版社.1997.
    [29]刘宏泰,张爱军,段涛,等.干湿循环对重塑黄土强度和渗透性的影响[J].水利水运工程学报.2010,(6):38-42.
    [30]张虎元,严耿升,赵天宇,等.土建筑遗址干湿耐久性研究[J].岩土力学.2011,32(2):347-355.
    [31]张芳枝,陈晓平.反复干湿循环对非饱和土的力学特性影响研究[J].岩土工程学报.2010,32(1):41-46.
    [32]B.B.巴甘诺夫、H.A.崔托维奇著,赵诚斋,徐松龄译,土壤物理学[M].北京:科学出版社.1986.
    [33]A.A.穆斯塔法耶夫著,中国科学院土壤研究所盐渍地球化学研究室译,土壤盐化和碱化过程的模拟[M].北京:科学出版社.1986.
    [34]黎立群.盐渍基础知识[M].北京:中国科学出版社.1986.
    [35]Blaser H D, Scherer O J. Expansion of soils containing sodium sulfate caused by drop in ambient temperatures [A]. Proc of Intn. Conf:On Expansion Soil Special Report [C],1969.
    [36]S.S.Stipho.On the engineering properties of saline soil [J].Q.J.eng.Geol.(UK).1985.
    [37]A. S. Stipho. Effect of salt concentration on some of the engineering properties of soil [A]. Proc. Symp. Geotechnical problems in Saudi Arabia [C],1981.
    [38]J. F. Nixon, G. Lem. Creep and strength testing of frozen saline fine-grained soils [J]. Can. Geotech.J,1984(12).
    [39]M. P. Tomlinson. Highway and airfield pavements. Proc. Conf. eng. problems Associated with Ground Condition in the Middle east [J], Q. J. eng. Geol.(UK),1978(11).
    [40]徐学祖,张立新,刘永智.甘肃盐渍土及土壤水分改良三环节探讨[J].冰川冻土.1998,20(2):1-7.
    [41]陈炜韬,王鹰,王明年,等.冻融循环对盐渍土黏聚力影响的试验研究[J].岩土力学.2007,28(11):2343-2347.
    [42]陈炜韬,李姝,王鹰,等.含盐量、含盐类别对盐渍土抗剪强度的影响[J].中国铁道科学.2005,(6):54-56.
    [43]包卫星,杨晓华,谢永利.典型天然盐渍土多次冻融循环盐胀试验研究[J].岩土工程学报.2006,28(11):1991-1995.
    [44]郭菊彬,宋吉荣,张昆.盐渍土强度参数与含盐量、含水量关系初探[J].四川建筑科学研究.2007,33(5):98-99,109.
    [45]郑冬梅.松嫩平原盐渍土水盐运移的节律性研究[D].长春:东北师范大学.2005.
    [46]中国科学院南京土壤研究所.中国土壤[M].北京:科学出版社.1978.
    [47]蔺海明.干旱半干旱地区盐渍土的形成与改良[J].世界农业,1994(12):23-25.
    [48]樊自立,马英杰,马映军.中国西部地区的盐渍土及其改良利用[J].干旱区研究.2001,18(3):1-6.
    [49]李伟强,雷玉平,张秀梅,等.硬壳覆盖条件下土壤冻融期水盐运动规律研究[J].冰川冻土.2001,23(3):251-257.
    [50]周永祥,阎培渝.固化盐渍土抗冻融性能的研究[J].岩土工程学报.2007,29(1):14-19.
    [51]罗金明,邓伟,张晓平,等.冻融季节苏打盐渍土的水盐变化规律[J].水科学进 展.2008,19(4):559-566.
    [52]任仓钰.西北地区盐渍土形成特点及开发利用[J].水土保持学报.2002,22(4):77-78.
    [53]J贝尔.多孔介质流体动力学[M].北京:中国建筑工业出版社.1983.
    [54]崔凯.多元层状陡立土质边坡差异性风蚀效应研究[D].兰州:兰州大学.2009.
    [55]邵明申.交河故城文物本体环境与加固研究[D].兰州:兰州大学.2007.
    [56]敦煌研究院,兰州大学文物保护中心.交河故城抢险加固工程勘察报告[R].兰州.2005.
    [57]郭宏,李最雄,裘元勋.敦煌莫高窟壁画酥碱病害研究之一[J].敦煌研究.1998(3).
    [58]郭宏,李最雄,裘元勋.敦煌莫高窟壁画酥碱病害研究之二[J].敦煌研究.1998(4).
    [59]郭宏,李最雄,裘元勋.敦煌莫高窟壁画酥碱病害研究之三[J].敦煌研究.1999(6).
    [60]M.Angeli.J.P.Bigas, D.Benavente,et al.Salt crystallization in pores:quantification and estimation of damage[J].Environ Geol,2007,52:205-213.
    [61]E.Ruiz-Agudo,F.mees,P.Jacobs,et al. The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates [J]. Environ Geol,2007,(52):269-281.
    [62]张莎莎.粗颗粒硫酸盐盐渍土盐胀特性试验研究[D].西安:长安大学.2007.
    [63]Winkler EM,Singer PC.Crystallization perssure of salt in stone and concrete [J].Geol SocAm Bull,1972(83):3509-3513.
    [64]Michael Steiger.Crystal growth in porous materials—I:The crystallization pressure of large crystals[J] Journal of Crystal Growth.282 (2005) 455-469.
    [65]张明泉,张虎元,曾正中,等.莫高窟壁画酥碱病害产生机理[J]敦煌研究.1995,31(1):96-101.
    [66]屈建军,张明泉,张伟民等.敦煌莫高窟岩体盐风化过程的初步研究[J].地理科学.1995,15(2):182-187.
    [67]Klenz Larsen P.Desalination of a painted brick vault in Kirkerup Church[C]. In:Proceedings of ICOM-CC 12th Triennial Meeting[A] Lyon,1999,29:473-477.
    [68]Rijniers Lourens Albert. Saltcrystallisation in porous materials[D]. Technische Universitet Eindhoven,2004.
    [69]Carlos Rodriguez-Navarro,Eric Doehne. Salt weathering:influence of evaporation rate, supersaturation and crystallization pattern[J]. Earth Surf. Process. Landforms,1999,24, 191-209.
    [70]黎立群.盐渍土基础知识[M].北京:科学出版社.1986.
    [71]唐大雄,刘佑荣,张文殊,等.工程岩土学[M].北京:地质出版社.1999.
    [72]GB/T50123—1999,土工试验方法标准[S].北京:中国计划出版社,1999.
    [73]宋畅,柴寿喜,王沛,等.土质试验与试验分析[M].天津:天津大学出版社,2007.
    [74]孙婉.松嫩平原苏打型盐渍土强度特性研究[D].北京:中国地质大学,2006.
    [75]王福川.土木工程材料[M].北京:中国建材工业出版社.2001.
    [76]黄文熙.土的工程性质[M].北京:中国水利电力出版社.1983.
    [77]ISRM. Suggested methods for determining tensile strength of rock materials [J]. Int J Rock Mech Min Sci and Geomech. Abstr,1978.15(1)99-103.
    [78]Davies, J. D, and Bose, D, K. Stress Distribution in Splitting Tests [A]. Proc. J. Am. Concrete Inst[C].65(8),1968.
    [79]Chen, W. F, Limit Analysis and Soil Plasticity [M]. Elsevier Scientific Publishing Company,1975.
    [80]于昆.盐渍土地区高等公路设计施工[J].山西交通科技.2002(6):23-25.
    [81]Rijniers Lourens Albert. Saltcrystallisation in porous materials [D]. Technische Universitet Eindhoven,2004.
    [82]李建朋.含盐量对松嫩平原碳酸盐渍土工程性质的影响[D].北京:中国地质大学.2007.
    [83]王英.混凝土灌注桩工程质量超声波检测理论、方法及应用[D].青岛:山东科技大学,2005.
    [84]陈成宗.隧道工程地质与声波探测技术[M].成都:西南交通大学出版社.2005.
    [85]王峥辉.下蜀黄土超声波波速与物理力学性质试验研究[D].南京:河海大学,2007.
    [86]Thomas H. Orsi and Dean A. Duxin. Correlations between sound velocity and related properties of glacio-marine sediments:Barents sea [J],Geo-Marine Letters. Berlin:Springer Berlin,1991,(2):79-83.
    [87]M.S. Diallo, M. Prasad, E. Appel. Comparison between experimental results and theoretical predictions for P-wave velocity and attenuation at ultrasonic frequency [J]. Wave Motion, 2003,37(1):1-16.
    [88]Spikes. T. Kyle, Dvorkin. P. Jack. Gassmann-consistency of velocity-porosity transforms [J]. Leading Edge(Tulsa OK),2005,6(4):581-583.
    [89]Punurai and Wonsiri. Cement-based materials'characterization using ultrasonic attenuation [D]. Ph.D. Thesis, Georgia Institute of Technology,2006.
    [90]高印立,阎澎汪,王金英.剪切波速与土性之间的统计关系[J].建筑科学.1998(5):20-22.
    [91]钟揩.岩样中孔隙、裂缝声波特征的实验研究[J].石油实验地质.2002,17(2):29-35.
    [92]孙进忠,蔡新滨,陈祥.岩土介质动静力学参数与介质物理组构参数之间的关系[J].地球与环境.2005,33(3):10-106.
    [93]张艺凡.RSM非金属超声波检测系统开发—基于ARM9的嵌入式系统[D].武汉:中国科学院武汉岩土力学研究所.2006.
    [94]张虎元,闫玲,王锦芳.土质文物盐害的毛细水输盐机制研究[C]//古遗址保护国际学术讨论会暨国际岩石力学学会区域研讨会论文集[A].2008.
    [95]S Olivella,J Carrera,A Gens and E EAlonso. Non-isothermal multiphase flow of brine and gas thorough saline media [J]. Transport in Porous Media,1994,15:271-29.
    [96]窦万和,邢念信.岩石单轴抗压强度与声波纵波速度相关性试验统计分析[J].金属矿山.1986(2):10-14.
    [97]赵洪宝,尹光志,李小双.烧变后粗砂岩抗拉特性试验研究岩土力学[J].岩土力学.2010,31(4):1143-1146,1275.
    [98]孔登锋,李景山,胡景松,等.岩块抗拉强度与声波速度关系初探[J].黑龙江水利科技.2002(2):23-24.
    [99]韩琳.山丹长城遗址盐渍土风蚀损化机理研究[D].兰州:兰州大学硕士学位论文,2010.
    [100]刘燕JSM-5600LV高低真空扫描电镜调试及应用[J].酒钢科技.2000(2):35-37.
    [101]陈炜韬.环境因素变化对格尔木地区盐渍土抗剪强度参数的影响研究[D].成都:西南交通大学硕士学位论文,2005.
    [102]胡瑞林,李向全,官国琳,等.粘性土微结构定量模型及其工程地质特征研究[S].北京:地质出版社.1995.
    [103]王志强,柴寿喜,仲晓梅,等.多元逐步回归分析应用于固化土强度与微结构参数相关性评价[J].岩土力学.2007,28(8):1650-1654.
    [104]谢和平.分形:岩石力学导论[M].北京:科学技术出版社,1996.
    [105]解静,谌文武,程佳,等.微结构分维与孔隙率及抗压强度的关系[J].兰州大学学报.2009,45(2):26-29.
    [106]肯.布莱克,戴维L.埃尔德雷奇.张久琴,张玉梅,杨琳译.以Excel为决策工具的商务与经济统计[M].北京:机械工业出版社,1999:381-412.
    [107]高回璇.应用多元统计分析[M].北京:北京大学出版社,2000:125-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700