小麦生产中常用农药的残留特性与降解机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究于2003~2006年,在对江苏省小麦生产区农药残留调查分析的基础上,于扬州大学江苏省作物遗传生理重点实验室试验场进行了小麦开花灌浆期使用多菌灵、乐果、毒死蜱和吡虫啉防治小麦赤霉病、麦蚜、灰飞虱等病虫害的试验。较系统地研究了上述农药在植株不同部位及土壤中的残留特性;探明了不同杀虫剂在小麦上的降解机制;研究了大田可操作的栽培农艺降解措施;结合农药残留特性提出了麦田防治病虫兼治灰飞虱的综合防治策略及其理论依据。研究主要结论如下:
     (1)江苏省中弱筋小麦生产区农药残留的调查分析表明,小麦籽粒和土壤有机磷农药检出率分别为95.2%和100%,农药残留状况比较普遍;中等毒性有机磷农药毒死蜱和乐果在苏中地区普遍存在,里下河优质中筋小麦区个别点毒死蜱超出国标(GB16333-1996),沿海南部和丘陵饼干糕点小麦亚区个别点乐果超出国标(GB5127-1998),此现状有待缓解,但建立无公害优质专用小麦生产体系有一定基础;高沙土优质酥性饼干、糕点小麦亚区均未检出是优质专用型弱筋小麦的安全生产区。
     (2)较系统地明确了常用杀虫剂乐果、毒死蜱和吡虫啉在小麦不同部位的残留特性及其差异。杀虫剂乐果、毒死蜱和吡虫啉喷施后,随时间的推移在穗部、叶片和茎鞘上的农药残留均呈下降趋势。乐果和毒死蜱喷施初期,残留下降的幅度不受植株部位不同的限制,在不同部位的降解具有同步性;吡虫啉残留与乐果和毒死蜱有所不同,在穗部和叶片上的下降幅度大于茎鞘,在不同部位的降解属异步性。说明吡虫啉降解的主要影响因子与乐果和毒死蜱不同。
     小麦地上部不同部位乐果、毒死蜱和吡虫啉的残留降解趋势采用一级反应动力学方程Ct=C0e-KT( T为施药后天数/d;Ct为时间T时的农药残留量/mg·kg-1;K为消解速率常数)来拟合,拟合度均达到显著或极显著水平。乐果的降解半衰期范围在1.23~4.75d,毒死蜱的降解半衰期范围在1.17~3.36d,吡虫啉的降解半衰期范围在1.33~5.78d,半衰期与农药剂量相关性不显著。乐果、毒死蜱和吡虫啉在小麦植株上降解的快慢主要由喷药后3天内的降解速率决定,且与喷药期有一定关系。喷药时期较早的处理药后3d的降解速率小于药后1d,但花后35天处理的乐果、毒死蜱和吡虫啉降解速率药后3d略大于药后1d,可能此时植株已比较老化,该时期喷施的乐果、毒死蜱和吡虫啉更长时间的分布于植株外部,极少被株体吸收,受环境影响更大。
     小麦成熟期乐果、毒死蜱的残留主要分布在籽粒中的麸皮、以及颖壳和土壤里。在只喷施一次的情况下,小麦收获10天之前大田喷施推荐剂量和加倍剂量的乐果和毒死蜱,收获籽粒符合国家标准(GB5127-1998;GB16333-1996)。且籽粒中乐果、毒死蜱经过磨粉加工过程,麸皮被分离还会去除大量的残留乐果,提高了面粉食用的安全性。但乐果喷施时间越早,进入面粉内部的可能性越大。在本试验范围内,收获期小麦植株的各部位均未检出吡虫啉。
     小麦开花后喷施乐果、毒死蜱和吡虫啉行间土的残留均呈下降趋势,残留降解趋势亦可用一级反应动力学方程Ct=C0e-KT来拟合,达到显著或极显著水平。乐果和毒死蜱在小麦根际土中的残留呈先上升后下降的趋势,下降速度大于行间土。毒死蜱喷药后1天根际土中的残留浓度占行间土的百分比与乐果喷药后3天的残留浓度占行间土的百分比相当,说明毒死蜱在土壤中的渗透性要比乐果强。
     农药残留特性进行比较,乐果和毒死蜱的降解半衰期长短顺序为土壤>穗>茎鞘≥叶片,穗、茎鞘和叶片的差异前期大于后期;吡虫啉的降解半衰期长短顺序为土壤>茎鞘>叶片≈穗。
     (3)较系统地明确了小麦常用杀菌剂多菌灵在植株不同部位的残留特性及其差异。小麦收获期多菌灵在籽粒、穗、叶片和茎鞘上的残留浓度基本规律是用药剂量高,最终残留量也相对较高。多菌灵的残留主要在叶片、颖壳和穗轴,籽粒和茎鞘中均未检出。多菌灵在小麦穗部、叶片和茎鞘上的降解符合一级化学反应动力学方程Ct=C0e-kt。不同器官在喷药初期的初始沉积量不同,表现为穗>叶片>茎鞘;各部位的降解动态表现为随生育进程,残留量逐渐下降,至成熟期降至最低,各器官趋势一致,且前期降解速率较快,后期速率减缓。不同器官中多菌灵降解的半衰期不同,表现为穗部的半衰期短于叶片和茎鞘,穗部的降解较快,可能与穗部位处植株最上层受光性好于叶片和茎鞘有关,且多菌灵在小麦上主要是光解和雨水淋溶。两年的降解方程系数及半衰期不一致,这主要与生长条件不同有关。吡虫啉、毒死蜱分别与多菌灵混合施用后对多菌灵残留产生影响:吡虫啉使多菌灵的降解半衰期延长,毒死蜱使多菌灵的降解半衰期缩短。在植株的不同部位结果一致,且在穗部的影响更大,可能进一步说明光解是多菌灵在小麦植株中降解的主要方式。按本试验的处理方法,成熟期籽粒中的多菌灵残留量均低于0.5mg/kg的国家标准(GB 14870-1994)。
     (4)探索了参试农药在小麦上可能的降解途径。喷施不同农药后,穗部乐果和毒死蜱初始沉积量的主要影响因子是气温和穗鲜重,吡虫啉的主要影响因子是穗鲜重,气温对吡虫啉在穗部的初始沉积量没有影响;气温、叶片鲜重和风速是乐果在小麦叶片上初始沉积量的主要影响因子,毒死蜱在叶片上初始沉积量的影响因子主要是气温和叶片鲜重;吡虫啉的叶片上初始沉积量的影响因子是叶片鲜重,气象因子中气温、风速等没有影响。而茎鞘各农药的初始沉积量的主要影响因子均为茎鞘鲜重。
     乐果和毒死蜱降解初期的主要影响因子是气温,因气温主要对农药的挥发速率起作用,说明乐果和毒死蜱在降解初期,可能主要是挥发作用使植株上残留减少,但气温对土壤中的残留降解影响不显著。由于小麦地上部不同器官的温度相同,挥发作用是乐果和毒死蜱在各部位初期的降解具有同步性的主要原因。小麦穗和叶片中的吡虫啉降解主要影响因子是日照时数,但日照时数对茎鞘中的吡虫啉降解影响不显著,可能茎鞘的受光性不如穗和叶片是吡虫啉在小麦不同部位降解异步性的主要原因,同时说明光解是吡虫啉在小麦植株上初期的主要降解方式。
     (5)研究了可实际操作的大田栽培农艺降解措施。叶面喷施化学物质对农药的降解以喷洒碱性的NaOH和Na2CO3对乐果、毒死蜱和吡虫啉的降解效果达到显著水平,微酸性的KH2PO4和中性的NaCl溶液对乐果、毒死蜱和吡虫啉的降解几乎没有效果,说明碱性溶液可加速这三种农药的降解,但应注意在碱性土壤上不宜使用。丙酮和NaOH对麸皮中的多菌灵有显著降解效果,核黄素和氯化铁对颖壳中的多菌灵有显著降解效果,但丙酮属于有机溶剂,易燃易爆不安全,对多菌灵虽有较好的降解效果,但多菌灵属于低毒低残留药剂,因此不建议丙酮作降解剂使用。施用氮肥和钾肥对农药的降解效果为,有机肥好于尿素和碳铵,草木灰好于KCl和K2CO3处理。可能由于有机肥改善了微生物生长环境,促进了农药的降解。
     (6)提出了麦田防治病虫兼治灰飞虱的综合防治策略及其理论依据。小麦开花期喷施多菌灵、花后7天喷施毒死蜱和乐果均能导致花后27天灰飞虱虫口密度显著增加。经相关分析,麦田灰飞虱虫口密度与小麦叶片、穗中游离氨基酸含量、还原糖含量和蔗糖转化酶(Invertase, Inv)活性呈正相关,与小麦叶片中酚含量和多酚氧化酶(Polyphenol oxidase, PPO)活性呈负相关。与对照相比,除吡虫啉和咪鲜胺外的农药处理均使小麦叶片、穗中的游离氨基酸、还原糖含量和Inv活性增加,酚含量和PPO活性降低,以多菌灵加毒死蜱处理的调控效应最大。说明农药对灰飞虱虫量的影响,可能是由于农药使小麦植株生理生化发生变化而引起。把灰飞虱虫量作为重要考虑因素,建议防治小麦赤霉病时宜轮换使用多菌灵与咪鲜胺,防治麦蚜时宜选用吡虫啉。且根据吡虫啉的残留特性,即使花后35天使用吡虫啉加倍剂量仍不会使收获的小麦籽粒残留超标,防治麦田蚜虫和灰飞虱使用吡虫啉是安全的。
Pesticide residue was one of the most important factors affecting wheat hygienic quality. Wheat plant was enriched in nutriment during flowering and grain-filling period, which might result in high incidence of diseases and pests. So many kinds of fungicides and insecticides were applied to control wheat diseases and pests. While these pesticides would inevitably deposit in wheat grains, plants and soil, causing potential harm to grain hygienic quality and field environment. So it was necessary to investigate the residue characteristics and degradation mechanisms of common pesticides in wheat so as to control residues in wheat. From 2003 to 2006, based on the results of systematic investigation and analysis of pesticide residue in seven counties in Jiangsu Province, the experiments on controlling measures of carbendazim, dimethoate, chlorpyrifos and imidacloprid against wheat pests were conducted on the Experimental Farm of Jiangsu Provincial Key Lab of Crop Genetics and Physiology of Yangzhou University to investigate residue characteristics, degradation mechanism and to find some cultivation measures to degrade residue, and integrated control approach of deseases, pests and small brown planthoppers in wheat. The main results were as follows.
     1 The residue detection rates of seven organophosphorus pesticides in grains and soil in wheat fields in seven counties of the middle region of Jiangsu Province were 95.2% and 100%, respectively, indicating that organophosphorus pesticide residues were very common in Jiangsu Province. Chlorpyrifos and dimethoate, which were middle-poisonous organophosphorus pesticides, were common in the middle region of Jiangsu. The average concentrations of seven kinds of organophosphorus pesticides in wheat grains were lower than National Residue Standard(GB16333-1996; GB5127-1998), indicating that there was a certain foundation for establishing a good quality, special-end-use and nuisance less wheat production system in Jiangsu Province.
     2 The residue characteristics and their differences of dimethoate, chlorpyrifos and imidacloprid in different parts of wheat were systematicly found. Dimethoate, chlorpyrifos and imidacloprid were sprayed on wheat plants after anthesis. The detection results indicated that the residues of these three pesticides decreased in ears, leaf blades, stems and leaf sheaths of wheat. The degradation rate of dimethoate and chlorpyrifos was synchronous in different up-ground parts of wheat plants during the early period of degradation, but the degradation of imidacloprid was not synchronous, which indicated that the dominant factors of imidacloprid degradation were different from dimethoate and chlorpyrifos. Degradation of dimethoate, chlorpyrifos and imidacloprid in ears, leaf blades, stems and leaf sheaths of wheat could be expressed by first-order kinetic equation. The half-life of dimethoate, chlorpyrifos and imidacloprid in wheat were within the ranges of 1.23~4.75d, 1.17~3.36d, and 1.33~5.78d, respectively and the effect of the pesticide dosages on the half-lives of the pesticides was insignificant. The half-life had significantly positive correlation with the degradation percentage of pesticides on the 3rd day after spraying. The residues of dimethoate and chlorpyrifos were mainly in bran, glumes and soil at maturity in wheat. According to National Standard (GB 5127-1998; GB 16333-1996), grains after harvest were safe in quality if dimethoate and chlorpyrifos were spayed with a dosage less than double recommend dosage before 10th day prior to harvest. But the earlier the spray was conducted, the more the dimethoate could be detected in the flour. The residue of imidacloprid at maturity was not detected, which indicated that imidacloprid was safer than dimethoate and chlorpyrifos. Degradation of dimethoate, chlorpyrifos and imidacloprid in the soil of wheat could be described by the first-order kinetic equation, and it decreased after pesticides spay. But the residue of dimethoate and chlorpyrifos elevated first and then dropped in the rhizosphere soil. The half-lives of dimethoate and chlorpyrifos in different parts of wheat followed the order of soil>ear>stem and leaf sheath≥leaf blade, and the half-lives of imidacloprid were in the order of soil>stem and leaf sheath >leaf blade≈ear.
     3 Studies on the degradation and residue characteristics of carbendazim in wheat plants above ground and the effects of insecticide imidacloprid and chlorpyrifos on the residue of carbendazim showed that when more carbendazim was used, greater residue could be detected in wheat grains, ears, leaf blades, stems and leaf sheaths. The residue of carbendazim was mainly in leaf blades and ears; while in grains, stems and leaf sheaths, the residue was too low to be detected. The degradation of carbendazim in wheat ears, leaf blades, stems and leaf sheaths followed one-level dynamic equation Ct=C0e-KT. Different organs had different deposits in the early time after carbendazim was used, indicating that the deposit in ears and leaf blades was higher than in stems and leaf sheaths. The degradation dynamic of each part showed that the residue decreased along with the growing process. The lowest level was detected at the ripen stage. At the earlier stage, the degradation rate was faster, but in the latter, it became slower. The half-life of carbendazim in ears was shorter than in leaf blades, stems & sheaths. Differences in degradation equation and the half-life existed because different growth and environmental conditions between two growing seasons. When imidacloprid or chlorpyrifos was blended with carbendazim separately, both produced great effects on the residue of carbendazim. Imidacloprid lengthened the half life of carbendazim, while the chlorpyrifos made it shorter. The result in different parts of wheat plants was similar. The effects on ears were more significant. According to the treatment of this experiment, the residue of carbendazim in grains was lower than National Standard, 0.5mg.kg-1 (GB 14870-1994 in China), so grains were hygienically edible.
     4 Possible pathway of pesticide degradation in wheat was found. During the grain filling period after pesticides were spayed, air temperature and ear fresh weight were the two main factors influencing the initial deposition content of dimethoate and chlorpyrifos in ears. Ear fresh weight was the main factor affecting the initial deposition content of imidacloprid in ears; Air temperature, blade fresh weight and wind speed were the three main factors influencing the initial deposition content of dimethoate in leaf blades. Air temperature and leaf blade fresh weight were the two main factors influencing the initial deposition content of chlorpyrifos in leaf blades. Leaf blade fresh weight was the main factor affectingthe initial deposition content of imidacloprid in leaf blades. For these three pesticides, stem and leaf sheath fresh weight was the main factor influencing the initial deposition content in stems and sheaths. During the early degradation period, air temperature was the main factor influencing the degradation speed of dimethoate and chlorpyrifos, and air temperature mainly impacted the volatilization rate of pesticides. Probably the decreased concentration of dimethoate and chlorpyrifos at the earlier stage was mainly caused by volatilization rather than degradation. Sunshine duration was the main factor influencing imidacloprid degradation, but it was not a significant impact on the imidacloprid degradation in stems and sheathes. Perhaps it was related to light distribution. Photodegradation might be a pathway of imidacloprid degradation at the earlier stage after spraying.
     5 Spraying NaOH and Na2CO3 (alkaline) in wheat field could significantly degrade the residue of dimethoate, chlorpyrifos and imidacloprid, but spraying KH2PO4 (acid) and NaCl (neutral) solution did not have significant impacts on the degradation of the three pesticides. Acetone and NaOH could significantly degrade the residue of carbendazim in wheat bran. Riboflavin and FeCl3 could significantly degradethe residue of carbendazim in wheat glumes. Compared with urea and ammonium, organic fertilizer was better in degrading pesticide. In contrast to KCl and K2CO3, plant ash was more efficient in the degradation.
     6 Carbendazim, chlorpyrifos and dimethoate were observed to have boosted the population of samll brown planthopper (Laodelphax striatellus Fallén) on the 20th day after sparying. The population density of small brown planthoppers in plots treated with chlorpyrifos or chlorpyrifos and carbendazim were 255.2% or 425.6% higher than the control, respectively. Free amino acid, deoxidized sugar, total phenolic content, invertase (Inv.), polyphenol oxidase (PPO) activity in leaf blades and ears of wheat were investigated on the 27th day after anthesis. The results showed that compared with the control, all pesticide treatments except imidacloprid and prochloraz caused increment of free amino acid, deoxidized sugar content and Inv activity, and decrement of total phenolic content and PPO activity in leaf blades and ears in wheat. Of all the treatments, chlorpyrifos plus carbendazim treatment was the most serious. Results from correlation analysis showed that the population density of small brown planthoppers were positively correlated to free amino acid, deoxidized sugar content and Inv activity in leaf blades and ears in wheat, and negatively correlated to total phenolic content and PPO activity in leaf blades in wheat, suggesting that the influence of pesticides on the small brown planthoppers might be the results of physiological and biochemical changes in wheat plants. Given the population density of small brown planthoppers, it was suggested that carbendazim and prochloraz were applied alternately to control wheat scab, and that imidacloprid were applied to control wheat aphids.
引文
1. Agnieszka Obojska. Organophosphonate utilization by the thermopile geobacillus caldoxylosilyticus T20 [J]. Applied and Environmental Microbiogy, 2002, 5:2081-2084
    2. Alfonso Di Muccio.Silvana Girolimetti,Danilo Attard Barbini,Patrizia Pelosi, Tiziana Generali, Luciano Vergori,Giovanni De Merulis, Antonio Leonelli, Patrizia Stefanelli [J]. Journal of chromatography A, 1999,833:61-65
    3. Anderson I, Anderson JPE. Influence of pesticides on nitrogen transformations in soil [J]. Toxicol Environ Chem. 1991, 30: 153~158
    4. Aochi Y. O., Farmer W. J., Sawhney B. L. In situ investigation of 1,2-dibromoethane sorption/desorption processes on clay mineral surfaces by diffuse reflectance infrared spectroscopy [J]. Environmental science and Technology, 1992, 26(2),329-335
    5. Attaway H, Nelson J O, Baya A M , et al. Bacterial detoxification of diisopropyl fluorophosphates [J]. Appl Environ Microbiol, 1987,53(7):1685-1689
    6. Aysal P.,Gozek K.,Artik N.,Tuncbilek A. S. 14C-chlorpyrifos residues in tomatoes and tomato products [J]. Bull. Environ. Contam. Toxicol. 1999,62:377-382
    7. Backhus D. A., Gschwend P. M. Fluorescent polycyclic aromatic hydrocarbons as probes for studying the impact of colloids on pollutant transport in groundwater [J]. Environmental Science and Technology, 1990,24(8), 1214-1223
    8. Barik S. Metabolism of insecticides by microorganisms. In Insecticide Microbiology R Laled. Springer Berling, 1984,87-130
    9. Beit I O, Wheelock J V, Cotton D E. Factors affecting soil residues of dieldrim, endosulfan, gamma-HCH, dimethoate, and pyrolan [J]. Ecotoxicol Environ Saf, 1981, 5(2):125-160
    10. Bernal J.L., Nozal M.J. del, Toribio L.,Jimenez J.J.,Atienza J. High-performance liquid chromatographic determination of benomyl and carbendazim residues in apiarian samples [J]. Journal of chromatography A.1997(787):129-136
    11. Bernauer H, Mauch L, Brandsch R. Interaction of the regulatory protein NicR1 with the promoter region of the pAO1-encoded 6-hydroxy-D-nicotine oxidase gene of Arthrobacter oxidans [J], Mol Microbiol, 1992, 6: 1809-1820
    12. Bondi G, Catriona M, Kirk T S. Bioavailability of nonextractable pesticide residues to earthworms[J]. Environ Sci Technol, 2001, 35: 501-507
    13. Bortiatynski J. M., Hatcher P. G., Minard R. D., Dec J., Bollag J. M. Enzyme-catalysed binding of 13C-labelled 2,4-dichlorophenol to HA using high resolution 13C-NMR. In: Senesi, N.,Miano T.M.(Eds), Humic Substances in the Global Environmental and Implications on Human Health.Elsevier, New York, 1994: 1091-1099
    14. Brenda E,Bradman A, Castorina R. Exposures of children to organophosphate pesticides and their potential adverse health effects [J]. Environ. Health Perspective, 1999, 107(3):409-419
    15. Byme S L, Pinkerton S L,. The effect of cooking on chlorpyrifos and 3,5,6-trichloro-2-pyridinol levels in chlorpyrifos-fortified produce for use in refining dietary exposure [J]. J. Agric. Food Chem., 2004, 52(25):7567-7573
    16. Calderbank A., The occurrence and significance of bound pesticide residue in soil: Reviews in Environmental Contamination and Toxicology, 1989, 108, 71-103
    17. Carter F L, Stringer C A. Residues and degradation products of technical heptachlor in various soil types [J]. J Econ Entomol, 1970,63(2): 625-628
    18. Chaudhry G R, Ali A N, Wheeler W B. Isolation of a methyl Parathion-degrading pseudomonas sp. That possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol, 1998,54(2):288-293
    19. Chen C M, Zhu Z Ye Z, Wanner B L, et al. Molecular biology of carbon-phosphorus bond cleavage. Choning and sequencing of the phn(psiD) gene involved in alley phosphonate uptake and C-P lyase activity in Escherichia coli, J Biol Chem, 1990, 265: 4461-4471
    20. Chin Y., Gschwend P. M. Partitioning of polycyclic aromatic hydrocarbons to marine porewater organic colloids. Environmental Science and Technology, 1992, 26(8): 1621-1626
    21. Chung J M, Ka J O. Isolation and characterization of 2,4-dichlorophenoxyacetic acid-degrading bacteria from paddy soils. Microbiol, 1998, 36:256-261
    22. Clegg D J,Gemert M V, Gemert M, Expert panel report of human studies on chlorpyrifos and/or other organophosphate exposures. J. Toxicol. Environ, Health (Part B), 1999, 2(3):257-279
    23. Clements P, Wells CHJ. Soil sensitized generation of singlet oxygen in the photodegradation of bioresmethrin [J] Pestic Sci, 1992,34:163-166
    24. Cochran R C, Kishiyama J, Aldous C, Carr W C, Pfeifer K F. Chlorpyrifos hazard assessment based on a review of the effects of short-term and long-term exposure in animals and humans. Food and Chemical Toxicology, 1995, 33:165-172
    25. Cohen S Z. Treatment and disposal of pesticide wastes. In: GetzinL .ed. Transport and Behavior of Chemicals in the Environment Washington, D C, American Chemical Society, 1984: 297~32.
    26. Colborn T. Our stolen future[M].New York: Penguin Group,1996.1-60
    27. Concalves C., Alpendurada M.F. Solid-phase micro-extraction-gas chromatography (tandem)- mass spectrometry as a tool for pesticide residue analysis in water samples at high sensitivity and selectivity with confirmation capabilities. J. Chromatogr. 2004,1026:239-250
    28. Cook R.L., Langford C. H. Structural characterization of a FA and a HA using solid-state Ramp-CP-MAS 13C nuclear magnetic resonance. Environmental Science and Technology, 1998,32(5):719-725
    29. Cristina Blasco, Monica Fernandez, Yolanda Pico, Guillermina Font, Jordi Manes. Simultaneous determination of imidacloprid, carbendazim, mehtiocarb and hexythiazox in peaches and nectarines by liquid chromatography-mass spectrometry. Analytica Chimica Acta, 2002 (461):109-116
    30. Cui Zhongli, Li Shunpeng, Fu Guoping. Isolation of methyl parathion-degrading sraim M6 and cloning of the methyl parathion hydrolase gene. Applied and Environmental Microbiology. 2001, 67(10): 4922-4925
    31. Dankwardt A., Freitag D.,Hock B. Approaches to the immunochemical analysis of non-extractable triazine residues in refractory organic substances(ROS) and characterization of ROS. Acta Hydrochimica et Hydrobiologica, 1998, 26(3):145-151
    32. Dankwardt A., Hock B., Simon R., Feitag D., Kettrup A. Determination of non-extractable triazine residues by enzyme immunoassay; investigation of model compounds and soil fulvic and Has. Environmental Science and Technology, 1996, 30(12):3493-3500
    33. David G. James. Imidacloprid increases egg production in Amblyseius victoriensis (Acari: Phytoseiidae). Experimental & Applied acarology,1997,21:75-82
    34. David H.Thomas, Viorica Lopez-Avila, L.D.Betowski, Jeanette Van Emon. Determination of carbendazim in water by high-performance immunoaffinity chromatography on-line with high-performance liquid chromatography with diode-array or mass spectrometric detection. Journal of chromatography A, 1996 (724):207-217
    35. Delorenzo M E, Scott G I, Ross P E, Effects of the agricultural pesticides atrazine, deethylatraine endosulfan, and chlorpyrifos on an estuarine microbial food web. Environ. Toxicol. Chem., 1999, 18(12):2824-2835
    36. Dikshit A.K., Pachauri D.C.,Jindal T. Maximum residue limit and risk assessment of beta-cyfluthrin and imidacloprid on tomato (Lycopersicon esculentum Mill) .Bull.Environ.Contam.Toxicol.,2003,70:1143-1150
    37. Erstfeld K M. Environmental fate of synthetic pyrethroids during spray drift and field runoff treatments in aquatic microcosms [J]. Chemosphere, 1999,39(10):1737-1769
    38. Eschenbach A., Kastner M., Bieri R., Schaefer G., Mahro B. Evaluation of a new, effective method to extract polycyclic aromatic hydrocarbons from soil samples. Chemosphere, 1994, 28(4), 683-692
    39. Feng Y C, Racke K D, Bollag J M, et al. Isokation and characterization of a chlorinated-pyridinol-degrading bacterium. Appl. Environ. Microbiol., 1997, 63(10):4096-4098
    40. Fischer K, Norman S, Freitag D. Studies of the behaviour and fate of the polymer-additives octadecyl-3-(3,5-ditbutyl-4-hydroxyphenyl) propionate and tri-(2,4-ditbutylphenyl) phosphate inthe environment [J]. Chemosphere, 1999,39(4):611-625
    41. Fitzgerald R.H.,Manley-Harris M. Laundering protocols for chlorpyrifos residue removal from pest control operators’overalls. Bull. Environ.Contam.Toxicol.2005,(75):94-101
    42. Führ F., Ophoff H. Burauel P., Wanner U., Haider K. Modification of the definition of bound residues. In: Pesticide Bound Residues in soil (Report of a Workshop, September 3-4, 1996).Eds. State Commission for the Assessment of Chemical used in Agriculture. Report No. 2. Publ., Wiley-VCH, DFG, 1998
    43. Fuhremann T M, Lichtensein E P. Release of soil-bound methyl [14C] parathion residues and their uptake by earthworms and oat plants[J]. J Agr Food Chem, 1978, 26: 605-611
    44. Gebendinger N, Radosevich M. Inhibition of atrazine degradation by cyanazine and exogenous nitrogen in bacterial isolate M91-3[J]. Appl Microbiol Biotechnol, 1999,51(3):375-381
    45. Geer L A, Cardello N, Dellarco M J. Comparative analysis of passive dosimetry and biomonitoring for assessing chlorpyrifos exposure in pesticide workers. Annals of Occupational Hygiene, 2004, 48(8)683-695
    46. Gereon J W., William F B. Cooperative hydrogen bonding of atrazine[J]. Environ Sci Technol, 1993, 27: 500-505
    47. Getenga Z. M., Jondiko J. I. O.,Wandiga S.O.,Beck E. Dissipation behavior of malathion and dimethoate residues from the soil and their uptake by garden pea (Pisum sativum). Bull.Environ.Contam.Toxicol.2000,64:359-367
    48. Getzin L W. Degradation of chlorpyrifos in soil: influence of autoclaving, soil moisture, and temperature. J. Econ. Entomol., 1981, 74: 158-162
    49. Gisi D, Strucki G, Hanselmann K W. Biodegradation of the pesticide 4,6-dinitro-ortho-cresol by microorganisms in batch cultures and in fixed-bed column reactors[J]. Appl Microbiol Biotechnol, 1997, 48(4):441-448
    50. Gonzales R H.Management of kiwifruit pests in Chile:1,Degradation of residues of the insecticides chlorpyrifos and phosmet. Revista Fruticola,1989,10(2):35-43
    51. Guy S., Bernard L. Modeling of microbial degradation of pesticides in soils [J]. Boil Fertile Soils, 2001, 33: 551~557.
    52. Hallberg G R. Pesticide pollution of ground water in the humid United States. Agriculture, Ecosystems and Environment, 1989, 26:299-367
    53. Hartmann R. Polycyclic aromatic hydrocarbons (PAHs) in forest soils: critical evaluation of a new analytical procedure. International Journal of Environmental Analytical Chemistry, 1996, 62, 161-173
    54. Hatcher P. G. Bortiatynski J. M., Minard R. D., Dec J., Bollag J. M. Use of high-resolution 13C NMR to examine the enzymatic covalent binding of 13C-labeled 2,4-dichlorophenol to humicsubstances. Environmental Science and Technology, 1993, 27(10),:2098-2103
    55. Hautala R R. Surfactant effects on pesticide photochemistry water and soil [Z]. Environmental protection Agency, Washington D C, 1978, 600/3-78-060
    56. Hebert V R, Miller G C. Depth dependence of direct and indirect photolysis on soil surfaces[J]. J Agric Food Chem, 1990,38: 913-918
    57. Helling C S, Krivonal A E. Biological characteristics of bound dinitroaniline herbicides in soils[J]. J Agric Food Chem, 1978, 26: 5-11
    58. Hernondo M. D. et al. Determination of five antifouling agents in water by gas chromatography with positive/negative chemical ionization and tandem mass spectrometric detection. J. Chromatogr. 2001, 938:103-111
    59. Heuokeroth D M, Eberle M F, Rydaczewaki M J. Calculation of biodegradation rate constants based on soil temperatures [J]. Bioremdiation, 1997, 2(4):303~308.
    60. Hoffmann M R, Hua I, Hochemer M. Application of ultrasonic inrradiation for the degradation of chemical contaminants in water [J]. Ultrasonics Sonochemistry, 1996, 3:163-172
    61. Hoffmann M R, Martin S T, Bahnemann D W. Environmental application of semiconductor photocatalysis. Chem. Rev., 1995, 95:69-96
    62. Holben W E, Schroeter B M, Calabrese G M, et al. Gene probe analysis of soil microbial populations selected by amendment with 2.4-dichlorophenoxyacetic acid. Appl Environ Microbiol, 1992, 58: 3941-3948
    63. Huckaba R M, Cable H D, Vand J W. Joint effects of acifluorfen applications and soybean trips feeding on soybean. Weed Science, 1988, 36: 667-670
    64. IAEA, Quantification, nature and bioavailability of bound 14C residues in soil. Plant and Food, Vienna, 1986, 177-185
    65. Ilya Elashvili, Joseph J., Frank D., Valeria C. PhnE and glpT genes ehance utilization of organophosphates in Escherichia coli K-12. Appl Environ Microbiol, 1998, 64(7):2601-2608
    66. Irene Horne, Tara D. Identification of an opd (Organophosphate Degradation) gene in an Agrobacterium isolate. Applied and Environmental Microbiology, 2002, 68(7):3371-3376
    67. Jerzy Dec, Jean-Marc Bollag. Dehalogenation of chlorinate phenols during oxidative coupling[J]. Environ Sci Technol, 1994, 28: 484-490
    68. Jones K C. Persistent organic pollutants (Pops) [J]. Environmental Pollution, 1999, 100: 209~221.
    69. Kale S P, Murthy N B, Raghu K, et al. Studies on degradation of 14C-DDT in the marine environment[J].Chemosphere, 1999, 39(6):959-968
    70. KAN-DO (Office and Pesticide Team). Accumulated pesticide and industrial chemical findings from a ten-year study of ready-to-eat foods. The Journal of AOAC International, 1995, 78: 614-631
    71. Kaneva J, Mulchandani A, Chen W. Factors influencing parathion degradation by recombinant Escherichia coli with surface-expressed organophosphorus hydrolase [J]. Biotechnol Prog,1998,14(2):275-278.
    72. Kearney P C.,Plimmer J. R., Wheeler W. B., Kontson A. Persistence and metabolism of dinitroaniline herbicides in soils. Pesticide Biochemistry and Physioligy. 1976, 6(3), 229-238
    73. Kennedy D W, Aust S D, Bumpus J A. Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767) [J]. Appl Environ Microbiol, 1990,56(8):2347-2353
    74. Khan S U, Ivarson K C. Microbiological release of unextracted residues from an organic soil treated with prometryn[J]. J Agri Food Chem, 1981, 29: 1301-1311.
    75. Khan S U. Equilibrium and kinetic studies of the adsorption of 2,4-D and picloram on humic acid[J]. Canadian Journal of soil science, 1973, 53 :429-434
    76. Khan S. U. Studies on bound 14C-prometryn residues in soil and plants. Chemosphere, 1982, 11(8), 771-795
    77. Kozak J, Weber J B, Sheets T J. Adsorption of prometryn and metolachlor by selected soil organic matter fractions[J]. Soil Sciences, 1983, 136(2):94-101
    78. Laemmli C M, Leveau J H, Zehnder A J B, et al. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). Bacteriol, 2000, 182: 4165-4172
    79. Lal S, Lal R. Bioaccumulation, metabolism and effects of DDT, fenitrothion and chlorpyrifos on Saccharomyces cerevisiae[J]. Arch. Environ. Contam. Toxicol., 1987,16:753-757
    80. Lapre L F, Sances F V, Toscano N C, et al. The effect of acaricides on the physiology, growth, and yield of strawberries. Journal of Economic Entomology, 1982, 75:616-619
    81. Lartiges BS ,Garrigues PP. Degradation kinetics of organophosphorus and organonitrogen pesticides in different waters under various environmental conditions. Environ Sci Technol 1995,29:1246-1254
    82. Lee S R, Mourer C R, Shibamoto T.Analysis and after cooking processes of a trace chlorpyrifos spiked in polished rice. J. Agric. Food Chem., 1991,39(5):906-908
    83. Leenheer J A, Alrichs J L. Divisions-2-soil chemistry soil[J]. Sci Soc Am Proc, 1971, 35:700-705
    84. Li Zhaojun, Xu Jianming, Muhammad akmal. Ma Gourui. Effect of bound residues of metsulfuron-methyl in soil on rice growth. Chemosphere, 2005, 58(9), 1177-1183
    85. Lichtenstein E P, Katan J, Anderegy B N. Binding of persistent and nonpersistent 14C-labelled insecticides in an agricultural soil[J]. J Agr Food Chem, 1977, 25: 43-51
    86. Mae A A, Marits R O, Ausmees N R, et al. Characterization of a new 2.4-dichlorophenoxyaceticacid degrading plasmid pEST4011 physical map and localization of catabolic genes. Gen Microbiol, 1993, 139:3165-3170
    87. Maghraby E S. Bioavailability and toxicological to rats of bound 14 C-chlorpyrifos residues in soybeans. Bulletin of the National Research Centre Cairo,2000,25(3):259-268
    88. Mallick K, Bharati K, Banerji A, et al. Bacterial degradation of chlorpyrifos in pure cultures and in soil. Bull. Environ. Contam. Toxicol., 1999, 62(1):48-54
    89. Manz M, Wenzel K D, Dietze U, et al. Persistent organic pollutants in agricultural soils of central Germany[J]. The Science of the Total Environment, 2001, 277: 187~198.
    90. Maqueda C, Perez Rodriguea J L, Martin F. A study of the interaction between chlordimeform and humic acid from a lypic chromoxerert soil[J]. Soil Science, 1983, 136: 75-81
    91. Mark Shimazu, Ashok Mulchandani. Simultaneous degradation of organophosphorus pesticides and p-Nitrophend by a genetically engineered moraxella sp. With surface-expressed organophosphorous hydrolase. Biotechnology and Bioengineering, 2001,76(4):3574-3579
    92. Martin N. L., Vieira E. M., Sposito G. Mechanism of atrazine sorption by humic acid: a spectroscopic study. Environmental Science and Technology, 1994, 28(11):1867-1873
    93. Mcdaniel C S, Harper L L, Wild J R. Cloning and sequencing of a plasmid-brone gene (opd) encoding a phosphotriesterase. Bacteriol, 1988,170(5):2306-2311
    94. Meeker J D, Singh N P, Ryan L. Urinary levels of insecticide metabolites and DNA damage in human sperm. Human Reproduction, 2004, 19(11); 2573-2580
    95. Michel F C, Reddy C A. Forney L J. Microbial degradation and humification of the lawn care pesticide 2,4-dichlorophenoxyacetic acid during the composting of yard trimmings[J]. Appl Environ Microbiol, 1995, 61(7):2566-2571
    96. Monserrate E, Hgblom M M. Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, surfidogenic, and methanogenic conditions [J]. Appl Environ Microbiol, 1997, 63(10):3911-3915
    97. Moriya F, Hashimoto Y, Kuo T L. Pitfalls when determining tissue distributions of organophosphorus chemicals: sodium fluoride accelerates chemical degradation [J]. J Anal Toxicol, 1999, 23(3):210-215
    98. Mulbry W W, Karns J S. Parathion hydrolase specified by the flavobacterium opd gene: relationship between the gene and protein. Bacteriol,1989,171(12):6740-6746
    99. Nanny M. A., Bortiatynski J. M., Tien M., Hatcher P. G. Investigations of enzymatic alterations of 2,4-dichlorophenol using 13C-nuclear magnetic resonance in combination with site specific
    13C-labeling: understanding the environmental fate of this pollutant. Environmental Toxicology and Chemistry, 1996, 15(11):1857-1864
    100. Nauen R, Rechmann U,Amborst S, et al. Whitefly-active metabolites of imidacloprid: biologicalefficacy and translocation in cotton plants [J]. Pestic Sci,1999,55(2):265-271
    101. Nauen R,Tietjen K,Wagner K, et al. Efficacy of plant metabolites of imidacloprid against Myzus persicae and Aphis gossypii (Homoptera: Aphididae) [J].Pestic Sci,1998,52(1):53-57
    102. Neavpass. Adsorption of picloram by humic acids and humin[J]. Soil Sciences, 1976, 121: 272-277
    103. Neidert E, Trotman R B, Saschenbrecker P W. Levels and incidences of pesticide residues in selected agricultural food commodities available in Canada. The Journal of AOAC International, 1994, 77:18-33
    104. Northcott G. L.,Jones K.C. Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environmental pollution, 2000, 10:19-43
    105. Ollis D F, Pelizzetti E, Serpone N. Destruction of water contaminants. Environ. Sci. Technol., 1991, 9:1523-1529
    106. Omar S A. Availability of phosphorus and sulfur of insecticide origin by fungi. Biodegradation, 1998, 9(5): 327-336
    107. Or M I, Marco E. Disappearance of trichlorfon from cultures with different cvanobacteria[J]. Bull.Environ. Contam Toxicol, 1991, 47(3):392-397
    108. Parekh N R, Hartmann A, Charnay M P, et al. Diversity of carbofuran-degrading soil bacteria and detection of plasmid-encoded sequences homologous to the mcd gene. FEMS microbial Ecol, 1995,17:149-160
    109. Patnaik K K, Tripathy N K, Farm-grade chlorpyrifos (Durmet) is genotoxie in somatic and germ-line cells of Drosophila. Mutat. Res., 1992, 279(1):15-20
    110. Patrick G Hatcher. Use of high-resolution 14C NMR to examine the enzymatic colvalent binding of 14C-labelled 2,4-Dichlorophenol to humic substances[J]. Environ Sci Technol, 1993, 27:2098-2103
    111. Patrick Mazellier, Emilie Leroy, Bernard Legube. Photochemical behavior of the fungicide carbendazim in dilute aqueous solution. Journal of photochemistry and photobiology A: chemistry, 2002, 153:221-227
    112. Racke K D, Laskowski D A, Schultz M R, et al. Resistance of chlorpyrifos to enhanced biodegradation in soil. J.Agric. Food Chem., 1990, 38: 1430-1436
    113. Racke K D, Robbins S T. Factors affecting the degradation of 3,5,6-trichloro-2-pyridinol in soil. ACS Symposium Series, 1991, 459: 93-107
    114. Racke K D. The environmental fate of chlorpyrifos. Rev. Environ. Contam. Toxicol.m 1993, 131: 1-154
    115. Raven P J, George J J. Recovery by riffle macro invertebrates in a river after a major accidental spillage of chlorpyrifos. Environmental pollution, 1989, 59:55-70
    116. Redondo M.J., Ruiz M.J., Font G., Boluda R. Dissipation and distribution of atrazine, simazine, chlorpyrifos, and tetradifon residues in citrus orchard soil. Arch.Environ.Contam.Toxicol.1997, 32:346-352
    117. Richnow H. H., Eschenbach A., Mahro B., Wehrung P., Albrecht P., Michaerlis W. The use of
    13C-labelled polycyclic aromatic hydrocarbons for the analysis of their transformation in soil. Chemosphere, 1998, 36(10), 2211-2244
    118. Richnow H. H., Seifert R., Hefter J., Link M., Francke W., Schaeffer G., Michaerlis W. Organic pollutants associated with macromolecular soil organic matter: mode of binding. Organic Geochemistry, 1997, 26(11-12), 745-758
    119. Robert T R, Standen M E. Further studies of the degradation of the pyrethroid insecticide Cypermethrin in soils[J]. Pesticide Science, 1981, 12: 285-296
    120. Romero E, Dios G, Mingorance M D, et al. Photodegradation of mecoprop and dichlorprop on dry, moist and amended soil surfaces exposed to sunlight[J]. Chemosphere, 1998, 37(3):577-589
    121. Sabine von Wiren-Lehr. Mineralization of [14C] glyphosate and its plant-associated residues in srable soils originating from different farming systems. Pestic Sci, 1997,51:436-442
    122. Sanchezpalacios A., Perezruiz T., Martinezlozano C. Determination of diaquat in real samples by electron-spin-resonance spectrometry, Analytica Chimica Acta, 1992, 268(2):217-223
    123. Sarman U, Monoj K R, Singh H D, Isolation of plasmid pRL1 from Arthrobacter oxydans 317 and demonstration of its role in steroid 1 (2)-dehydration. Basic Microbiol, 1994, 34: 183-190
    124. Sayed A P, Belal M H, Gupta G. Photosynthesis inhibition of soybean leaves by insecticides. Environmental Pollution, 1991, 74: 245-250
    125. Sayler G S, Hooper S W, Layton A C, et al. Catabolic plasmids of environmental and ecological significance. Microb Ecol, 1990,19: 1-20
    126. Scheunert I, Mansour M, Andreux F. Binding of organic pollutants to soil organic mater. International journal of environmental analytical chemistry, 1992, 46, 189-199
    127. Schlautman M. A., Morgan J.J. Binding of fluorescent hydrophobic organic probe by dissolved humic substances and organically-coated aluminium oxide surfaces. Environmental Science and Technology, 1993, 27(12):2523-2532
    128. Schoz K et al. Photolysis of Imidacloprid (NTN33893) on the leaf surface of tomato plants. Pestic. Sci. , 1999, 55:633~675
    129. Senesi N, Testini C. Adsorption of some nitrogenated hebicides by soil humic acids[J]. Soil Science, 1980, 10: 314-320
    130. Shah M M, Barr D P, Chung N, et al. Use of white rot fungi in the degradation of environmental chemicals [J]. Toxicol Lett, 1992,64-65:493-501
    131. Sikora L J, Kaufman D, Hornog L C. Enzyme activity in soils showing degradation oforganophosphosphate insecticides. Biology and Fertility of soils ,1990, 9(1):14-18
    132. Spencer W.F.,James D.A., Thomas D.S. . Coversion of parathion to paraoxon on soil dusts and clay minerals as affected by ozone UV light. J. Agric. Food Chem, 1980, 28(2):366-371
    133. Stemmer W P. Rapid evolution of a protein in vitro by DNA shuffling[J].Nature,1994,370(4):389-391
    134. Sundaram B, Koolana R S, Rawendra N, et al. Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pestic Sci., 1999, 55(12):1222-1228
    135. Syvanen M, Zhou Z, Wharton J, et al. Heterogeneity of the glutathione transferase genes encoding enzymes responsible for insecticide degradation in the housefly[J]. J Mol Evol, 1996, 43(3):236-240
    136. Tafuri J, Roberts J. Organophosphate poisoning. Annals of Emergency Medicine, 1987,6:193-202
    137. Toscano N C, Sances F V, Johson M W, Lapre L F. Effect of various pesticides on lettue physiology and yield. Journal of Economic Entomology, 1982, 75: 738-741
    138. Varo I, Serrano R, Navarro J C, et al. Acute lethal toxicity of the organophosphorus pesticide chlorpyrifos to different species and strains of Artemia. Bull. Environ. Contam. Toxicol., 1998,61:778-785
    139. Verma A., Pillai M. K. K. Bioavailability of soil-bound residues of DDT and HCH to certain plants. Soil Biology and Biochemistry, 1991b, 23, 347-351
    140. Verma A., Pillai M. K. K. Bioavailability of soil-bound residues of DDT and HCH to earthworms. Current Science, 1991a, 61(12), 840-843
    141. Wamhoff H et al, Photodegration of imidacloprid. J.Agric. Food Chem., 1999, 47:1730~1734
    142. Ward S, Arthington A H, Pusey B J. The effects of a chronic application of chlorpyrifos on the macroinvertebrate fauna in an outdoor artificial stream system: species responses. Ecotoxicology and Environmental Safety, 1995, 30:2-23
    143. Weller M. G., Simon E., Pfortner P., Dosch M., Niessner R. Detection of bound residues by enzyme immunoassay. In: Pesticide Bound Residues in Soil(Report of a Workshop, September 3-4, 1996). Eds. State Commission for the Assessment of Chemicals used in Agriculture. Report No. 2. Publ., Wiley-VCH, DFG, 1998
    144. Wenk M, Baumgartner T,Dobovsek J, et al. Rapid atrazine mineralization in soil slurry and moist soil by inoculation of an atrazine-degrading Pseudomonas sp. Strain[J]. Appl Microbiol Biotechnol, 1998, 49: 5, 624-630
    145. William S C, Mark M L, Rex A L. Photolysis of imidazolinone herbicides in aqueous solution and on soil[J]. Weed Science, 1992,40:143-148
    146. Williams R.L., Oliver M.R., Ries S.B., Krieger R.I.. Transferable chlorpyrifos residue from turf grass and an empirical transfer coefficient for human exposure assessments. Bull.Environ.Contam.Toxicol., 2003, 70: 644-651
    147. Wood B, Payne J. Influence of single application of insecticides on net photosynthesis of pecan. Horticultural Science, 1984, 19: 265-266
    148. Xing B, Pigatello J J, Gigliotti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environ Sci Technol, 1996, 30: 2432-2440
    149. Xing B, Pigatello J J. Dual mode sorption of low polarity compounds in glassy poly and organic matter[J]. Environ Sci Technol, 1997, 31:792-799
    150. Yen J H, Law F H, Wang Y S, et al. Dissipation of organophosphorus insecticide chlorpyrifos in soil. Journal of the Chinese Agricultural Chemical Society, 1997, 35(3):310-318
    151. Youngman R R. Leigh T F, Kerby N C, Toscano N C, Jackson C E. Pesticides and cotton. Effect on photosynthesis, growth and fruiting. Journal of Economic Entomology, 1980, 83: 1549-1557
    152. Yu Y L, Luo Y M. Rapid degradation of butachlor in wheat rhizosphere soil [J]. Chemosphere, 2003, 50: 771~774.
    153. Zheng W, Liu W P. Kinetics and Mechanism of the Hydrolysis of Imidacloprid. Pestic, Sci,. 1999,55:482~485
    154. 安凤春,莫汉宏,郑明辉,张兵. 化学农药污染土壤植物修复中的环境化学问题. 环境化学,2003,22(5):420-426
    155. 蔡道基. 农药环境毒理学研究 [M]. 北京: 中国环境科学出版社, 1999: 78~83.
    156. 蔡继红,丁长春,朱伊君. 淮安市农产品中重金属及有机氯、有机磷农药残留量调查. 环境监测管理与技术,2002,14(1):20-23
    157. 曹红英,梁涛,陶濧. 北京地区 50 多年来有机氯农药迁移与残留的动态模拟与预测. 中国科学 D 辑 地球科学,2005,35(10):980-988
    158. 陈道文,杨春龙,黄丽琴, 章维华, 邵苏宁, 杨红. 吡虫啉在蔬菜上的残留及动态研究. 农药,1998,37(4):21-22
    159. 陈士夫,赵梦月,陶跃武,彭国胜. 光催化降解有机磷农药的研究. 化工环保,1995,15(2):115-116
    160. 陈振徳,陈雪辉,冯明祥,袁玉伟. 毒死蜱在菠菜中的残留动态研究. 农业环境科学学报,2005,24(4):728-731
    161. 陈志良,罗军,王成刚,廖华,胡月玲。土壤有机农药污染的降解机理与生物修复技术。环境污染治理技术与设备,2003,4(8):73-77
    162. 崔磊. 鞍山市郊蔬菜中有机磷农药污染状况分析. 辽宁城乡环境科技,2002,22(3):18,15
    163. 崔永,郭江峰,陈子元. 农药遗传毒性研究进展. 核农学报,2005,19(2):159-162
    164. 戴荣彩,陈莉,陈家梅,夏福利,余苹中. 乐斯本乳油在小麦和土壤中的残留试验. 华北农学报,2006,21(1):133-135
    165. 戴亦军,葛峰,陈婷,袁生. IMI 及其微生物转化产物 5-hydroxy IMI 的 HPLC 分析. 南京师大学报(自然科学版),2005,28(4):83-85
    166. 樊丹,甘小泽,卢耀英,李峰,倪海燕,邵志慧,李明辉. 多菌灵在茶叶中的残留动态研究[J]. 农业环境科学学报,2005,24:298~300。
    167. 方一平,张庆国. Rayleigh 模型在农药残留上的应用. 安徽农业大学学报,1995,22(4):461-463
    168. 冯志全. 吡虫啉对稻飞虱、蚜虫的防治效果. 农药,1997,36(11):37-38
    169. 傅敏,丁培道,蒋永生,高宇. 超生波降解有机磷农药乐果的实验研究. 重庆环境科学,2003,25(12):27-29
    170. 傅以钢,黄亚,张亚雷,赵建夫. 3 种水生植物对水溶液中乐果的降解作用研究. 农业环境科学学报,2006,25(1):90-94
    171. 高健磊,李冰,范顺利,候杰. 农药废液中氧乐果及其中间体土壤吸附系数的降解速率的测定. 华北水利水电学院学报,1999,20(4):7-10
    172. 高玉荣,黄玉瑶,曹宏,陈俨梅. 单甲脒农药对模型池塘生态系统藻类群落结构的影响. 应用与环境生物学报,1995,1(3):209-218
    173. 郜红建,蒋新. 有机氯农药在南京市郊蔬菜中的生物富集与质量安全[J]. 环境科学学报,2005,25(1):90-93
    174. 葛兴,薛健,杨亦萍. 多菌灵在西葫芦生长期的残留动态[J]. 北京农业科学,1996,14(4):
    36~37.
    175. 关锐捷. 中国农业生态环境状况综述[J]. 中国农村研究,2001,21:1-4
    176. 郭明,闽志顺,段金荣,陈红军,张沁. 土壤农药残留的化学修复探索. 农业环境科学学报,2003,22(3):368-370
    177. 郭赛. 梧州市 1999~2000 年市售蔬菜有机磷农药监测结果. 职业与健康,2002,18(2):72-73
    178. 国家统计局. 中国统计年鉴. 北京:中国统计出版社,1997
    179. 何奕,王琦琛,虞骥. 快速检测毒死蜱残留量的酶膜生物传感器研究. 上海环境科学,2003,22(10):687-690
    180. 侯为道,陈灿,高玲,杨元,李晓辉,李建华. 成都市城乡居民膳食中农药残留水平及安全性评价. 预防医学情报杂志,1999,15(2):77-79,71
    181. 花日茂,程燕,葛世彬,杨晓凡,李学德,徐利,汤锋,操海群,岳永德. 3 种农药对异菌脲的光解影响及相互作用研究. 安徽农业大学学报,2003,30(4):353-357
    182. 华小梅等. 我国农药的生产、使用状况及其污染环境因子分析. 环境科学进展,1996,4(2):33-45
    183. 黄春艳,朱传楹,张增敏,郭梅,张匀华. 小麦赤霉病流行趋势预测及产量损失研究[J]. 植保技术与推广,1999,19(2):8~9
    184. 黄素芳,朱育菁,林抗美,蓝江林,李芳,史怀,刘波. 毒死蜱在蕹菜及土壤中的残留和降解动态研究. 农业环境科学学报,2006,25(増刊):269-271
    185. 金仁耀,桂文君,寿林飞,吴慧明,朱国念. 多菌灵在柑橘和土壤中的残留及降解动态研究[J]. 江苏农业科学,2005,(2): 111~114
    186. 荆海强. 美国对食品中农残的监管. 食品科学,2002,21(6)
    187. 李徳洁,等. 市售蔬菜及菜地成菜有机磷农药残留调查. 中国食品卫生杂志,1999,5(2):81
    188. 李俊凯,雷贤兵,包淑芳. 乐果在小白菜中的残留动态研究. 湖北农学院学报,2002,22(4):297-299
    189. 李敏,沈志雷,王炳森,郭俊生. 膳食脂肪含量对乐果致雄性大鼠生殖毒性的影响. 卫生研究,2002,31(1):58-61
    190. 李敏,沈志雷. 乐果对雄性大鼠生殖系统及其胎鼠发育的影响. 中国公共卫生,2002,18(2):183-184
    191. 李鹏坤,李巧枝,刘芳,马丽娜,李华帷,邵彦来,游永,王青霞,郝晓雷. 桃中残留有机磷农药去除方法研究. 农药科学与管理,2004,25(6)
    192. 李启泉,刘守亮,秦启发,王建国,杨素林,童仲良. 环境、食品及人体农药残留量调查. 中国自然医学杂志,2004,6(1):5-8
    193. 李莹,高成仁,吴剑英,陈光,息长林. 40%毒死蜱乳油在稻田土壤中的降解动态. 农药,2000,39(6):25-27
    194. 林舜华,高雷明,韩荣庄,黄银晓,项斌. 单甲脒农药对大豆-土壤系统的生态影响. 应用与环境生物学报,1997,3(2):106-111
    195. 林玉锁,徐亦钢,石利利,周军英,陈良燕. 土壤-作物系统中农药残留生物降解去除研究. 农业环境科学学报,2003,22(2):221-223
    196. 刘爱芝,王晓军,武予清,李素娟,李巧丝. 吡虫啉对小麦产量的影响及其防治麦蚜有效剂量的评价. 河南农业科学,2003,1:27-29
    197. 刘惠君, 郑巍, 刘维屏. 新农药吡虫啉及其代谢产物对土壤呼吸的影响. 环境科学,2001,22(4)
    198. 刘乾开,朱国念. 新编农药使用手册. 上海:上海科学技术出版社,1999:60-62
    199. 刘维屏,王琪全,方卓. 新农药环境化学行为研究-除草剂绿草定(Triclopyr)在土壤-水环境中的吸附和光解. 中国环境科学,1995,15(4):311-315
    200. 刘伟,朱鲁生,王军,谢慧,宋艳,王秀国,王倩,钱博. 利用吸收光谱法和微核法测定3 种农药对 DNA 损伤的作用. 农业环境科学学报,2006,25(2):531-534
    201. 刘新,尤民生,魏英智,等. 降解毒死蜱曲霉 Y 的分离和降解效能测定. 应用与环境生物学报,2003,9(1):78-80
    202. 刘洋,孔祥清,马坤明,高中超. 食品安全中的农药残留问题. 黑龙江八一农垦大学学报,2005,17(1):65-68
    203. 刘玉焕,李淑彬,刘芳. 曲霉 L8 对有机磷农药乐果的降解作用. 上海环境科学,17(8):
    204. 刘玉焕,钟英长. 有机磷农药(乐果)的酶促降解研究. 中山大学学报(自然科学版),1999,38(4):77-81
    205. 刘泽文,韩召军,张玲春. 吡虫啉防治同翅目害虫的应用综述. 植保技术与推广,2003,23(2):30-32
    206. 刘智,张晓舟,李顺鹏. 利用甲基对硫磷降解菌 DLL-E4 消除农产品表面农药污染的研究. 应用生态学报,2003,14(10):1770-1774
    207. 楼建晴,程敬丽,朱国念. 吡虫啉在甘蓝上的残留动态. 农药,2004.43(1):40-42
    208. 楼霄,李惠兰,季峰. 南京市夏季青菜中有机磷农药残留量调查. 农村生态环境,1996,
    12(3):60
    209. 陆胜民,欧阳小琨,应敏,刘青梅. 臭氧降解乐果机理探讨. 农村生态环境,2004,20(3):70-72,76
    210. 欧晓明, 张 俐, 裴 晖, 等. 新农药硫肟醚在土壤中的降解[J]. 中国环境科学, 2005, 25(6): 705~709.
    211. 欧晓明,罗玲,王晓光,樊德方. 黏土矿物和腐植酸对新农药硫肟醚的吸附及其机理研究. 农业环境科学学报,2006,25(1):211-218
    212. 乔雄梧,王静,秦曙,朱九生,郝变青. 4 种农药对土壤微生物的影响Ⅱ:氮素矿质化的变化. 应用与环境生物学报,1999,5(suppl):158-161
    213. 秦钰惠,王以燕. 美国关于毒死蜱的最新决定. 农药,2000,39(8):45
    214. 邱建锋,邓峰,姜吉芳。1984-1995 年广东省食物中毒流行病学分析及预防对策。广东卫生防疫,1996,22(2):12
    215. 邱瑾,傅小芸,吕建德. 吡虫啉光降解产物中阴离子的毛细管电泳分析. 环境化学,1998,17(5):504-507
    216. 邱泽武,赵德禄,史寅奎,黄韶清. 大鼠氧化乐果中毒致呼吸衰竭的实验治疗. 中华内科杂志,2002,41(4):259-261
    217. 汝少国,ISODA Hiroko,邴欣. 采用 Caco-2 和 PC12 细胞检测有机磷农药的细胞毒性. 环境科学研究,2003,16(2):47-50
    218. 申丽,闵顺耕,侯圣军,叶升锋. 水溶液中毒死蜱在紫外激发下的快速降解. 现代科学仪器,2006,1:91-93
    219. 沈国兴,严国安,彭金良,严雪. 农药对藻类的生态毒理学研究:毒性机理及其富集和降解. 环境科学进展,1999,7(6):131-140
    220. 施海萍, 陈 謇, 叶建人. 毒死蜱, 乐果在大棚和露地青菜上的降解动态[J]. 浙江农业科学, 2002, (4): 191~192.
    221. 石成春,郭养浩,刘用凯. 环境微生物降解有机磷农药研究进展. 上海环境科学,2003,
    222. 石成春,徐升,傅彦斌,郭养浩. 氧化乐果曲霉降解特性和中间产物的研究. 中国环境科学,2004,24(2):180-183
    223. 石利利,林玉锁,徐亦钢,周军英,陈良燕. DLL-1 菌在土壤中对甲基对硫磷农药的降解性能与影响因素研究. 环境科学学报,2001,21(5):597-600
    224. 石志琦,史建荣,陈怀谷,林玲,王裕中. 小麦赤霉病菌对多菌灵的抗药性研究[J]. 农药学学报,2000,2(4): 22~27
    225. 司友斌,岳永德,周东美,陈怀满. 土壤表面农药光化学降解研究进展. 农村生态环境,2002,18(4):56-59
    226. 宋海波,等. 武汉市售蔬菜有机磷农药残留情况调查分析. 中国公共卫生管理,1999,15(4):255
    227. 宋茹,纪淑娟. 蔬菜水果中有机磷农药残留测定现状及展望. 农药,2002,41(10):10-13
    228. 孙红杰,张志群. 超声降解甲胺磷农药废水. 中国环境科学,2002,22(3):210-213
    229. 孙丽梅,李季,董章杭. 冬小麦-夏玉米轮作系统化肥农药投入调查研究. 农业环境科学学报,2005,24(5):935-939
    230. 孙威江,袁弟顺. 农艺措施对茶叶农药残留成分降解的作用. 福建农业大学学报,1998,
    27(3):307-311
    231. 孙运光,周志俊,胡云平,陈嘉,金泰. 乐果对大鼠脑毒蕈碱受体的影响及其与胆碱酯酶的关系. 中华劳动卫生职业病杂志,2002,20(1):294-295
    232. 孙运光,周志俊,胡云平,陈嘉,金泰麂. 乐果亚急性染毒诱导大鼠耐受以及对大鼠脑组织 M 受体的影响. 环境与职业医学,2003,20(3):154-158
    233. 汤锋,邓大鹏,刘根凤,操海群,岳永德,花日茂. 蔬菜中 4 种农药残留去除技术研究. 安徽农业大学学报,2006,33(2):183-188
    234. 屠豫钦. 正确认识化学农药的问题. 植物保护,2003,29(4):11-15
    235. 汪立刚,蒋新,颜冬云,王芳,卞永荣,吴金水,李新爱. 土壤中残留毒死蜱的作物效应. 环境科学,2006,27(2):366-370
    236. 汪立刚,蒋新. 土壤结合态农药残留生物有效性研究进展. 农业环境科学学报,2003,22(3):376-379
    237. 王焕民,张子明. 新农药手册. 农业部农药鉴定所,北京:中国农业出版社,1989,3
    238. 王金花,陆贻通. 农药毒死蜱的生态风险及其微生物修复技术研究进展. 环境污染与防治,2006,28(2):125-128
    239. 王一茹,刘长武,牛成玉,等。丁草胺在水体中光解和稻田中归趋的研究。环境科学研究,1996,15(4):475-481
    240. 王永杰,李顺鹏,沈标. 有机磷农药乐果降解菌的分离及其活性研究. 南京农业大学学报,2001,24(2):71-74
    241. 王永杰,李顺鹏,严淑玲. 活性微生物与农药的降解. 中国沼气,1999,17(4):10-13
    242. 王玉飞,于笑宇. 有机磷农药残留物的 GC/MS/MS 分析. 中国卫生检验杂志,2005,15(2):247-
    243. 王越,赵岩峰,张伟华. 乐果诱发慢性粒细胞白血病 1 例. 白血病·淋巴瘤,2002,11(4):198
    244. 王增辉等. 农药降解规律的数学方法研究. 农业环境保护,1993,12(2):93-94,78
    245. 翁航音,汤强,蒋学明,赵学敏,孙铃,刘艳。一起急性乐果气体中毒事故的调查。现代预防医学,2003,30(5):741-745
    246. 吴春华,陈欣. 农药对农区生物多样性的影响[J]. 应用生态学报,2004,15(2):341-344
    247. 吴进才,董波,李冬虎,邱慧敏,杨国庆. 4 种农药对水稻籽粒生长模型参数的影响. 中国农业科学,2004,37(3):376-381
    248. 吴俐勤,吴声敢,刘宇. 高效液相色谱测定吡虫啉的残留研究. 现代科学仪器,2003,1:
    52-55
    249. 伍宁丰,梁果义,邓敏捷,姚斌,范云六. 有机磷农药降解酶及其基因工程研究进展. 生物技术通报,2003,5:9-13
    250. 武丽辉 译自 Agro No.487.澳大利亚农药残留检测结果. 农药科学与管理,2006,27(3):56
    251. 向平安,黄璜,燕惠民,周燕,郑华,黄兴国. 湖南洞庭湖区水稻生产的环境成本评估. 应用生态学报,2005,16(11):2187-2193
    252. 肖建军,华泽钊,徐雯,李保国. 植物酶浓度对检测乐果灵敏度的影响研究. 环境科学学报,2002,22(5):653-657
    253. 徐新. 减少农药多菌灵中酚嗪类杂质的技术研究. 现代农药,2003,2(4):8-9
    254. 许明贞,等. 1993~1994 年广州市农贸市场蔬菜农药残留监测情况分析. 广东卫生防疫,1995,21(4):68
    255. 杨浩,肖国民. 杀虫剂毒死蜱的合成进展. 应用化工,2003,32(2):9-12
    256. 杨红,章维华,黄丽琴,杨春龙,邵苏宁,陈道文.吡虫啉在烟草中的残留动态研究. 南京农业大学学报,1999,22(3):80-82
    257. 杨军. 我国食物中有机磷农药残留现状及干预措施. 中国公共卫生,2000,16(8):755-756
    258. 姚建仁,焦淑贞,赵福珍,黄宏英,夏杏云,郭永生,张雪玉. 几种作物对六六六的吸收. 生态学报,1985,5(3):223-230
    259. 业内综述:化工产品须注意深层次问题[J]. 化工周刊,2004,5:7
    260. 仪美芹,王开运,姜兴印,王怀训. 微生物降解农药的研究进展. 山东农业大学学报(自然科学版),2002,33(4):519-524
    261. 尤民生,刘新。农药污染的生物降解与生物修复。生态学杂志,2004,23(1):73-77。
    262. 虞云龙,陈鹤鑫,樊德方. 农药微生物降解性与农药疏水性参数间的相关性. 环境科学学报,1998,18(2):208-211
    263. 虞云龙,盛国英,傅家谟. 农药降解酶的固定化及其降解特性. 应用与环境生物学报,1999,5(suppl):166-169
    264. 岳永德,汤锋,花日茂,关伟,涂永志. 混合农药及表面活性剂对毒死蜱光解影响的研究. 安徽农业大学学报,2000,27(1):1-4
    265. 岳永德,汤锋,花日茂. 土壤质地和湿度对农药在土壤中光解的影响. 安徽农业大学学报,1995,22(4):351-355 a) 岳永德. 乙撑硫脲在土壤中光解的影响因素[J]. 环境科学学报,1989,9(3):338-345
    266. 张 兵, 周向阳, 胡祥娜,等. 气相色谱-质谱联用仪测定蔬菜中十五种农药残留量[J]. 食品科学,2003, 24( 8):124~126.
    267. 张长青,杨文美,张金如. 青海省春小麦赤霉病的发生与危害现状研究[J]. 安徽农业科学,2005,33(2):219~220
    268. 张文军,井金学,商鸿生. 小麦赤霉病的产量质量损失简易估计方法研究[J]. 西北农业大学学报,1998,26(6):17~20
    269. 张怡 , 张宗山 , 王芳 , 等 . 吡虫啉在构杞果实中的残留动态研究 . 农业环境科学学报,2005,24(增刊): 295-297
    270. 张莹辉,王艳国,闵秀英. 残留农药对小鼠肾脏氧化损伤作用. 中国公共卫生,2005,21(1):100
    271. 章维华,陈道文,杨红,朱红梅. 用臭氧降解蔬菜中的残留农药. 南京农业大学学报,2003,26(3):123-125
    272. 赵婴荣,张敬锁,乔传令,肖志勇,高景红,张建亮. 解毒酶对小白菜中有机磷农药降解作用的研究. 农业环境科学学报,2003,22(2):238-239
    273. 郑金来,李君文,晁福寰. 常见农药降解微生物研究进展及展望. 环境科学研究,2001,14(2):62-64
    274. 郑巍,刘惠君,刘维屏. 吡虫啉及代谢产物对土壤过氧化氢酶的影响. 中国环境科学, 2000.20(6):524-527
    275. 郑巍,刘维屏,宣日成,卢建杭. 附载 TiO2 光催化降解咪蚜胺农药. 环境科学,1999:73-76
    276. 郑巍,宣日成,刘维屏. 新农药吡虫啉水解动力学和机理研究. 环境科学学报,1999,19(1):101-104
    277. 仲维科,郝戳,孙梅心,陈雁玲. 我国食品的农药污染问题. 农药,2000,39(7):1-4
    278. 周劲松,等. 海口市蔬菜水果有机磷农药残留监测结果. 中国公共卫生,1997,13(3):163
    279. 周美英,等. 上海市市售绿叶蔬菜有机磷农药残留调查. 中国食品卫生杂志,1997,9(2):26
    280. 周泽义,盖良京. 中国食品中农药残留污染状况. 资源生态环境网络研究动态,2001,12(1):24~28
    281. 朱九生,泰曙,王静,牛四坤,乔雄梧. 太原市蔬菜有机磷农药残留抽样调查. 农药科学与管理,2001,22(3):21-24
    282. 朱美英,章俊霞,卢志红,吴建富. 控制化学农药对环境的污染,实施持续植保. 江西植保,2003,26(1):29-31
    283. 朱树秀,尹力上. 春小麦对土壤中 14C-辛硫磷残留物的转移规律和途径的研究. 生态学报,1988,8(1):59-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700