滇中小水井金矿床矿化富集规律及找矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对小水井金矿床成矿地质背景、控矿构造特征、矿床地质特征、矿床化探异常和物探异常特征、成矿流体特征及与邻区金矿床进行对比研究,总结了区域成矿规律、矿床矿化富集规律、矿床成因类型和成矿模式、找矿模型、找矿预测准则和标志,对矿床及外围找矿前景进行了预测,为勘查工作的部署提供了科学依据。
     小水井金矿床处于扬子准地台与唐古拉-兰坪-思茅褶皱系两个一级大地构造单元的交接部位(哀牢山变质带及红河断裂)的东侧边缘。区域上有四个成矿期,分别形成了早元古代海相火山喷发-沉积-变质铁铜矿床,中元古代—中三叠世古风化壳型铁(金)矿床,燕山期-喜马拉雅早期构造破碎带热液蚀变脉状金矿床和铅锌(银)矿床,喜马拉雅晚期沉积-热液改造砂砾岩型金矿床等四种成因类型的矿床组合。
     构造控矿是本区金矿床的主要特点,多级断裂构造体系控制了区域金矿带、矿田、矿床、矿体及矿石类型的分布。小水井断裂(三级)控制了小水井金矿床的产出,更次级的断层、剪切裂隙破碎带、层间破碎带控制了矿体的空间产出位置。矿床控矿构造类型为脆-韧性剪切断裂构造。断裂产状变化地段、不同方向断层交切附近、破碎带的膨大部位,是厚大透镜状矿体富集的有利空间;破碎带变窄地段,矿体变薄、尖灭,形成脉状矿体。
     矿体的分布标高在2045~1740m范围。矿床成因类型属于浅成条件下,由中~低温混合热液流体在韧-脆性剪切构造带中形成的构造蚀变岩型金矿。矿床成矿模式为在基底地层和周边物源区岩石含金较高的背景下,由于剪切断裂构造及岩浆活动,驱动幔源流体上升和变质热液、天水-地下水形成的热液及岩浆热液沿断裂带运移,沿途不断促使地层中金活化、迁移,在浅部次级剪切断层破碎带较宽、产状由缓变陡的过渡地段逐步富集形成矿床。初步确立了矿床找矿模型,即构造对成矿的多级系统控矿模型,构造对矿化富集规律及矿体产状、形态的控矿模型,矿化蚀变分布模型,岩体与构造对矿化叠加控矿模型,成矿作用动力学模型以及物探、化探综合找矿模型。认为地质-化探-物探-钻坑工程等多种技术方法集成是发现和探明此类矿床的有效途径。
     预测小水井金矿北端14线以北和南端93线以南无找矿潜力,其间的14-93线长2km,1740m标高以上范围有较好的找矿前景,资源量可达10吨以上,但1740m标高以下找矿潜力有限。预测在小水井金矿之南的苏布及以北的大坎子—官郎山等地尚可发现有一定规模的矿床(金资源量10~20吨),是进一步找矿的靶区。
Based on the studies of geological setting , ore-controlling geological structures, geological characteristics of ore deposits, geochemical and geophysical anomalies, metallogenic fluid characteristics and contrasted with neighboring gold deposit, the paper summarizes regional metallogenic regulations, mineralization enrichment rules, origin types of ore deposits, a metallogenic model, a prospecting model, regulations of ore prognosis and prospecting criteria . Gold prospective areas at Xiaoshuijing district and outskirt of it have been predicted. The study results provide scientific evidences for arrangement of prospection work.
     Xiaoshuijing gold deposit is located to the eastern margin of the conjunction of the Yangtze platform and Lanping-Simao fold belt, i.e. the eastern margin of Ailao Mountain metamorphic belt and Honghe shear zone. Regionally, there are four metallogenic stages which resulted in, respectively, early Proterozoic marine volcanic-sedimentary-metamorphic iron-copper deposits, lateritic iron (gold) deposits with their ages ranging from middle Proterozoic to Triassic, hydrothermal vein gold deposits and lead-zinc (silver) deposits controlled by shear zones formed in the period from Yanshanian to early Himalayan, late Himalayan sedimentary sandstone and conglomerate hosted gold deposit overlapped and modified by hydrothermal fluids. The deposits in the area are characterized by the ore deposit assemblage of the four mineralisation styles.
     The gold deposits in the area are dominated by the structurally controlled ore deposits. The structural systems at different orders respectively control the distribution of regional gold belts, ore fields, ore deposits, ore bodies and ore types. The Xiaoshuijing fault zone (at the third order) controls Xiaoshuijing gold deposit. The suborder fault zones, shear zones, interlayer fractures control distribution of ore bodies. The ore-controlling structures belong to brittle-ductile shear zones. The places where orientation of a fault zone changes or faults crosscut each other or a fault zone gets wide are favorable locations where the thick and lenticular gold ore bodies occurred. Ore bodies often get thin or thin out, or become veins in the places where an ore-controlling fault zone obviously becomes narrow. Gold ore bodies at Xiaoshuijing gold deposit occurred at the levels from 1740m to 2045m. The deposit formed in a ductile-brittle shear zone and resulted from a mixture of mesothermal and epithermal hydrothermal fluids cycling at the shallow parts of the shear zone. The deposit is an altered fault rock type gold deposit. The strata consisting of basement and adjacent source rocks are rich in gold. The tectonic activities forced fluids from the mantle to rise upward, and forced metamorphic hydrothermal fluids, hydrothermal fluids derived from meteoric water and groundwater, and magmatic fluids to pass through the fault zone. The cycling hydrothermal fluids activated gold in the strata along the passage and forced it to migrate. Gold precipitated from the hydrothermal fluids and was enriched in the locations where a fault zone gets wide or the orientation of a fault zone changes from the gentle to the steep.
     A model of mineralisation controlled by structures at different orders, a model of mineralisation enrichment regulations controlled by structures, a model of shapes and orientations of ore bodies controlled by structures, a model of mineralization and alteration zoning, a model of mineralization controlled jointly by rocks and structures, a dynamic model of mineralization, a comprehensive model of applying geophysical and geochemical techniques to search for mineral resources have been outlined. It is pointed out that the integration of multiple exploration methods involving geological, geochemical and geophysical techniques, and drilling and tunneling is an efficient way to discover and prove the gold deposit of this kind.
     It is predicated that there is no potentiality for prospecting gold in the northern part of the prospecting line 14 and in the southern part of the prospecting line 93 at Xiaoshuijing gold district. There is a good potentiality for prospecting gold in the zone between the line 14 and the line 93. The prospective zone with its elevation above 1740m is 2 kilometers long and the potential gold resources within the zone can reach more than 10 tones of gold, whereas there is a limited potentiality for prospecting gold beneath the elevation 1740m. It is also predicated that it is sure that new gold deposits can be discovered at Subu adjacent to Xiaoshuijing gold deposit and at the zone between Dakanzi and Guanlanshan in the northern part of Xiaoshuijing gold deposit. These areas are prospective targets for further prospection.
引文
[1] Boyle R W.金地球化学及金矿床(马万钧,王立文,罗永国等译)[M].北京:地质出版社,1984.1~784.
    [2] Fyfe W S,Henley R W.Some thoughts on Chemical Transport Processes,with particular Reference to Gold[J].Mineral Scientific Engineering,1973,5:295~303.
    [3] Seltmann R,Kampf H,Moller P, et al.Mettallogeney of collisional orogens[M].Czech Geological Survey,Prague,1994,1~434.
    [4] Groves D I,Goldfarb R J,Gebre-Mariam M,et al.Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J].Ore Geol.Rev.,1998,13(1~5):7~27.
    [5] Kerrich R,Wyman D A.Geodynamic setting of mesothemal gold deposits:An association with accretionary tectonic regimes[J].Geology,1990,18:882~885.
    [6] Kerrich R,Goldfarb R J,Groves D I,et al.The characteristics,origins,and geodynamic setting of supergiant gold metallogentic provinces[J].Science in China(Series D),2000,43(Supp.):1~68.
    [7]侯增谦,吕庆田,王安建,等.试论陆-陆碰撞与成矿作用——以青藏高原造山带为例[J].矿床地质,2003,22:319~334.
    [8]陈毓川,朱裕生.中国矿床成矿模式[M].北京:地质出版社,1993.1~367.
    [9]陈毓川,朱裕生.中国主要成矿区带矿产资源远景评价[M].北京:地质出版社,1999.
    [10]赵鹏大,陈永清,刘吉平,等.地质异常成矿预测理论与实践[M].武汉:中国地质大学出版社,1999.1~138.
    [11]王世称.内生矿产成矿系列中比例尺预测方法研究[M].北京:地质出版社,1993.
    [12]范永香,阳正熙.成矿规律与成矿预测[M].徐州:中国矿业大学出版社,2005.1~280.
    [13]朱裕生.成矿预测方法[M].北京:地质出版社,1997.
    [14]朱裕生.成矿地质背景分析[M].北京:地质出版社,1997.
    [15]刘石年.成矿预测学[M].长沙:中南工业大学出版社,1993.
    [16]胡云中,唐尚鹑,王海平,等.哀牢山金矿地质[M].北京:地质出版社,1995.1~272.
    [17]侯增谦,扬竹森,徐文艺,等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,2006,25(4):337~358.
    [18]侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,2006,25(5):521~543.
    [19]侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629~651.
    [20]刘涛,何照波,周仁.小水井金多金属矿集区构造变形及成矿作用[J].云南地质,2002,21(4):403~412.
    [21]刘涛,何照波,周仁.楚雄小水井金矿矿床地质及区域远景[J].云南地质,2003,22(1):64~71.
    [22]云南省地质矿产局.云南省区域地质志[M].北京:地质出版社,1990.1~645.
    [23]曹德斌,张志斌.楚雄盆地中-新生界构造变形特征[J].云南地质, 2001,21(1):50~59.
    [24]蔡立国.楚雄盆地形成构造变形及叠加改造关系研究[J].北京:中国科学院地质研究所所刊,1998.35~63.
    [25]刘和莆,王泽成,熊保贤,等.中国中西部中新生代前陆盆地与挤压造山带藕合分析[J].地学前缘,2000,7(3):55~72.
    [26]刘和林,李志伟,钟维敷,等.云南中西部中新生代盆-山过渡区构造及成矿特征[J].云南地质,2002,21(2):107~120.
    [27]云南省地质矿产局.云南省区域矿产总结[M].北京:地质出版社,1992.708~766.
    [28]陈国达,彭省临,戴塔根,等.云南铜-多金属壳体大地构造成矿学[M].长沙:中南大学出版社,2004.16~17.
    [29]罗君烈,赵准,杨有华.滇西特提斯的演化及主要金属矿床成矿作用[M].北京:地质出版社,1994.1~340.
    [30]孙洁,徐常芳,江钊.滇西地区地壳上地幔的三维速度图像[J].地震地质,1989,11(1):1~11.
    [31]吴乾藩,祖金华,谢毅真.云南地区地热的基本特征[J].地震地质,1988,10(4):177~183.
    [32] Feldman.,L.S..On the nature of conductive layers in the Earth's crust and upper mantle,Geoelectric and Geothermal Studies,Budapest Akodemikal Kiado[M].1979.
    [33]云南省地质矿产局第一地质大队.1/20万新平幅水系沉积物测量报告[R].内部出版,1990.
    [34]云南省地质矿产局第一地质大队.1/20万楚雄幅水系沉积物测量报告[R].内部出版,1993.
    [35]云南地勘局.云南省第二轮成矿远景区划报告[M].北京:地质出版社,1997.
    [36]周云满,谢先柏,毛景文.滇中龙岗地区多金属矿带成矿地质特征及找矿方向[J].矿床地质,2006,25(6):743~757.
    [37]钱锦和,沈远仁.云南大红山古火山岩铁铜矿床[M].地质专报:四(15),北京:地质出版社,1990.
    [38]云南地矿资源股份有限公司曲靖公司.云南省楚雄市小水井金矿普查地质报告[R].内部报告,2003.
    [39]云南地矿资源股份有限公司曲靖公司.楚雄小水井——双柏鄂嘉街1:5万土壤测量工作报告[R].内部报告,2001.
    [40]云南地矿资源股份有限公司曲靖公司.云南省楚雄市小水井金矿物探勘查工作成果报告[R].内部报告,2007.
    [41]黄智龙,刘丛强,朱成明,等.云南老王寨金矿区煌斑岩成因及其与金矿化的关系[M].北京:地质出版社,1999.1~252.
    [42]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004.1~487.
    [43] Bodnar R J.The system H2O-NaCl[J].PACROFIIV,Program and Abstracts,1993.108~111.
    [44] Doe B R,Zartman R E.Plumbotnics,the phanerozoic[A].In:Barnes H L,ed.Geochemistry of hydrothmal oredeposits[C].New York:John Wiley&Sons,1979.
    [45]季克俭,王立本,吕凤翔.交代热液成矿原理和“三源”成矿预测方法[A].见:当代矿产资源勘查评价的理论与方法[C].北京:地质出版社,1995.34~40.
    [46] Bebing L G and Seward T M.Hydrosulphide complexing of Au(Ⅰ)in hydrothermal solutions from 150~400℃and 500~1500 bar[J]. Geochimica et Cosmochimica Acta,1996,60(11):1849~1871.
    [47] Brathwaite R L and Faure K.The Waihi epithermal gold-silver base metal sulfide-quartz vein system, New Zealand: Temperature and salinity on electrum and sulfide deposition[J]. Econ.Geol.,2002,97:269~290.
    [48]刘东升,谭运金,王建业,等.中国卡林型(微细浸染型)金矿[M].南京:南京大学出版社,1994.160~202.
    [49]王燕,谭凯旋,刘顺生,等.矿物吸附金的实验研究及其在红土型金矿形成中的意义[J].地球科学,2003,28(1):26~30.
    [50]毛景文.浅议扬子地块周缘金矿成矿的一些特点[J].矿床地质,1998,17(增刊):11~14.
    [51]胡瑞忠,彭建堂,马东升,等.扬子地块西南缘大面积低温成矿时代[J].矿床地质,2007,26(6):583~596.
    [52]杨建民,薛春纪,徐钰.滇西北喜马拉雅期富碱斑岩地质特征及其成矿作用[A].见:陈毓川,王登红主编.喜马拉雅期内生成矿作用研究[C].北京:地质出版社.2001.57~67.
    [53]毛景文,李晓峰,张荣华,等.深部流体成矿系统[M].北京:中国大地出版社,2005.321~360.
    [54]刘家铎,张成江,刘显凡,等.扬子地台西南缘成矿规律及找矿方向[M].北京:地质出版社,2004.126~129.
    [55] Goldfarb R J,Groves D I and Gardoll S.Orogenic gold and geologic time:A global synthesis[J].Ore Geol.Rev.,2001,18:1~75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700