泰和乌骨鸡多肽若干功能活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泰和乌骨鸡是我国传统公认的天然药用鸡种,主要产于江西省泰和县。作为传统中药,乌骨鸡既可以单独食用也可以配药入复方,具有补肝肾、益气血、退虚热、治心腹痛等功效。目前,对于乌骨鸡鸡肉酶解获得多肽的功能活性研究还少有报道。此外,作为中国传统中药,乌骨鸡多肽是否与其药用机理有关值得进行全面的实验研究。鉴于此,本文建立多种小鼠模型,对乌骨鸡多肽的补血、抗炎、镇痛及肝脏保护功能进行了研究。现将本文主要研究内容与结果概括如下:
     1.建立了失血法和氟尿嘧啶注射法联合致血虚小鼠模型,对泰和乌骨鸡多肽的补血活性进行了研究,以评价乌骨鸡多肽及其一种分离多肽对血虚小鼠的补血作用。研究测定了实验小鼠红细胞和血红蛋白水平。结果显示,活性肽组RBC水平在第12天时与血虚组相比差异显著(P<0.05);活性肽组在第6至12天期间升高RBC和HGB水平作用与阿胶组相比明显加快,具有显著性差异(P<0.05)。第18天时,活性肽组HGB水平已超过各组水平,且与正常组相比具有显著性差异(P<0.05)。活性肽组分A组的RBC水平在各个时间点均高于血虚组,但均无显著性差异(P>0.05)。活性肽组分A组在第20天时HGB水平已与正常组无显著性差异(P>0.05),而血虚组和阿胶组仍与正常组有极显著差异(P<0.01)。
     2.建立了小鼠足跖肿胀模型、耳二甲苯致炎模型、毛细血管通透性模型,对泰和乌骨鸡多肽的抗炎活性进行了研究。结果发现,乌骨鸡多肽能够显著性(P<0.05)地抑制机体PGE2的合成或释放,但是对于机体的表观肿胀现象抑制效果不佳(P>0.05),表明乌骨鸡多肽具有一定的抗炎功能活性。
     3.建立了小鼠热板法实验模型和醋酸扭体法实验模型,对泰和乌骨鸡多肽的镇痛功能活性进行了研究。结果发现,虽然乌骨鸡多肽仅表现出较弱的作用效果,没有显著提高扭体潜伏期,但低剂量和高剂量的乌骨鸡多肽都显著(P<0.01)抑制了小鼠扭体反应次数,且扭体抑制率都达到了68.4%,表明乌骨鸡多肽具有一定抑制化学性损伤的镇痛作用。对于热板法模型,乌骨鸡多肽的镇痛作用不明显(P>0.05),仅有较低的镇痛趋势。表明乌骨鸡多肽对于化学性损伤所致疼痛的抑制作用效果较好,而对热痛刺激的抑制效果则不及前者。
     4.建立了小鼠四氯化碳肝损伤模型和D-半乳糖胺肝损伤模型,对泰和乌骨鸡多肽的肝脏保护功能活性进行了研究。结果发现,乌骨鸡多肽对两种模型小鼠的ALT、AST、MDA、SOD、肝指数、脾指数指标作用效果不显著(P>0.05),对小鼠肝损伤没有起到显著的保护作用,对机体脂质过氧化的抵抗作用不明显,对模型药物导致的小鼠肝、脾增大没有显著的抑制作用(P>0.05)。
Taihe black-bone silky fowl (TBSF) is an acknowledged breed of natural medical chicken in Chinese tradition, grows primarily in South China, Taihe, Jiangxi Province. As a traditional Chinese medicine, it can be used independently or in compound prescription, BSF has been proved to have the effects of nourishing liver and kidney, profiting vitality, reducing asthenia heat, curing abdominal pain and so on. At present, the bioactive research of the peptides, which is acquired from the meat of TBSF by enzymolysis, is still reported infrequently. It is worth of an all-sided experiment research, to find out whether there is any relationship between the TBSF peptides and the medicinal mechanism of TBSF. In consideration of aforementioned, this paper established several animal modes to study on the hemopoietic effect, anti-inflammatory effect, analgesic effect and liver protective effect of TBSF peptides. Now the main research content is summarized as follows:
     1. To observe the hematopoiesis activity of the TBSF peptide and one of its fractions (A), blood loss combined with myelosuppression drug (Fluorouracil,5-FU) were used to construct the blood deficiency mice model, and the red blood cells (RBC) and hemoglobin (HGB) levels were measured. Results showed that, on the 12th day, the RBC level of the bioactive peptides group has a significant difference (P<0.05) compared with the blood deficiency group; During the period of 6 to 12 days, the effect of rising the RBC and HGB level of the bioactive peptides group is significantly quicker than the Ejiao group (P<0.05). On the 18th day, the HGB level of the bioactive peptides group exceeds the other groups, and is significantly different (P<0.05) from the normal control group. The RBC level of the bioactive peptides component A group is higher than the blood deficiency group, without significant difference (P>0.05), while the blood deficiency group and the Ejiao group are significantly different (P<0.01) from the normal control group. On the 20th day, there is no significant difference (P>0.05) between the bioactive peptides component A group and the normal control group on the level of HGB, while the blood deficiency group and the Ejiao group are significantly different (P<0.01) from the normal control group.
     2. To observe the anti-inflammatory activity of the TBSF peptide, the carrageenan-induced paw edema in mice model, ear xylene cause inflammation model and capillary permeability model were used in the research. The result showed that, the peptides of TBSF could inhibit the synthesis or releases of PGE2 in body tissues significantly, but to the apparent edema of body, no significant inhibit effect was found. Those suggest that the peptides of TBSF exhibited anti-inflammatory activities to some extent.
     3. Investigations on the analgesic effects were conducted, including hot-plate test model and acetic acid-induced writhing test model. The results showed that the low and high doses of TBSF peptides did not increase the latency time of mice significantly, only a weak effect of analgesic was showed, but the peptides could significantly decreased the number of writhing, and inhibited the writhing response by 68.4%, showed their analgesic effects to chemical injury. To the hot-plate test model, the analgesic effect was not so significant, a low analgesic tendency exhibited. Those suggest that TBSF peptide has a better analgesic effect to chemical injury, rather than the thermal pain stimulus.
     4. To study on the liver protective effect of TBSF peptides, CCI4 and D-galactosamine induced hepatic injury model were established respectively. The results were found that the ALT, AST, MDA, LI, and SI indexes were not significantly inhibited, and the SOD level was not increased. Those means remarkable protective effect was not showed to the liver injury, the effect on the inhibition of lipid peroxidation to body tissues was inconspicuous, and peptides did not show a prominent inhibitory action to the pharmaceuticals induced liver and spleen accretion.
引文
[1]Koketsu M, TOYOSAKI T. Nutritive constituents of Silky fowl eggs:comparison with hen eggs of White Leghorn origin[J]. Animal Science Journal,2004,75(1):67-69.
    [2]Cheng F Y, Hsu F W, Chang H S, et al. Effect of different acids on the extraction of pepsin-solubilised collagen containing melanin from silky fowl feet[J]. Food Chemistry, 2009,113(2):563-567.
    [3]Chen S R, Jiang B, Zheng J X, et al. Isolation and characterization of natural melanin derived from silky fowl (Gallus gallus domesticus Brisson)[J]. Food Chemistry, 2008,111(3):745-749.
    [4]黄族豪,肖宜安,龙进.泰和鸟鸡遗传多样性研究进展[J].安徽农业科学2008,36(013):5331-5332.
    [5]吴红静,周晓琴.乌骨鸡种质概况及营养成分研究进展[J].畜禽业,2008(006):22-24.
    [6]房兴堂,薛忠,王庆林,等.泰和鸟骨鸡研究概况与进展[J].经济动物学报,2001,5(2):52-58.
    [7]林霖.鸟骨鸡多肽产品质量指标及其黑色素提取和含量测定研究[D].南吕大学,2007.
    [8]刘伟信,朱庆.鸟骨鸡的研究进展[J].四川畜牧兽医,1998(2):26-27.
    [9]Tian Y, Xie M, Wang W, et al. Determination of carnosine in Black-Bone Silky Fowl (Gallus gallus domesticus Brisson) and common chicken by HPLC[J]. European Food Research and Technology,2007,226(1):311-314.
    [10]清张秉成.本草便读[M].上海卫生出版社,1957.
    [11]田颖刚,谢明勇,王维亚,等.泰和乌骨鸡鸡肉总磷脂含量及其侧链脂肪酸组成的特性[J].食品科学,2007,28(4):48-51.
    [12]贺淹才.我国的乌骨鸡与中国泰和鸡及其药用价值[J].中国农业科技导报,2003,5(001):64-66.
    [13]田颖刚,谢明勇,吴红静,等.鸟骨鸡与非药用鸡种鸡肉总脂质含量及脂肪酸组成的比较[J].食品与生物技术学报,2007,26(3):29-32.
    [14]田颖刚,谢明勇,吴红静,等.鸟骨鸡止己烷提取物补血作用研究[J].中药药理与临床,2007,23(1):48-50.
    [15]田颖刚,谢明勇,付志红,等.乌骨鸡脂肪油中脂肪酸组成的气相色谱-质谱分析[J].南吕大学学报:理科版,2006,30(3):264-267.
    [16]李勇.生物活性肽研究现况和进展[J].食品与发酵工业,2007,33(1):3-9.
    [17]王金,沈瑞敏,彭小文,等.生物酶法耦合膜技术制备活性短肽的工艺研究[J].食品科技,2010,1.
    [18]任兴宏.羊胎盘免疫活性小分子肽的分离纯化[D].西南大学,2010.
    [19]焦迎春,郑晓冬.活性肽在食品中的应用研究[J].粮油加工与食品机械,2002,8:35-37.
    [20]陈雪梅,严丹红,农向,等.牛乳源生物活性肽及其研究进展[J].西南民族大学学报(自然科学版),2006,2.
    [21]柳小军,刘国琴,李琳.小麦源生物活性肽研究进展及其应用[J].农产品加工(学刊),2009(03):3557-3558.
    [22]孙骞,胡鑫,罗永康.血红蛋白生物活性肽的研究进展[J].肉类研究,2008(03):13-17.
    [23]刘新华.玉米肽制备及促发酵和抗氧化活性研究[D].新疆农业大学,2009.
    [24]张丽.谷氨酰胺活性肽的制备及性质研究[D].合肥工业大学,2009.
    [25]刘亚丽,李会伙,王红新.酶解玉米渣生产玉米蛋白肽的研究[J].粮食科技与经济,2005,30(002):46-47.
    [26]王尔慧.大豆新加工技术原理与应用[M].北京:中国轻工业出版社,1999.
    [27]陈纯馨,陈忻,岑佩强,等.波纹巴非蛤生物活性肽的分离与提纯研究[J].食品科学,2009(20):143-145.
    [28]肖宁.马尾松花粉多肽提取及其生物活性研究[D].山东师范大学,2009.
    [29]李荣.蚯蚓活性肽对小鼠免疫机能的影响[D].湖南农业大学,2008.
    [30]蒋菁莉,任发政,蔡华伟.牛乳酪蛋白降血压肽的超滤分离[J].食品科学,2006,27(007):124-128.
    [31]尚庆坤,向前.高效制备液相色谱法分离制备虻虫中的多肽样品[J].分析化学,1999,27(008):924-926.
    [32]Smith D D, Saha S, Fang G, et al. Modifications to the N-terminus but not the C-terminus of calcitonin gene-related peptide (8-37) produce antagonists with increased affinity[J]. J. Med. Chem,2003,46(12):2427-2435.
    [33]Wilce M, Aguilar M I, Hearn M. High-performance liquid chromatography of amino acids, peptides and proteins::CVII. A Analysis of group retention contributions for peptides separated with a range of mobile and stationary phases by reversed-phase high-performance liquid chromatography[J]. Journal of Chromatography A,1991,536:165-183.
    [34]Henderson D E, Mello J A. Physicochemical studies of biologically active peptides by low-temperature reversed-phase high-performance liquid chromatography [J]. Journal of Chromatography A,1990,499:79-88.
    [35]白泉,葛小娟,耿信笃.反相液相色谱对多肽的分离,纯化与制备[J].分析化学(FENXI HUAXUE),2002,30.
    [36]石继红,赵永同,张英起,等.应用SDS—PAGE显示小分子多肽技术的探讨[J].生物工程进展,2001,21(001):38-41.
    [37]陈振德,许重远,庄志铨,等.穿山甲及其炮制品蛋白多肽高效毛细管电泳法鉴定[J].广东药学院学报,2000,18(4).
    [38]朱国富,朱克花,陈剑兵,等.菜籽生物活性肽的研究进展[J].安徽农业科学,2009(28):3547-3549.
    [39]史云丽,刘芳,潘曼,等.大米生物活性肽研究进展[J].食品与机械,2009(02):16-17.
    [40]Jeon Y J, Byun H G, Kim S K. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes[J]. Process biochemistry,1999,35(5):471-478.
    [41]T I, S W, M. N. Inhibition of low-density lipoprotein oxidation by fish protein(mackerel peptide):11th International Symposium on Atherosclerosis[C], Paris,1997.
    [42]陈胜军.曾名勇,董十远.水产胶原蛋白及其活性肽的研究进展[J].水产科学,2004,23(006):44-46.
    [43]Feng J, Xiong Y L. Interaction and Functionality of Mixed Myofibrillar and Enzyme-hydrolyzed Soy Proteins[J]. Journal of Food Science,2003,68(3):803-809.
    [44]邹远东.生物活性肽:21世纪人类健康的宠儿[J].科学中国人,2004(008):78-79.
    [45]赵贵兴.大豆活性肽在肉鸡饲料中应用的研究[J].饲料博览,2009(01):1-4.
    [46]孙亚真.鸟骨鸡黑色素的测定及其理化性质研究[D].南吕大学,2008.
    [47]杨瑞学,朱小艳.鸟骨鸡深加工酶解处理条件的探索研究[J].食品科学,2004,25(010):187-191.
    [48]姜水红.鸟鸡精水解工艺的研究[J].中国生化药物杂志,2004,25(002):107-108.
    [49]林霖,田颖刚,谢明勇,等.乌骨鸡活性肽组成成分及体外抗氧化活性研究[J].食品科学,2007,28(10):41-45.
    [50]黄进,杨国宇,李宏基,等.抗氧化剂作用机制研究进展[J].自然杂志,2004,26(002):74-78.
    [51]田颖刚,谢明勇,王维亚,等.乌骨鸡肌肉中肌肽的鉴定与测定[J].分析试验室,2007,26(1):5-8.
    [52]罗文锋.鸟骨鸡多肽的抗氧化活性及抗氧化肽的分离纯化研究[D].华南理工大学,2010.
    [53]龙彪,彭志英,陈中,等.采用木瓜蛋白酶制备乌鸡蛋白肽的研究[J].食品工业科技,2005,26(006):135-137.
    [54]龙彪.鸟鸡蛋白酶解制备活性肽的研究[D].广州:华南理工大学,2005.
    [55]吴红静.鸟骨鸡脂质的提取,成分分析和药理学研究[D].南昌大学,2007.
    [56]聂黎行.同仁乌鸡白风丸质量控制研究[D].中国药品生物制品检定所,2007.
    [57]金若敏,宁炼,陈长勋,等.血虚模型动物制备及当归补血汤的作用研究[J].中成药,2001,23(4):268-271.
    [58]吴宏忠,杨帆,崔书亚,等.阿胶酶解成分对贫血小鼠造血.系统的保护机制[J].华东理工大学学报:自然科学版,2008,34(1):47-52.
    [59]Gilmore G L, DePasquale D K, Shadduck R K. Protective effects of BB-10010 treatment on chemotherapy-induced neutropenia in mice[J]. Experimental hematology, 1999,27(2):195-202.
    [60]胡建华,姚明,崔淑芳.实验动物学教程[M].上海:上海科学技术出版社,2009.
    [61]何晓燕,王冠华.人参对失血.性贫血小鼠补血.作用的研究[J].时珍国医国药,2008,19(9):2.
    [62]Mukherjee P K. Exploring Botanicals in Indian System of Medicine — Regulatory Perspectives[J]. Clinical Research and Regulatory Affairs,2003,20(3):249-264.
    [63]Asongalem E A, Foyet H S, Ngogang J, et al. Analgesic and antiinflammatory activities of Erigeron floribundus[J]. Journal of ethnopharmacology,2004,91(2-3):301-308.
    [64]王文魁,沈映君,等.辛夷油抗炎机理探讨[J].山西农业大学学报:自然科学版,2000,20(4):324-326.
    [65]李莹,秦献辉,李旭东,等.复方鱼腥草胶囊抗炎作用及机制实验研究[J].沈阳药科大学学报,2004,21(5):371-373,388.
    [66]Ramprasath V R, Shanthi P, Sachdanandam P. Immunomodulatory and anti-inflammatory effects of Semecarpus anacardium Linn. Nut milk extract in experimental inflammatory conditions[J]. Biological & pharmaceutical bulletin,2006,29(4):693-700.
    [67]Winyard P G, Willoughby D A. Inflammation protocols[M]. Humana Pr Inc,2003.
    [68]Yi T, Zhao Z Z, Yu Z L, et al. Comparison of the anti-inflammatory and anti-nociceptive effects of three medicinal plants known as "Snow Lotus" herb in traditional Uighur and Tibetan medicines.[J]. J Ethnopharmacol,2010,128(2):405-411.
    [69]Adedapo A A, Sofidiya M O, Afolayan A J. Anti-inflammatory and analgesic activities of the aqueous extracts of Margaritaria discoidea (Euphorbiaceae) stem bark in experimental animal models[J]. Revista de biologia tropical,2009,57(4):1193-1200.
    [70]张艳萍,邓旭明,陈志宝.苦味西葫芦抗炎作用机理的初步研究[J].中兽医医药杂志,2004,23(6):10-11.
    [71]Yeilada E, Kupeli E. Berberis crataegina DC. root exhibits potent anti-inflammatory, analgesic and febrifuge effects in mice and rats[J]. Journal of ethnopharmacology, 2002,79(2):237-248.
    [72]吴勇杰,常珍梅.甘草次酸钠的抗炎作用机理[J].中国药理学通报,1991,7(1):46-49.
    [73]钱频.鱼腥草注射液指纹图谱与抗炎,抗菌药效组分的研究[D].中南大学,2008.
    [74]Hosseinzadeh H, Ramezani M, Salmani G. Antinociceptive, anti-inflammatory and acute toxicity effects of Zataria multiflora Boiss extracts in mice and rats[J]. Journal of ethnopharmacology,2000,73(3):379-385.
    [75]张兴燊,周芳,廖月葵,等.古钩藤镇痛抗炎药理作用的实验研究[J].时珍国医国药,2007,18(7):1603-1604.
    [76]陈奇.中药药理学实验[M].上海科学技术出版社,2001.
    [77]王玉娟.合理使用解热镇痛抗炎药[J].中国现代药物应用,2009,3(3):158-159.
    [78]李淑慧,胡德耀.新型镇痛药研究进展[J].四川生理科学杂志,2001(003):110.
    [79]聂红.镇痛药研究进展[J].中国新药杂志,2003,12(12):948-951.
    [80]周程艳,王美,甄悦,等.杜仲抗炎镇痛作用的实验研究[J].中国煤炭工业医学杂杂志,2009,12(010):1613-1615.
    [81]刘泽源.中草药镇痛活性的筛选和药理学研究[D].中国人民解放军军事医学科学院毒物药物研究所,2001.
    [82]Owoyele V B, Wuraola C O, Soladoye A O, et al. Studies on the anti-inflammatory and analgesic properties of Tithonia diversifolia leaf extract[J]. Journal of ethnopharmacology, 2004,90(2-3):317-321.
    [83]Suzuki Y, Yuzurihara M, Hibino T, et al. Aqueous extract of Asiasari radix inhibits formalin-induced hyperalgesia via NMDA receptors[J]. Journal of ethnopharmacology, 2009,123(1):128-133.
    [84]Kou J, Sun Y, Lin Y, et al. Anti-inflammatory activities of aqueous extract from Radix Ophiopogon japonicus and its two constituents[J]. Biological & pharmaceutical bulletin, 2005,28(7):1234-1238.
    [85]Yang L C, Marsala M, Yaksh T L. Characterization of time course of spinal amino acids, citrulline and PGE2 release after carrageenan/kaolin-induced knee joint inflammation:a chronic microdialysis study[J]. Pain,1996,67(2-3):345-354.
    [86]Arihan O, Boz M, Iskit A B, et al. Antinociceptive activity of coniine in mice[J]. Journal of ethnopharmacology,2009,125(2):274-278.
    [87]Li M, Shang X, Zhang R, et al. Antinociceptive and anti-inflammatory activities of iridoid glycosides extract of Lamiophlomis rotata (Benth.) Kudo[J]. FITOTERAPIA, 2010,81:167-172.
    [88]Sosa S, Morelli C F, Tubaro A, et al. Anti-inflammatory activity of Maytenus senegalensis root extracts and of maytenoic acid[J]. PHYTOMEDICINE,2007,14:109-114.
    [89]王丽娟,张丽,王勇,等.益母草镇痛抗炎作用的实验研究[J].时珍国医国药,2009,20(3):645-646.
    [90]Deraedt R, Jouquey S, Delevallee F, et al. Release of prostaglandins E and F in an algogenic reaction and its inhibition[J]. European Journal of Pharmacology,1980,61(1):17-24.
    [91]马小娟.加减菌陈五苓散对实验性肝损伤的保护作用及其作用机理研究[D].广州中医药大学方剂学,2009.
    [92]杨瑞福.DMN致小鼠肝损伤模型的建立及用于中药护肝效果评价[D].广州中医药大学中西医结合基础,2008.
    [93]张均田.现代药理实验方法[M].北京医科大学,中国协和医科大学联合出版社,1998.
    [94]王淳.D-胺基半乳糖盐酸盐诱发的肝损伤模型[J].中草药,1980,11(6):262-264.
    [95]巫协宁.急性肝损伤的细胞学机制[J].国外医学:消化系疾病分册,1998,18(001):14-16.
    [96]李艳辉,肖恩华.实验性肝损伤模型的建立和评价[J].放射学实践,2006,21(10):1075-1077.
    [97]邓家刚,周小雷.中药抗肝损伤作用实验研究进展[J].广西中医药,2006,29(1):1-4.
    [98]陈卫华,郭松超.肝脏损伤动物模型及观察指标研究现状[J].广西医科大学学报,2007,24(1):156-158.
    [99]陈勇,李晶,于峰,等.甘草酸二胺脂质复合物对D-、半乳糖胺诱导小鼠肝损伤的保护作用[J].实用肝脏病杂志,2006,9(3):133-136.
    [100]张莹辉,王艳国,刘松年,等.合成洗涤剂对猪肝脏的损伤作用[J].中国公共卫生,2005,21(003):346.
    [101]魏静元.抑肽酶对D-氨基半乳糖急性肝损伤的保护作用[D].吉林大学,2006.
    [102]Yang F R, Fang B W, Lou J S. Effects of Haobie Yangyin Ruanjian Decoction on hepatic fibrosis induced by carbon tetrachloride in rats[J]. World Journal of Gastroenterology:WJG, 2010,16(12):1458.
    [103]孙晓晶,王允,王毅刚,等.苏肝清对四氯化碳致小鼠急性肝损伤的保护作用[J].中药 材,2010(01):105-108.
    [104]刘林,秦建军,史树堂,等.肝损伤动物模型制作的研究进展[J].医学研究与教育,2009,26(5):92-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700