二元冰真空制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二元冰是指某类(如乙二醇)水溶液和冰晶粒子的混合物,为呈泥浆状的悬浮液,通常也称为冰浆,其流动性很好,能够用泵输送。在制冰过程中,传热系数大,传热温差小。与其它介质相比,二元冰冷却速度快、冷却效果好(二元冰的单位质量所含冷量是冷冻水的4~6倍且其冷却温度更低),如将其用于食品冷却领域,由于其组织柔软,不会损坏产品的组织。如将二元冰应用于蓄冷空调领域,可以实现空调系统低温送风,并且设备安装灵活,能很好地适应空调负荷的变化。另外,二元冰还可广泛应用于城市集中供冷、食品工程、污水处理、化学工业、冶金工业、医学、运输工程等领域。
     目前运用和正在研究的二元冰制备方式主要有刮削制备法、过冷水连续制备法、直接接触式制备法、真空制备法、下降膜式制备法、流化床制备法。其中二元冰真空制备法具有热效率高,结构简单,操作方便,以及制备过程中采取一定措施可以不采用CFC或HCFC制冷剂等优点,是一种很有前途的二元冰制备方式。
     本文对真空环境的特性,包括热分子压力效应,气体分子密度的涨落,稀薄气体传输现象的特点等进行了由浅入深的理论分析,探讨了物质在低压下的传热和传质特性。通过对单个液滴的闪蒸现象的研究,建立了二元冰真空制备过程的数学模型。通过对模型的分析,用以估计不同大小的水滴的蒸发过程,以及真空闪蒸装置内二元冰的形成过程,了解下降终了时结冰率与那些因素有关,探讨通过在真空闪蒸装置内喷射水溶液制取冰浆的过程。
     通过将真空技术与二元冰制取技术相结合,研制了二元冰真空制备装置,进一步提升了二元冰制备技术的科技含量。
     通过实验测试了真空闪蒸装置内压力、系统供水流量、捕水冷盘管蒸发温度、添加剂等对二元冰真空制备的影响。并通过图表及数值计算软件Matlab对实验结果进行了分析和总结,得到相应的结论,为工程实际应用提供了科学依据。
The binary ice is refers to (e.g. glycol) the mixture of water-soluble fluid and the ice crystal, it is the muddy suspending liquid, and usually is called the ice slurry, its fluidity is very good, and can be transported by the pump. In the ice making process, the heat transfer coefficient is high, while the heat transfer temperature difference is low. Compares with other medium, the cooling rate of binary ice is quick, and the cooling effect is good (unit mass binary ice contains 4-6 times of cold energy than that of cooled water and its cooling temperature is lower).If we use it in food cooling domain, it does not damage the product because its organization is soft, and if we apply the binary ice in cold storage air conditioning domain, it may realize the low temperature air supply of air-conditioning system, and the equipment installation is flexible and can adapt to the air conditioning load change well. Moreover, the binary ice can also be widely used in the domain of city centralized cooling, food engineering, sewage disposal, chemical industry, metallurgical industry, medicine, transportation engineering etc.
     At present, the binary ice making methods that are applied or studied are as follows: scraper type, direct contact type, vacuum type, falling film type, fluidized bed type .In which the vacuum type is high in efficiency, simple in structure, easy in operation, and the CFC or HCFC refrigerant may not be used in the binary ice preparation process if certain measures are taken, so it is one of the binary ice preparation method that has bloom future.
     In this article, the vacuum environment characteristic, including the hot molecular pressure effect, the gas molecular density fluctuation, the rarefied gas transmission phenomenon characteristic and so on has carried on from the shallow to the deep theoretical analysis, and the heat and mass transfer characteristic of material under low pressure has been discussed. Through the research on single bubble flash evaporation phenomenon, the binary ice vacuum preparation process mathematical model has been established. Through the model analysis, the flash evaporation process of different size bubbles as well as he binary ice forming process in vacuum flash vessel is estimated, and this model can also help us understand the factors related to ice formation rate and discuss the ice slurry making process through the injection water solution system takes in the vacuum flash vessel.
     Through combine the vacuum technology and the binary ice making technology together, this article has developed the binary ice vacuum preparation device, and has promoted the binary ice making technology.
     Test the influence of factors on the binary ice vacuum preparation, the factors of which are as follows: internal pressure of vacuum flash vaporization vessel, water supply flow-rate, and vaporization temperature of vapor condenser, additive and so on. And has carried on the analysis and the summary of the experimental result through the graphs and value computation software Matlab, after that, obtain the corresponding conclusion that can provide the scientific basis for the project application.
引文
[1]刘永红.冰浆流动特性和传热特性研究[D].上海;同济大学,1997
    [2]刘道平,李瑞阳,陈之航.直接接触固液相变制冰及冰蓄冷系统的研究进展[J].华东工业大学学报,1996,18(3);27-36
    [3]章学来.二元冰技术的最新进展[J].制冷空调与电力机械,2006(3);1-7
    [4]章学来,张君瑛.二元冰制备技术的研究进展[C].第四届全国制冷空调新技术研讨会论文集,2006(3);569-573
    [5]柳飞,何国庚,成维.过冷水动态冰晶制取的实验研究[J].制冷与空调,2005(3);66-70
    [6]徐成海,张世伟,关奎之.真空干燥[M].北京;化学工业出版社,2004
    [7]李凭力,马佳,解利昕,王世昌.冷冻法海水淡化技术新进展[J],化工进展.2005,24(7);749-753
    [8]谷里鹏,谷雨.绝热闪蒸的快速计算和应用[J],化工机械.2004,31(4);208-212
    [9]徐立冲,陆柱,夏建萍.真空冷冻法海水淡化技术研究[J],净水技术.1994,(4);3-6
    [10]徐立冲,陆柱,蔡玲玲.真空冷冻海水中冰晶生长速度的研究[J],水处理技术.1997,23(5);280-284
    [11]曹式芳.海水淡化技术的发展[J],天津化工.2002(2);6-8
    [12]张绍志,王剑锋,陈光明.水制冷系统闪蒸器特性的理论分析[J],低温工程,2000,46(3);12-18
    [13]张绍志,王剑锋,张红线,陈光明.真空下二元冰晶形成过程分析.中国工程热物理学会传热传质学学术会议论文集[C],2000;344-350
    [14]刘伟民,毕勤成.低压闪蒸液滴温度与相变过程的研究[J].应用基础与工程科学学报.2005,13(4);381-387
    [15]邓东泉,徐烈,孙恒等.真空下气固界面的传热[J],低温与超导.2002,30(2);52-56
    [16]姜深,宋人楷,杨平.升华干燥中的传热传质分析[J],粮油加工与食品机械.2000(5);16-17
    [17]葛斌.冷冻干燥过程传热传质研究[J],制冷.1996(4);37-40
    [18]吴业正.小型制冷装置设计指导.[M].北京;机械工业出版社,2001
    [19]钱颂文.换热器设计手册.[M].北京;化学工业出版社,2002
    [20]全国冷冻空调设备标准化技术委员会.中国机械工业标准汇编冷冻空调设备卷.[M].北京;中国标准出版社,2005
    [21]达道安.真空设计手册.[M].北京;国防工业出版社,2006
    [22]戴锅生.传热学.[M].北京;高等教育出版社,1999
    [23]机械工程手册编辑委员会.机械工程手册通用设备卷.[M].北京;机械工业出版社,1997
    [24]苏金明,王永利.MATLAB7.0实用指南.[M].北京;电子工业出版社,2004
    [25]苏金明,张莲花,刘波.MATLAB工具箱应用.[M].北京;电子工业出版社,2004
    [26]徐成海.真空工程技术.[M].北京;化学工业出版社,2006
    [27]姚征,郭淳.多级海水淡化装置闪蒸装置设计研究[J],水动力学研究与进展.2003,18(4);397-402
    [28]周永安,王云芳.真空预冷装置的设计与计算[J],制冷.1996(3);36-40
    [29]刘洋,申江.真空预冷中捕水器的理论研究[J],真空与低温.2004,10(4);230-234
    [30]王宗明.气动旋流雾化喷嘴流动特性[J],石油化工设备.2005,34(3);4-5
    [31]杨学军,严荷荣,周海燕.扇形雾喷嘴的试验研究[J],中国农机化.2005(1);39-42
    [32]郑文利.真空冷冻干燥理论及实验研究.东北大学博士学位论文,2002.2
    [33]翟家佩,苏树强.果蔬真空预冷装置的设计与研究[J].真空,2001(2);25-29
    [34]徐言生.食品真空冷冻干燥设备制冷系统的设计[J].制冷,1997(4);43-46
    [35]徐成海,郝璐等.冻干机捕水器结构与特性[J].真空与低温,2002,8(3);162-164,182
    [36]董大勤.压力容器设计手册[M].北京;化学工业出版社,2006
    [37]马秉骞.实用压力容器知识[M].北京;中国石化出版社,2000
    [38]Kim B.S.,Shin H.T.,.Lee Y.P.Jurng J.Study on ice slurry production by water spray[J].International Journal of Refrigeration,2001,24;176-184
    [39]Shin H.T,Lee Y.P,Jurng J.Spherical-shaped ice particle production by spraying water in a vacuum chamber[J].Applied thermal engineering,2000,20;439-454
    [40]Chen G M,Lu G Q,Wang J F.Thermodynamic analyses of the performance of a thermal storage system with water as its working fluid[J].Applied Energy,1997,57(4);263-270
    [41]Isao Satoh,Kazuyoshi Fushinobu,Yu Hashimoto,Freezing of a water droplet due to evaporation-heat transfer dominating the evaporation-freezing phenomena and the effect of boiling on freezing characteristics[J],International Journal of Refrigeration, 2002,25: 226-234
    [42] Jacques Guilpart, Evangelos Stamatiou, Anthony Delahaye, Laurence Fournaison. Comparison of the performance of different ice slurry types depending on the application temperature [J]. International Journal of Refrigeration, 2006, 29 (5): 781-788
    [43] Beata Niezgoda-Zelasko. Heat transfer of ice slurry flows in tubes [J]. International Journal of Refrigeration, 2006, 29 (3): 437-450
    [44] E. Stamatiou, J.W. Meewisse and M. Kawaji. Heat transfer of ice slurry flows in tubes [J]. International Journal of Refrigeration, 2005, 28 (1): 60-72
    [45] Hideo Inaba, Takaaki Inada, Akihiko Horibe, Hiroshi Suzuki and Hiromoto Usui. Preventing agglomeration and growth of ice particles in water with suitable additives [J]. International Journal of Refrigeration, 2005, 28 1(1): 20-26
    [46] Peter W. Egolf, Andrej Kitanovski, Derrick Ata-Caesar. Thermodynamics and heat transfer of ice slurries [J]. International Journal of Refrigeration, 2005, 28 (1): 51-59
    [47] Koji Matsumoto and Hideto Sakurai. Study on prevention of ice adhesion to cooling wall due to voltage impression in ice storage—discussion on possibility of attraction of oil to wall [J]. International Journal of Refrigeration, 2006, 29(1): 142-149
    [48] Pe Andersson. A study on some existing districting cooling systems and on the possibilities to establish district cooling in certain other cities [D]. Stockholm: Royal Institute of Technology, 2004
    [49] Hazen E. Burford. Deep water Source cooling-an untapped Resource [C]. 10th Annual district cooling conference. Florida, 1995:1-5
    [50] Hirshman, J., Whithaus, D. A, Brooks I. H. Feasibility of a District Cooling System Utilizing Cold Seawater [R]. A report for the US Department of Energy by Tracor Marine, Contract No. EY-76-C-05-4875, 1975
    [51] J. W. Meewisse, Fluidized Bed Ice Slurry Generator for Enhanced Secondary Cooling Systems [D]. DELFT: Delft University of Technology, 2004
    [52] V. Morillon, F. Debeaufort, J. Jose, J.F. Tharrault, M. Capelle, G. Blond, A. Voilley, Water vapour pressure above saturated salt solutions at low temperatures [J]. Fluid Phase Equilibr. 1999 (155): 297-309
    [53] Miyawaki, A. Saito, T. Matsuo, K. Nakamura, Activity and activity coefficient of water in aqueous solutions and their relationships with solution structure parameters [J].Biosci. Biotechnol. Biochem. 1997 (61): 466-469
    [54] Melinder, Thermophysical properties of liquid secondary refrigerants, a critical review on literature references and laboratory measurements [D]. Licenciate Thesis, The Royal Institute of Technology, Sweden, 1998
    [55] R. Lugo, L. Fournaison, J.-M. Chourot, J. Guilpart, An excess function method to model the thermophysical properties of one-phase secondary refrigerants [J]. International Joural of Refrigeration. 2002 (25): 916-923
    [56] R. Reid, J.M. Prausnitz, B. Poling, The Properties of Gases and Liquids [M]. fourth ed, McGraw-Hill Education, 1987
    [57] J.M. Prausnitz, R.N. Lichtenthaler, E. Gomes de Acevedo. Molecular Thermodynamic of Fluid-Phase Equilibria [M]. second ed, Prentice-Hall, 2000
    [58] Arce, J. Martinez-Ageitos, A. Soto. VLE for water + ethanol + 1-octanol mixtures experimental masurements and correlations [J]. Fluid Phase Equilibr. 1996 (122): 117-129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700