间歇运行的潜流式人工湿地污水处理技术及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过植物—基质—微生物协同作用,人工湿地污水处理系统实现对污染物的净化,这项技术适合我国国情,具有广阔的应用前景。国内对这项技术的研究应用尚处于发展阶段,有关工艺设计资料和应用实例还不多见。
     本论文在系统分析国内外人工湿地研究现状基础上,针对人工湿地系统存在的“黑箱”现象,以泗洪县间歇运行的潜流式人工湿地系统为研究对象,按照系统论思想,采取现场调研与室内实验相结合方法,对人工湿地填料的理化性能和吸附作用、微生物群落结构、污染物去除效果进行定性分析与定量研究;同时,采用不确定性理论,优化人工湿地设计方法。得出的主要研究结论如下:
     (1)人工湿地填料理化性能测定结果表明:填料粒径越大,孔隙率越小,渗透系数越高。玄武岩填料CaO含量0.49%,沸石CaO含量4.68%;玄武岩填料大孔发育,过渡孔和小孔相对不发育,沸石填料粒径越大,大孔越发育,粒径越小,过渡孔和小孔越发育,比表面积越大。
     (2)玄武岩和沸石填料对氮磷静态吸附实验结果表明:沸石对氮的吸附平衡时间比玄武岩要短,对磷的吸附平衡时间两者相差不大。玄武岩对氮和磷的吸附等温线分别符合Freundlich型和Langmuir型,沸石对氮和磷的吸附等温线符合Langmuir型。沸石对氮和磷的最大吸附量大于玄武岩,沸石的吸附性能优于玄武岩。
     (3)填料吸附性能与理化性能有密切关系,同时,填料粒径与人工湿地床水力停留时间、水力传导性和填料吸附能力有关,据此,提出了填料最佳粒径的概念和填料吸附作用概念模型。
     (4)湿地床内沿程不同点位的芦苇根面、填料上的三种微生物(氨化细菌、亚硝化菌、反硝化细菌)的数量测定结果表明,无论春季、夏季还是秋季,总体来看氨化细菌>反硝化细菌>亚硝化菌;同种微生物相比,根面的微生物数量高于填料表面的数量。氨化细菌数量夏秋季比春季高1-2个数量级,沿程总体各点位数量基本在两个数量级之间变化。亚硝化菌、反硝化菌数量春夏秋季之间变化不大。
     (5)人工湿地水样水质监测结果表明,泗洪县潜流式人工湿地床溶解氧普遍较低,大多在0.6mg/L以下。CODCr的降解符合一级反应动力学方程,有机物在湿地前部的去除率占整个系统总去除率的80%。CODCr去除率春、夏、秋季分别为74.4%、47.7%和50.9%。
     (6)人工湿地系统TN、TP的去除率与季节有关,其中春季TN的去除率为64.6%,氨氮为70.7%,TP为44.1%;夏季TN的去除率为91.4%,氨氮为85.1%;秋季TN去除率为49.3%,氨氮为50.5% ,TP为13.3%。
     (7)泗洪人工湿地系统采用间歇运行方式,可以在一定程度上提高处理效果,三个季节监测结果表明,除了秋季外,泗洪人工湿地的出水能够满足一级B排放标准(GB18918-2002)。
     (8)人工湿地污水处理系统是一个存在诸多不确定性因素的复杂系统,进水水质和水量在一定范围内波动。针对污水处理厂设计过程中进水水质、水量具有不确定的特点,应用人工湿地一级动力学污染物去除模型,基于区间数理论,首次建立了以初沉池和人工湿地床为主体的污水处理系统优化设计模型。结果表明:优化模型提高了污水处理厂优化设计结果的适用性,可对人工湿地污水处理厂的设计或方案评估提供决策参考。将泗洪污水处理厂设计值与所建立的优化设计模型进行综合比较,总体来看,泗洪污水处理厂设计是科学的、合理的。
Through integrated effect of plants, substrates and microorganisms, constructed wetland system can purify municipal wastewater. This technology is suitable for China, so it has wide applications and perspectives. The research and application of constructed wetland are still developing in China. So far,there are not many relative design documents and application cases.
     Based on systematic analyses of research status on constructed wetland in home and abroad, in view of“black box phenomenon”existing in constructed wetland system, taking Sihong intermittent subsurface flow constructed wetland (SSFCW) system as research object, according to system theory concept, using combination methods of field research and lab experiment, this dissertation studied physical-chemical properties of substrates and its adsorption, microorganism communities, removal of pollutants in SSFCW. Also, using uncertainty theory, this dissertation optimized the design method of constructed wetland system. The following conclusions were obtained.
     (1) The experimental results of physical-chemical properties of substrates showed that the bigger the particle size of substrates, the smaller the porosity, the higher the permeability coefficient. The mineral compositions of basalt were mainly quartz and feldspar, the content of calcium oxide was 0.49%. For zeolite, the content of calcium oxide was 4.68%. For basalt, the big holes grew well; the medium and small holes grew badly. For zeolite, the bigger the particle size, the better the big holes; the smaller the particle size, the better the medium and small holes and the bigger the specific surface area.
     (2) The static adsorption experiment of substrates on nitrogen and phosphorus showed that the adsorption balance time of zeolite on nitrogen was shorter than basalt; the adsorption balance time on phosphorus of both substrates was nearly equal. The adsorption isotherm of basalt on nitrogen and phosphorus were in accordance with Freundlich and Langmuir types respectively. The adsorption isotherm of zeolite on nitrogen and phosphorus were both in accordance with Freundlich type. The maximum adsorption quantity of zeolite on nitrogen and phosphorus was bigger than basalt. So, the adsorption capacity of zeolite was better than basalt.
     (3) There was close relationship between physical-chemical properties and adsorption capacity. Also, particle size of substrate was associated with HRT of SSFCW, permeability coefficient and adsorption capacity. Hereby, the best particle size of substrate and conceptual model of adsorption were put forward.
     (4) Whether in spring, summer or autumn, amounts of microorganisms on substrate surface and reed root in Sihong SSFCW showed that the amount of ammonifier was larger than that of denitrifying bacteria, and the amount of denitrifying bacteria was larger than that of nitrosomonas. For the same microorganism, the amount of bacteria on reed root was higher than that on substrate surface. In summer and autumn, the amount of ammonifier was one to two levels larger than that in spring, along the constructed wetland bed the amount of ammonifier at different points varied from one to two levels. Whether in spring, summer or autumn, the amounts of nitrosomonas and denitrifying bacteria varied little.
     (5) The results of water quality monitoring in SSFCW showed that the concentration of dissolved oxygen was lower than 0.6 mg/L. The kinetic equation of CODcr removal was conformed to the first order reaction. The removal rate of organic matter in first half of SSFCW accounted for 80 percent of whole constructed wetland bed. In spring, summer and autumn, the removal rates of CODcr were 74.4%, 47.7% and 50.9% respectively。
     (6) The removal rates of TN and TP varied from different seasons. In spring, the removal rates of TN, NH4-N and TP were 64.6%, 70.7% and 44.1% respectively. In summer, the removal rates of TN and NH4-N were 91.4% and 85.1% respectively. In autumn, the removal rates of TN, NH4-N and TP were 49.3%, 50.5% and 13.3% respectively.
     (7) Sihong SSFCW operated in intermittent way; this could increase the wastewater treatment efficiency. The monitoring results showed that except autumn the effluent could reach the first order B discharge standard(GB18918-2002).
     (8) There were many uncertain factors in constructed wetland system. The water quality and volume of influent fluctuated in some range. In view of uncertainties of water quality and volume in the deign process of wastewater treatment plant, using the first order kinetic model of pollutants removal in constructed wetland system, based on uncertainty theory, the optimization model of constructed wetland system was established. This model could increase the adaptability of wastewater treatment plant design, and provide decision-making for design of constructed wetland system. Comparing design parameters of Sihong wastewater treatment plant with the established optimization model, the design of Sihong wastewater treatment plant was scientific and reasonable.
引文
[1]梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志, 2003,22(2):49-55
    [2]刘汉湖,白向玉,夏宁编著.城市废水人工湿地处理技术[M].徐州:中国矿业大学出版社,2006
    [3]于荣丽,李亚峰,孙铁珩.人工湿地污水处理技术及其发展现状[J].工业安全与环保,2006,32(9): 29-31
    [4]李禄康.湿地与湿地公约[J].世界林业研究,2001,14(1):1-7
    [5]钱大益,潘建通,解亚林等.复合人工湿地在处理生活污水中的应用研究[J].环境污染治理技术与设备,2006,7(1):85-88
    [6]宋志文,毕学军,曹军.人工湿地及其在我国小城市污水处理中的应用[J].生态学杂志,2003, 22(3):74-78
    [7] Sherwood C. Reed, Donald Brown. Subsurface Flow Wetlands—A Performance Evaluation. Water Environment Research, 1995,67(2):244-248
    [8] Sherwood C. Reed,Donald Brown.Constructed Wetland Design—the First Generation. Water Environment Research,1992,64(6):776-781
    [9] Knight R L,Kadlec R H.Constructed treatment wetlands—a global technology.Water 21,June 2000,57-58
    [10]丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护,2000,19(5):320-321
    [11]刘雯,崔理华.人工湿地在处理污水中的应用研究进展[J].嘉应大学学报,2002,20(3):29-32
    [12]程永伟,施永生,王琳等.人工湿地应用于小城镇污水处理的研究进展[J].云南化工,2006,33(3):54-57
    [13]吴振斌等著.复合垂直流人工湿地.北京:科学出版社,2008
    [14]梁威.复合垂直流湿地净化机理研究—微生物和酶(博士学位论文).武汉:中国科学院水生生物研究所,2002,16-17
    [15]梁威,吴振斌,詹发萃等.人工湿地植物根区微生物与净化效果的季节变化[J].湖泊科学,2004,16(3):312-317
    [16]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59
    [17]冯培勇,陈兆平,靖元孝.人工湿地及其去污机理研究进展[J].生态科学,2002,21(3):264-268
    [18]王世和著.人工湿地污水处理理论与技术[M].北京:科学出版社,2007
    [19]籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2):224-228
    [20] Mark E.Grismer, Markus Tausendschoen, Heather L. Shepherd. Hydraulic Characteristics of a Subsurface Flow Constructed Wetland for Winery Effluent Treatment. Water Environment Research ,2001,73(4):466-477
    [21] H.L.Shepherd,G.Tchobanoglous,M.E.Grismer. Time-Dependent Retardation Model for Chemical Oxygen Demand Removal in a Subsurface-Flow Constructed Wetland for Winery Wastewater Treatment. Water Environment Research ,2001,73(5):597-606
    [22] H.Pontier, E.May, J.B.Williams. Constructed Wetlands for the Treatment of Runoff from the Newbury Bypass. Water Environment Management, 2001,15:125-129
    [23] A.P.Jarvos, P.L.Younger.Design, Construction and Performance of a Full-Scale Compost Wetland for Mine-Spoil Drainage Treatment at Quaking Houses. Water Environment Management, 1999,13:313-318
    [24] J.Trent Stober,John T.O`Conncr,Blaise J.Brazos Winter and spring evaluations of a wetland for tertiary wastewater treatment. Water Environment Research, 1997, 69
    [25] Robert H.Kadlec, K.R.Reddy .Temperature Effects in Treatment Wetlands. Water Environment Research, 2001,73(5):543-557
    [26] Michael C.Kemp, Dennis B.George. Subsurface flow constructed wetlands treating municipal wastewater foe nitrogen transformation and removal. Water Environment Research, 1997,69(7):1254-1262
    [27] Mei-Yin Wu, Eldon H. Franz, Shulin Chen. Oxygen Fluxes and Ammonia Removal Efficiencies in Constructed Treatment Wetlands. Water Environment Research, 2001
    [28]张甲耀,夏盛林,崔克辉.潜流型人工湿地污水处理系统芦苇的生长特性与净化能力[J].水处理技术,1998,24(6):363-367
    [29]靖元孝,杨丹菁等.两栖榕在人工湿地的生长特性及其对污水的净化效果[J].生态学报,2003,23(3):614-619
    [30]靖元孝,陈兆平,杨丹菁.风车草对生活污水的净化效果及其在人工湿应用[J].应用与环境生物学报,2002,8(6):614-617
    [31]温志良,张桂珠.香蒲植物人工湿地系统的开发利用[J].广州环境科学,2000,15(1):47
    [32]袁东海,任全进,高士祥等.几种湿地植物净化生活污水COD、总氮效果比较[J].应用生态学报, 2004, 15(12): 2237-2341
    [33]朱夕珍,崔理华.不同基质垂直流人工湿地对城市污水的净化效果[J].农业环境科学学报,2003,22(4):454-457
    [34]徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603-605
    [35]杨昌凤,夏盛林.土壤类型与人工湿地污水处理功能的关系[J].环境保护科学,1993,19(1):46-49
    [36]崔理华,朱夕珍.煤渣-草炭基质垂直流人工湿地系统对城市污水的净化效果[J].应用生态学报,2003,14(4):597-600
    [37]袁东海,景丽洁,高士祥等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005, 26 (1):51-55
    [38]尹连庆,张建平等.粉煤灰基质人工湿地系统净化污水的研究[J].华北电力大学学报,1999, 26(4): 76-79
    [39]薛玉,李广贺.沸石结构对氨氮吸附性能的影响[J].环境污染与防治,2003,25(4):209-210
    [40]张甲耀,夏盛林,邱克明等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报,1999,19(3):323-327
    [41]张荣社,周琪,张建等.潜流构造湿地去除农田排水中氮的研究[J].环境科学,2003,24(1):113-116
    [42]张荣社,周琪,张相锋等.潜流构造湿地去除农田排水中磷的研究[J].环境科学,2003,24(4);105-108
    [43]招文锐,杨兵.人工湿地处理凡口铅锌矿金属废水的稳定性分析[J].生态科学,2001,20(4):16-19
    [44]藉国东,孙铁珩.人工潜流湿地处理稠油采出水的实验研究[J].环境科学学报,2001,22(4):95-99
    [45]诸惠昌.用人工湿地处理乳制品厂废水的研究[J].环境科学,1996,17(5):30-31
    [46]廖新俤,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报,2002,13(1): 113-117
    [47]吴振斌,詹德昊.复合垂直流构建湿地的设计方法及净化效果[J].武汉大学学报,2003.26(1):12-16
    [48]谢小龙,贺锋,徐栋等.垂直流人工湿地配水均匀性的研究[J].中国环境科学,2009,29(8):828-832
    [49]梁威,吴振斌,周巧红.复合垂直流构建湿地基质微生物类群及酶活性的空间分布[J].云南环境科学, 2002,21(1):5-8
    [50]吴振斌,赵文玉,周巧红等.复合垂直流构建湿地对邻苯二甲酸二丁酯的净化效果[J].环境化学,2002,21(5):495-499
    [51]史云鹏,周琪.人工湿地污染物去除动力学模型研究进展[J].工业用水与废水, 2002,33(6):12-15
    [52]肖艳,叶旌,杨敦.Monod模型在潜流式人工湿地中的应用探讨[J].环境技术,2003,(2):21-25
    [53]谢龙,王德爟,戴昱.水平潜流人工湿地有机物去除模型研究[J].中国环境科学, 2009, 29(5):502-505
    [54]张军,周琪.表面流人工湿地磷循环生态动力学模型及实现方法[J].四川环境,2004,23(1):88-91
    [55]国家环境保护局科技标准司.城市污水土地处理技术指南[M].北京:中国环境科学出版社,1997: 91~114
    [56]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [57]尹连庆,张建平,董树军等.粉煤灰基质人工湿地系统净化污水的研究[J].华北电力大学学报,1999,26(4):76-79
    [58] Reddy K R, Patrick W H. Nitrogen transformation and loss in flooded soils and sediments[J].CRC Critical Reviews in Environmental Control,1984,13:273-309
    [36]崔理华,朱夕珍.煤渣-草炭基质垂直流人工湿地系统对城市污水的净化效果[J].应用生态学报,2003,14(4):597-600
    [37]袁东海,景丽洁,高士祥等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005, 26 (1):51-55
    [38]尹连庆,张建平等.粉煤灰基质人工湿地系统净化污水的研究[J].华北电力大学学报,1999, 26(4): 76-79
    [39]薛玉,李广贺.沸石结构对氨氮吸附性能的影响[J].环境污染与防治,2003,25(4):209-210
    [40]张甲耀,夏盛林,邱克明等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报,1999,19(3):323-327
    [41]张荣社,周琪,张建等.潜流构造湿地去除农田排水中氮的研究[J].环境科学,2003,24(1):113-116
    [42]张荣社,周琪,张相锋等.潜流构造湿地去除农田排水中磷的研究[J].环境科学,2003,24(4);105-108
    [43]招文锐,杨兵.人工湿地处理凡口铅锌矿金属废水的稳定性分析[J].生态科学,2001,20(4):16-19
    [44]藉国东,孙铁珩.人工潜流湿地处理稠油采出水的实验研究[J].环境科学学报,2001,22(4):95-99
    [45]诸惠昌.用人工湿地处理乳制品厂废水的研究[J].环境科学,1996,17(5):30-31
    [46]廖新俤,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报,2002,13(1): 113-117
    [47]吴振斌,詹德昊.复合垂直流构建湿地的设计方法及净化效果[J].武汉大学学报,2003.26(1):12-16
    [48]谢小龙,贺锋,徐栋等.垂直流人工湿地配水均匀性的研究[J].中国环境科学,2009,29(8):828-832
    [49]梁威,吴振斌,周巧红.复合垂直流构建湿地基质微生物类群及酶活性的空间分布[J].云南环境科学, 2002,21(1):5-8
    [50]吴振斌,赵文玉,周巧红等.复合垂直流构建湿地对邻苯二甲酸二丁酯的净化效果[J].环境化学,2002,21(5):495-499
    [51]史云鹏,周琪.人工湿地污染物去除动力学模型研究进展[J].工业用水与废水, 2002,33(6):12-15
    [52]肖艳,叶旌,杨敦.Monod模型在潜流式人工湿地中的应用探讨[J].环境技术,2003,(2):21-25
    [53]谢龙,王德爟,戴昱.水平潜流人工湿地有机物去除模型研究[J].中国环境科学, 2009, 29(5):502-505
    [54]张军,周琪.表面流人工湿地磷循环生态动力学模型及实现方法[J].四川环境,2004,23(1):88-91
    [55]国家环境保护局科技标准司.城市污水土地处理技术指南[M].北京:中国环境科学出版社,1997: 91~114
    [56]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [57]尹连庆,张建平,董树军等.粉煤灰基质人工湿地系统净化污水的研究[J].华北电力大学学报,1999,26(4):76-79
    [58] Reddy K R, Patrick W H. Nitrogen transformation and loss in flooded soils and sediments[J].CRC Critical Reviews in Environmental Control,1984,13:273-309
    [80]欧菊泉,张小云,彭青林等.几种植物对生活污水的处理效果研究[J].湘潭大学自然科学学报,2002,24(3):81-83
    [81]种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36-40
    [82]成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184
    [83]段志勇,刘超翔,施汉昌等.复合植物床式人工湿地研究[J].环境污染治理技术与设备,2002,3(8): 4-7
    [84]刘超翔,胡洪营,张建等.人工复合生态床处理低浓度废水[J].中国给水排水,2002,18(7):1-4
    [85]吴振斌,梁威,成水平等.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析[J].环境科学学报,2001,21(5):622-624
    [86]钟定胜,罗华铭.填料在自由水面人工湿地中的应用[J].环境与开发,2000,15(1):14-15
    [87]张荣社,李广贺,周琪,张旭.潜流湿地中植物对脱氮除磷效果的影响中试研究[J].环境科学,2005,26(7):83-86
    [88]徐丽花,周琪.模拟暴雨径流人工湿地系统中N和P的去除及其分布[J].给水排水,2002,28(10):12-15
    [89]张虎成,俞穆清,田卫等.人工湿地生态系统中氮的净化机理及其影响因素研究进展[J].干旱区资源与环境,2004,18(4):163-168
    [90]杨敦,周琪.人工湿地脱氮技术的机理及应用[J].中国给水排水,2003,19(1):23-24
    [91]刘超翔,董春宏,李峰民等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80-83
    [92] Gearheart R A.Use of constructed wetlands to treat domestic wastewater,City of Arcata,California[J].Wat Sci Tech.1992,26:1625-1637
    [93] Metcalf and Eddy,Inc.Wastewater engineering,treatment and reuse(4th edition)[M].New York,USA:McGraw-Hill,2002
    [94] Rogers.Nitrogen removal in experiment wetland treatment system[J].JWPCF.1991,63(3):934-941
    [95] Taylor.A mechanism of phosphate adsorption on soil and anion exchange resin surface[J].Soil Sci.1978,42(2):434-440
    [96] H.L.Shepherd,M.E.Grismer. Treatment of high-Strength winery wastewater using a subsurface-flow constructed wetland[J] .Water Environment Research,2001, 73(2)
    [97] P.Cooper,Msc Ceng. Constructed wetlands and reed-beds mature technology for the treatment of wastewater from small populations[J]. Water Environment Management,2001, 15(2):79-85
    [98] M.A.Lee,J.S.Stansburg,T.C.Zhang.The effect of low temperatures on ammonia removal in a laboratory-scale constructed wetland[J].W.E.R,1999, 71(3):340-347
    [99] D.M.Griffin,Jr.Rishi Raj Bhattarai,Hongjian Xiang.The effect of temperature on biochemical oxygendemand removal in a subsurface flow wetland[J]. W.E.R,1999,71(4):475-482
    [100] Kevin D.White,Joel G.Burken.Natural treatment and on-site process[J].W.E.R.,1999, 71(5):676-685
    [101]吴振斌,陈辉蓉,贺锋等.人工湿地对污水磷的净化效果[J].水生生物学报,2001,25(1):28-35
    [102]尹炜,李培军,尹澄清.潜流人工湿地的局限性与运行问题[J].中国给水排水, 2004,20(11):36-38
    [103]张甲耀,夏盛林,熊凯等.潜流型人工湿地污水处理系统的研究[J].环境科学,1998 ,19(4):36-39
    [104]张虎成,田卫,俞穆清.人工湿地生态系统污水净化研究进展[J].环境污染治理技术与设备,2004,5(2):12-15
    [105]王世和,王薇,愈燕.潜流式人工湿地的运行特性研究[J].中国给水排水,2003,19(4):9-11
    [106]崔理华,朱夕珍,骆世明.污水渗滤湿地处理系统技术的研究进展[J].应用生态学报,2003,14(4):623-626
    [107]杜中典,崔理华,肖乡等.污水人工湿地系统中有机物积累规律与堵塞机制的研究进展[J].农业环境保护,2002,21(5):474-476
    [108]牛晓音,樊梅英,常杰等.人工湿地运行过程中有机物的积累[J].生态学报,2002,22(8):1240-1246
    [109]徐丽华,周琪.暴雨径流人工湿地处理系统设计的几个问题[J].给水排水,2001,27(8):32-34
    [110]崔理华,朱夕珍,骆世明,温晓露.垂直流人工湿地系统对污水磷的净化效果[J].环境污染治理技术与设备,2002,3(7):13-17
    [111]崔玉波,宋铁红,王翠兰.潜流人工湿地设计与经济分析[J].吉林建筑工程学院学报,2002,19(3): 9-11
    [112]胡康萍.人工湿地设计中的水力学问题研究[J].环境科学研究,1991,4(5):8-12
    [113]史云鹏,周琪.人工湿地污染物去除动力学模型研究进展[J].工业用水与废水,2002,33(6):12-15
    [114]王薇,愈燕,王世和.人工湿地污水处理工艺与设计[J].城市环境与城市生态,2001,14(1):59-62
    [115]高拯民,李宪法.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1991
    [116]龙腾锐,冯裕钊,郭劲松.考虑不确定因素的污水厂日进水量预测法[J].中国给水排水,2002.17(5):1~5.
    [117]蒋茹.不确定性理论与方法在城市污水处理厂优化设计中的应用研究[D].长沙:湖南大学,2004
    [118]庞煜,龙腾锐.污水处理工艺系统优化设计理论的研究与发展[J].环境污染治理技术与设备,2003,4(3):42-49.
    [119] Lynn W. R,Logan J . A.,Charnes A. Systems analysis for planning wastewater treatment plants [J]. Water Pollution Control,1962,34:565 -581.
    [120]杨崇豪,郑志宏.人工湿地污水处理反应器降解有机物的数学模型[J].华北水利水电学院学报,2004,25(2):66-70.
    [121] C. Polprasert, N.R. Khatewada and J. Bhurtel. A model for organic matter removal in free water surface constructed wetlands[J]. Water Science Technology,1998, 38:369-377
    [122] Timothy S. Wood, Michael L. Shelley. A dynamic model of bioavailability of metals in constructed wetland sediments[J]. Ecological Engineering,1999, 12:231-252
    [123] Theresa Maria Wynn, Sarah K. Liehr.Development of a constructed subsurface-flow wetland simulation model [J]. Ecological Engineering,2001,16:519-536
    [124] Renee Kincanon, A. Steve McAnally. Enhancing commonly used model predictions for constructed wetland performance as-built design considerations[J]. Ecological Modelling,2004, 174:309-322.
    [125]李如忠.河流水环境系统不确定性问题研究(博士学位论文)[D].南京:河海大学,2004
    [126] Diederik P.L. Rousseaua,Peter A. Vanrolleghemb,Niels De Pauwa. Model-based design of horizontal subsurface flow constructed treatment wetlands: a review [J]. Water Research, 2004, 38:1484-1493.
    [127] Tanner CC, Clayton JS, Upsdell MP. Effect of loading rate and planting on treatment of dairy farm wastewater in constructed wetlands—II. Removal of nitrogen and phosphorus[J]. Water Research, 1995,29(1):27–34.
    [128] Kadlec RH, Knight RL. Treatment wetlands[M]. Boca Raton, FL:CRC Press, 1996
    [129] Knight RL, Ruble R, Kadlec RH, Reed S. North American Treatment Wetland Database—electronic database created for the US Environmental Protection Agency[M].1993.
    [130]林玉鹏,曾光明.考虑不确定性因素影响的城市污水处理厂优化设计模型研究(I)[J].湖南大学学报(自然科学版),2000,27(4):94-100.
    [131]吴振斌,成水平等.垂直流人工湿地的设计及净化功能初探[J].应用生态学报,2002,13(6):715-718
    [132]付贵萍,吴振斌等.垂直流人工湿地系统中水流规律的研究[J].环境科学学报,2001,21(6):720-725
    [133]吴振斌,任明讯等.垂直流人工湿地水力学特点对污水净化效果的影响[J].环境科学,2001,9(5):45-49
    [134]雷志洪,戴知广等.高效复合垂直流人工湿地系统处理效果与污水回用工程[J].给水排水,2002,28(9):22-24
    [135]刘陵,陆桂花.多氯联苯湿地生物降解规律预测及污染风险分析[J].水科学进展,2003,14(1):79-84
    [136]付贵萍,吴振斌,任明讯等.反应器理论在复合垂直流构建湿地水流流态研究中的应用[J].环境科学,2002,23(4):76-80
    [137]林亲铁,廖柏寒等.废弃矿山土地、水体综合治理研究进展[J].环境污染治理技术与设备,2000,1(6):7~10
    [138]邓风,陈为.居住小区雨水湿地净化及回用刍析[J].南京建筑工程学院学报,2002,(3):28-32
    [139]杨昌风,黄淦泉,宋文初.模拟人工湿地处理污水的试验研究[J].应用生态学报,1991,2(4):350-354
    [140]杨敦,徐丽花,周琪.潜流式人工湿地在暴雨径流污染控制中应用[J].农业环境保护,2002,21(4):334-336
    [141]迟延智,陈风伦.人工湿地处理污水的实践[J].中国给水排水,2003,19(4):82-83
    [142]王雪,阮晓红,陈长太.复合流式人工湿地污水处理试验研究[J].牡丹江师范学院学报,2003,(1):1-2
    [143]朱彤,许振成,胡康萍等.人工湿地污水处理系统应用研究[J].环境科学研究,1991,4(5):17-22
    [144]郑雅杰.人工湿地系统处理污水新模式的探讨[J].环境科学进展,1995,3(6):1-8
    [145]况琪军,吴振斌.人工湿地生态系统的除藻研究[J].水生生物学报,2000,24(6):655-658
    [146]彭超英,朱国洪,尹国等.人工湿地处理污水的研究[J].重庆环境科学,2000,22(6):43-45
    [147]黄立南,蓝崇钰.湿地处理污水的研究[J].生态科学,1996,15(2):117-120
    [148]崔玉波,李相猛,赵可.潜流人工湿地废水处理技术的效能[J].吉林建筑工程学院学报,2002,19(2):7-10
    [149] Wendy Buell Gagliano. Biogeochemical Characterization of a Constructed Wetland for Acid Mine Drainage Treatment [D]. The Ohio State University, 2004.
    [150] Cheng Shuiping,Wu Zhenbin,Xia Yicheng.Studies on the purifying space in artificial wetlands with cattail and rush.Resources and Environment in the Yangtze Basin,1999,l8(3):270-275
    [151]徐丽花,周琪.人工湿地控制暴雨径流污染的研究进展[J].上海环境科学,2001,20(8):401-402
    [152]徐丽花,周琪.人工湿地控制暴雨径流的实验研究[J].上海环境科学,2002,21(5):274-276
    [153]成水平.人工湿地废水处理系统的生物学基础研究进展[J].湖泊科学,1996,8(3):268-273
    [154]刘文兵,史建福,黄时达.人工湿地床示踪剂的研究[J].四川环境,1995,14(4):11-15
    [155]贺锋,吴振斌,陶菁等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学,2005,26(1):47-50
    [156] Eric Arthur Cline.The Impact of an Urban Stormwater Constructed Wetland on Residential Property Values: A Case Study of The Tollgate Wetland[D]. Michigan State University, 2002.
    [157]林玉鹏,曾光明.考虑不确定性因素影响的城市污水处理厂优化设计模型研究(II)[J].湖南大学学报(自然科学版),2000,27(2):77-82.
    [158]曾光明,黄国和.环境科学与工程中的不确定性理论与方法[M].长沙:湖南大学出版社,2002.
    [159]林玉鹏,曾光明,李彩亭.污水处理厂优化设计研究进展[J].四川环境,2000,19(2):13-16.
    [160] Tang C.C., Brill E.D., J r.,Pfetter J.T. Optimization techniques for secondary wastewater treatment system[J]. Journal of the Environmental Engineering Division, 1987b, 113(10):935-951.
    [161] [瑞]G.乌尔松,[澳]B.纽厄尔编著,高景发,彭永臻译.污水处理系统的建模、诊断和控制[M].北京:化学工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700