大鼠心肌HSP70、自由基代谢和Na~+-K~+-ATPase活性对有氧耐力运动的应答性和适应性变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热休克蛋白(HSP)又称为应激蛋白,是生物体在不良环境因素作用下所产生的一组特殊的蛋白质,它能保护机体(或细胞)在应激时不受或少受伤害。运动能引起生物体细胞产生应激反应,诱导HSP生成,近年许多学者开始就运动与HSP的关系展开研究,以期为过度训练的预防、组织器官损伤保护等方面服务。运动过程中氧自由基的增高是导致运动性疲劳并影响恢复速率的重要因素之一。而Na~+-K~+-ATPase活性对细胞正常功能的维持具有重要意义。以往的研究主要观测了一次运动或长期训练前后HSP70、自由基代谢和Na~+-K~+-ATPase活性的情况,而在进行长期性的有氧耐力训练时,对于不同训练阶段机体这些指标所发生的应答性反应有何变化,以及在不同训练阶段所产生适应性变化的基本特征,国内外尚未有研究。掌握在有氧耐力训练过程中这些指标的应答性反应和适应性变化的基本特征对于科学地安排运动训练,既具有非常重要的理论意义,又具有十分重要的应用价值。
     因此,本研究的主要目的包括:(1)观察大鼠心肌HSP70、自由基代谢和Na~+-K~+-ATPase活性对有氧耐力运动所发生的应答性变化特征,以及在四周恒定负荷有氧耐力训练过程中应答性特征所发生的变化。(2)观察大鼠心肌HSP70、自由基代谢和Na~+-K~+-ATPase活性对四周有氧耐力训练所发生适应性变化的时间过程与基本特征。
     本研究以120只3月龄SD大鼠为研究对象,随机分为安静对照组和训练组。训练组在大鼠跑台上进行为期四周每次30min速度25m/min,1次/天,6次/周的恒定负荷耐力训练,在训练前和训练四周中的每周日,分别于恒定负荷运动前、运动后即刻和运动后3小时取大鼠心肌进行HSP70、MDA、总抗氧化能力和Na~+-K~+-ATPase活性的测试。
     实验结果显示:
     (1) HSP70在有氧耐力运动后呈逐渐上升的趋势,但只在训练第一和第二周后,
    
     中南帅他人学休育科学学院2003刷们。学位论文 林 玲
     这种应答性上升有显著性,且只是运动后3b显著比运动前o<o.01贞运动后
     即刻(<0刀5)高,而运动前和运动后即刻之间无显著差异。结果提示:*sP70
     应答性变化大小主要取决于运动对机体所造成应激的程度,从应激开始到
     HSP70大量合成之间需要一定的时问。
    ()HSP70基础值(运动前值)在定量负荷训练过程中出现先升高后降低的适
     应性变化,训练第二周末达到峰值,第四周末己回复正常。提示训练负荷产
     生的运动应激对机体必须足够大,才能导致HSP70的积累。
    切 有氧耐力训练使总抗氧化能力在第一周训练结束后,基础值显著上升,运
     动后即刻显著下降(P<0.05),且运动后3h比运动后即刻还低;在训练第二周,
     运动后即刻**A出现显著升高o<0刀1),总抗氧化能力出现下降趋势;第
     一次运动和第三、四周训练后,定量负荷运动未造成总抗氧化能力和MDA
     含量的显著变化,显示自由基代谢对同一运动负荷的应答性变化会随着对运
     动负荷的逐渐适应而减小,机体自由基代谢重新达到平衡,抗氧化系统提高
     了对氧化应激的防御能力,具备了承受更大负荷运动应激的能力。
    (4 未经训练大鼠一次耐力运动后,心肌Na\K+-ATPase活性升高,且维持到运
     动后3h①<o刀5);训练第二周末,心肌Na\K\Ahase活性运动后显著下降
     (<队05);训练第一、三、四周进行有氧耐力运动,心肌Na\义-ATksc活
     性未出现显著变化。提示:心肌Na”-K”-ATPase活性对有氧耐力运动的应答
     性变化与运动对机体所造成的应激程度有关。
    (5 进行有氧耐力训练后,大鼠心肌 Na”-K+-ATPase活性基础值出现升高趋势,
     显示:心肌细胞膜上Na“、K”泵的工作能力提高,心脏的保护机制有所增强。
Introduction: Heat shock proteins (HSP) are also called stress proteins that undergo preferential synthesize following a variety of stressors and can protect economies or cells under stressed conditions. Exercise has been demonstrated as a physiological inducer of HSP. Recently many scientists start to research the relationships of exercise and HSP, who want to use these to prevent over-training and protect tissues after excessive exercise. It has great influence in training effect and body ability status that the changes of free radicals metabolism are induced by exercises. There are not sufficient researches about the regular changes of HSP70, free radicals metabolism and Na+-K+-ATPase activity in training course. So the aim of this study was to observe the responsive and adaptive changes of HSP70, free radicals metabolism and Na+-K+-ATPase activity in four weeks endurance training of fix quantity in myocardium of rats.
    Method: Three months old male Sprague-Dawley rats were randomly divided into rest control groups (CG) and training groups (TG). Rats of training groups ran for 30 min at speed of 25m/min a day, 6d/week. Before training and at the four seventh days of every training week., HSP70 content, MDA content and Na+-K+-ATPase activity in myocardium of rats were measured at pre-exercise, post-exercise immediately and 3h after exercise respectively. Results:
    (1) HSP70 content increased gradually after exercise, but significant change was only in WK1 and WK2 groups. In these groups, HSP70 content in 3h after exercise groups (3hE) was significant greater than in pre-exercise groups (PE) (P<0.05) and post-exercise immediately groups (AE) (P<0.01). No significant difference between PE and AE.
    (2) Pre-exercise HSP70 content was significant greater in WK1 group (P<0.05) than in CG, and greatest in WK2 group. It started to decrease in the third week (WK3 vs. WK2 P<0.05). No significant difference between WK4 group and CG.
    (3) Total antioxidant ability (T-AOC) in WK1 groups decreased immediately after
    
    
    exercise (P<0.05) and continued to decrease till 3 hours after. MDA content increased after exercise immediately in WK2 groups (P<0.01), at the same time T-AOC decreased. MDA and T-AOC had no significant changes after exercise in WK3 and WK4 groups.
    (4) Pre-exercise MDA content had no significant changes in four weeks endurance training course. Pre-exercise T-AOC had significant increase after one week training (P<0.001), but decreased to normal level after two weeks training.
    (5) Na+-K+-ATPase activity raised till three hours after exercise in untrained rats. Post-exercise Na+-K+-ATPase activity decreased greatly in WK2 groups (AE vs. PE P<0.05). Na+-K+-ATPase activity had no significant changes after exercise in WK1, WK3 and WK4 groups.
    (6) After endurance training, Na+-K+-ATPase activity had an upward trend. Conclusion:
    (1) HSP70 content has an upward trend after exercise. Its change range mainly lie on stress degree that induced by exercise. It implicates the magnitude of HSP70 responsive change can reflect intensity of stimulative.
    (2) It makes a period of time from stress starting to HSP70 synthesizing greatly even the exercise stress had enough intensity.
    (3) The adaptive change of pre-exercise HSP70 content is climbing at first and start to go back after adapting the exercise training that implicates the training load must be enough great to induce HSP70 accumulating.
    (4) With adapting to training of fix quantity, free radical metabolism in myocardium will restore balance. But the antioxidant ability has increased and can endure greater intensity of exercise stress.
    (5) The responsive changes of Na+-K+-ATPase activity relate to the stress degree by exercise induced.
    (6) After endurance exercise, the ability of Na+, K+-pump in cardiac cell membrane has increased and the protective mechanism of heart has improved.
引文
[1]张旭辉,裴国献.热休克蛋白70的特性与热耐受[J].中国卫生检验杂志,2000,10(5):637.
    [2] Burdon RH. Heat shock and heat shock proteins [J]. Biochem J, 1986, 240: 313.
    [3] Rebbe N F, Ware J, Bertina R M, et al. Nucleotide sequence of a cDNA for a member of the human 90KD heat shock protein family [J]. Genet, 1987, 53:235
    [4]郭兴中,徐仁宝.热休克反应中蛋白质合成抑制的机制[J].生命的化学,1997,17(2):22~24.
    [5] Morimoto R I, Tissiers A, Georgopoulos C, et al. Stress proteins in biology and medicine [C]. Cold Spring Harbor, N, Y: Cold Spring Harbor laboratory press, 1990.
    [6] Li G C. Induction of the rmo tolerance and enhanced heat shock protein synthesis in Chinese hamster fib roblasts by sodium arsenide and by ethanol [J]. J Cell Physiol, 1983, 115:116.
    [7] Perdrizet G A, Heffron T G, Buchingham F C, et al. Stress conditioning: a novel approach to organ preservation [J]. Currsurg, 1989, 23.
    [8] Currie R W, Tanguany R M, Kingma J G. Heat shock response and limitation of tissue necrosis during occusion/reperfusion in rabbit hearts [J]. Circulation, 1993, 87: 963.
    [9]李冰祥,蔡惠罗,陈永林.昆虫的热休克反应和热休克蛋白[J].昆虫学报,1997,40(4):417~427.
    [10] Ritossa F M. A new puffing pattern induced by heat shock and DNP in Drosophilia [J]. Experientia, 1962,18:571~573.
    [11] Morimoto R I, Ceorgopoulos C. The stress response, function of the proteins, and perspectives [A]. Cold Spring Harbor: CSHL Press,1990.1~36.
    [12]朱大栩,马更生.热休克蛋白的生物学功能[J].国外医学分子生物学分册,1993,15(6):275~278.
    [13]任惠民,周兆年.稳定细胞结构的分子基础:热休克蛋白[J].生理科学进展,1994,25(1):11~16.
    [14]周永刚.一些与热休克蛋白有关的生物功能[J].国外医学生理、病理科学与临床分册,1996,15(4):286~289.
    [15] Bienz M, Pelham H R B. Mechanisms of heat shock gene activation in higher eukaryotes [J]. Adv in Genet, 1987, 24(1): 31.
    [16] Beckmann R P, Lovett M, Welch W J, et al. Examining the function and regulation of hsp70 in cells subjected to metabolic stress [J]. J Cell Biol,1992,117(6): 1137.
    [17] Currie R W, Karmazyn M, Mailer K. Heat shock response is associated with enhanced postischemic ventricular recovery [J]. Circ Res, 1988, 63: 543.
    [18] Karmazyn M, Mailer K, Currie R W. Acquisition and decay of heat shock enhanced postischemic ventricular recovery [J]. Am J Physiol, 1990, 259:H424
    [19] Donnelly T J, Sievers R E, Vissern F L J, et al. Heat shock protein in duction in rat heart: a role for improved myocardial salvage after ischemia and reperfusion [J]. Circulation, 1992, 85: 769.
    
    
    [20] Amrani M, Corbett J, Allen N J, et al. Inducation of heat shock proteins enhances myocardial and endothelial functional recovery after prolonged cardioplegic arrest [J], Ann Thorac Surg, 1994, 57: 157.
    [21] Hutter M M, Sievers R E, Barbosa V, et al. Heat shock protein induction in rat hearts: a direct correlation between the amount of heat shock protein induced and the degree of myocardial protection [J]. Circulation, 1994, 89:355
    [22] Yelon D m, Latchman D S, Marber M S. Stress proteins-- an endogenious route to myocardial protection: fact of fiction [J]. Cardio vasc Res, 1993, 27: 158.
    [23] Black S C, Tucchesi B R. Heat shock proteins and the ischemic heart: an cheogenous protective mechanism [J]. Circulation, 1993, 87: 1048.
    [24] Williams R S, Thomas J A, Fina M, et al. Human heat shock protein (HSP70) protects murine cells from injury during metabolic stress [J]. J Clin Invest, 1993, 92: 503.
    [25] Heads R J, Lathman D S, Yellon D M. Stable high level expression of a transfected human HSP70 gene protects a heart-derived muscle cell line against the rm al stress [J]. J Mol Cell Cardiol, 1994, 26: 695.
    [26] Wall S K, Fliss H, Kako K Z, Korecky B. Heat pretreatment does not improve recovery of function after no-reflow ischemia isolated working rat hearts [J]. J Mol Cell Cardiol, 1990, (suppl Ⅰ): 44
    [27] Yellon D M, Iliodromitis E, Latchman D S, et al. Whole body heat stress fails to limit infarct size in the reperfused rabbit heart [J].Cardio vasc Res, 1992, 26: 342.
    [28] 高良辉,邹伟荣.热休克蛋白的生物学功能研究进展[J].国外医学外科学分册,2001,28(6):325.
    [29] 赵兰娟编译.热休克蛋白:抗癌及抗感染疫苗[J].国外医学预防、诊断、治疗用生物制品分册,2002,25(2):64~67.
    [30] 凌明圣,徐明波,姚志建.分子伴侣HSP70研究进展[J].国外医学分子生物学分册,1993,15(5):227~230.
    [31] 明镇寰.生物化学与分子生物学新概念(第一版)[M].杭州:浙江大学出版社,1999.6~9.
    [32] Hershko A. Ubiqnitin-mediated protein degradation [J]. Biol Chem. 1988, 263: 15237~15240.
    [33] Parag H A, Raboy B, Kulka R G. Effect of heat shock on protein degradation in mammalian cells; Involvement of the Ubiquitin system [J]. EMBO, 1987,6:55~62.
    [34] Das D K, etal. Cultured animal cells exposed to amino acid analogues or puromy in rapidly synthesis several polypeptides [J]. Cardio vase Res, 1993, 27(4): 578~584.
    [35] Niedwiecki A, et al. Heat shock inhibits and actives different protein degradation pathways and proteinase activities in Neurospora crassa. [J]. Free radic res commun, 1992, 17(6): 355~367.
    [36] Hall T J. Role of HSP70 in cytokine production [J]. Experientia, 1994,50:1048~1053.
    [37] Scarim A L, Heitmeier M R, Corbett J A. Heat shock inhibits cytokine-induced nitric oxide synthase expression by rat and human islets. Endocrinology, 1998, 139(12): 5050.
    [38] Mehlen P, Kertz R C, Preville X, et al. Human HSP27, Drosophila HSP27 and human
    
    alphaB-crystallin expression-mediated increase in gultathione is essential for the protective activity of these proteins against TNF alpha-induced cell death [J]. EMBO-J, 1996,15:2695~2706.
    [39] Jacquier-Sarlin M R, Fuller K, Dinh-Xuan A T, et al. Protective effects of hsp70 in inflammation[J]. Experiential, 1994, 50:1031~1038.
    [40] Cao Y, Ohwatari N, Matsumoto T, Kosaka Metal. TGF-betal mediates 70-KD a heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts [J]. Pflugers-Arch, 1999, 438(3): 239~244.
    [41] 费克香,舒先涛.热休克蛋白和细胞凋亡[J].咸宁医学院学报,2000,14(1):72-73.
    [42] Mosser D D, et al. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis[J]. Mol Cell Biol, 1997,17(9): 5317~5327.
    [43] Gabai V L, et al. Hsp70 prevents activation of stress kinase. A novel pathway of cellular thermo tolerance [J]. J Biol Chem, 1997, 272(29): 18033~18037.
    [44] Pardhasaradhi B V, Begum Z, Khar A, et al. Lack of heat shock response triggers programmed cell death in a rat histiocytic cell line [J]. FEBS-Lett, 1999, 456(2): 339~342.
    [45] 宝福凯,柳爱华.热休克蛋白的生物医学功能[J].生命科学,1997,9(2):70~73.
    [46] 胡晓燕,曲音波.热休克蛋白的研究进展[J].生命科学,1999,11(增刊):55~59.
    [47] 陈雪梅.热休克蛋白的应用前景[J].国外医学生理、病理科学与临床分册,1999,19(6):503~504.
    [48] 冯起国.热休克蛋白[J].医学综述,1998,4(9):468~469。
    [49] Essig D A, Borger D R, Jackson D A. Induction of heme oxygenase-1(HSP32) mRNA in muscle following contractions [J]. Am J Physiol, 1997, 272(1): C59-67.
    [50] Locke M, Noble E G. Stress proteins: the exercise response [J]. Can J Appl Physiol, 1995, 20(2): 155-167.
    [51] Fehrenbach E, Niess A M. Role of heat shock proteins in the exercise response [J]. Exerc. Immunol Rev. 1999, 5: 57-77.
    [52] Febbraio M A, Koukoulas I. HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise [J]. J Appl Physiol, 2000, 89(3): 1055~1060.
    [53] Puntschart A, Vogt M, Widmer H R, et al. Hsp70 expression in human skeletal muscle after exercise [J]. Acta Physiol Scand, 1996, 157(4): 411~417.
    [54] Walsh R C, Koukoulas I, Garnham A, et al. Exercise increases serum Hsp72 in humans [J]. Cell Stress Chaperones, 2001,6(4): 386~393.
    [55] Fehrenbach E, Niess A M, Schlotz E, et al. Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners [J]. J Appl Physiol, 2000, 89(2): 704-710.
    [56] Khassaf M, Child R B, McArdle A, et al. Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise [J]. J Appl Physiol, 2001, 90(3): 1031~1035.
    [57] Paroo Z, Dipchand E S, Noble E G. Estrogen attenuates postexercise HSP70 expression in skeletal muscle [J]. Am J Physiol Cell Physiol, 2002, 282(2): C245~251.
    
    
    [58] Paroo Z, Tiidus P, Noble E G. Estrogen attenuates HSP72 expression in acutely exercised male rodents [J]. Eur J Appl Physiol Occup Physiol, 1999, 80(3): 180~184.
    [59] Locke M. Exercise mammals synthesis stress proteins [J]. Am J Physiol. 1990, 258: C723~729.
    [60] Skidmore R. Hsp70 induction during exercise and heat stress in rats: role of internal temperature [J]. Am J Physiol, 1995, 268: R92~97.
    [61] Willoughby D S, Priest J W, Nelson M. Expression of the stress proteins, ubiquitin, heat shock protein 72, and myofibrillar protein content after 12 weeks of leg cycling in persons with spinal cord injury [J]. Arch Phys Med Rehabil, 2002, 83(5): 649~654.
    [62] Samelman T R. Heat shock protein expression is increased in cardiac and skeletal muscles of Fischer 344 rats after endurance training [J]. Exp Physiol, 2000, 85(1): 92~102.
    [63] Naito H, Powers S K, Demirel H A, et al. Exercise training increases heat shock protein in skeletal muscles of old rats [J]. Med Sci Sports Exerc, 2001, 33(5): 729~734.
    [64] 姜洪福.低频电刺激对大鼠腓肠肌热休克蛋白70的诱导及对运动能力的影响[J].中华物理医学与康复杂志,2000,22(2):117~118.
    [65] 叶春,王瑞元,丁益等.热休克对急性运动大鼠骨骼肌中MDA和SOD的影响[J].中国运动医学杂志,2002,21(3):253~255.
    [66] Locke M, Tanguay R M, Klabunde R E, et al. Enhanced postischemic myocardial recovery following exercise induction of HSP72 [J]. Am J Physiol, 1995, 269(1): H320~325.
    [67] Powers S K, Demirel H A, Vincent H K, et al. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat [J]. Am J Physiol, 1998, 275(5): R1468~1477.
    [68] Kilgore J L. Stress protein induction in skeletal muscle. Comparison of laboratory models to naturally occurring hypertrophy [J]. J Appl Physiol, 1994, 76: 598~601.
    [69] 周筠梅.ATP合成酶的结合变化机制和旋转催化—1997年诺贝尔化学奖的部分工作介绍[J].生物化学与生物物理进展,1998,25(1):9~17.
    [70] 季建平.实验方法学.南京生物工程公司试剂说明。
    [71] Bradfore M M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248~254.
    [72] Bedford T G, Tipton M C, Wilson N C, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures [J]. J Appl Physiol, 1979, 47(6): 1278~1283.
    [73] Locke M, Noble E G, Tanguay R M, et al. Activation of heat-shock transcription factor in rat heart after heat shock and exercise [J]. Am J Physiol, 1995,268(6): C1387~1394.
    [74] Locke M. Exercise mammals synthesis stress proteins [J]. Am J Physiol, 1990, 258: C723-729.
    [75] Smolka M B. HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats [J]. Am J Physiol Regul Integr Comp Physiol, 2000, 279(5): 1529-1545.
    [76] Kang J, Tsokos G. Heat shock protein 70 kDa: molecularbiology [J]. Bioche and Phsiol
    
    Pharma Ther, 1998, 80:183~201.
    [77] Samelman T R. Heat shock protein expression is increased in cardiac and skeletal muscles of Fischer 344 rats after endurance training [J]. Exp Physiol, 2000, 85(1): 92~102.
    [78] Demirel H, Powers S, Caillaud C, et al. Exercise training reduces myocardial lipid peroxidation following short-term ischemia-reperfusion [J]. Med Sci Sports Exerc, 1998, 30: 1211~1216.
    [79] Demirel H A. The effects of exercise duration on adrenal HSP72/73 induction in rats [J]. Acta Physiol Scand, 1999, 163(3): 227~231.
    [80] Liu Y F. Human skeletal muscle HSP70 response to training in highly trained rowers [J]. J Appl Physiol, 1999, 86(1): 101~104.
    [81] 武桂新,冯炜权.热休克蛋白及其对运动的应答[J].北京体育大学学报,1997,20(3):20~24.
    [82] Gutsmann C A, Pahlavani M A, Heydari A R, Richardson A. Expression of heat shock protein 70 decreases with age in hepatocytes and splenocytes from female rats [J]. Mech Ageing Dev, 1999, 107(3): 255~70.
    [83] 魏勇,陈佩杰.运动应激后热休克蛋白的表达及其意义[J].中国运动医学杂志,2002,21(1):74~76.
    [84] Shastry S, Toft D O, Joyner M J. HSP70 and HSP90 expression in leucocytes after exercise in moderately trained humans [J]. Acta Physiol Scand, 2002, 175(2): 139~146.
    [85] 王枫.热休克蛋白与热耐力研究进展[J].国外医学卫生学分册,1997,24(2):65~67.
    [86] 罗东林,周继红,刘宝华等.热休克蛋白70在大鼠严重创伤后早期肝损伤中的变化及其意义[J].中华急诊医学杂志,2002,11(2):98~100.
    [87] Planas A M, Soriano M A, Estrada A, et al. The heat shock stress response after brain lesions: induction of 72 kDa heat shock protein (cell types involved, anonal transport, transcriptional regulation) and protein synthesis inhibition [J]. Prog Neurobiol, 1997, 51: 607~636.
    [88] Davies J J A, Johnson M A, Nakanok M, et al. Free radicals and tissue damage produced by exercise [J]. Biochem Biophysics Res Commun, 1982, 107:1198~1205.
    [89] Jackson M J, Askawa T, Jenkins R R, et al. Electron spin resonance studies of intact skeletal muscle [J]. Biochem et Biophysica Acta, 1985, 847:185~190.
    [90] 黄丽英,林文韬.冷刺激和力竭运动对小鼠LPO及抗氧化能力的影响[J].西安体育学院学报,2002,19(2):52~53.
    [91] 张宜龙,陈吉棣.牛磺酸对大鼠急性运动后自由基代谢、膜流动性及钙转运变化的影响[J].中国运动医学杂志,1999,18(1):17~21.
    [92] 陈筱春,文质君.急性力竭运动对小鼠器官脂质过氧化反应的比较[J].湛江师范学院学报,2001,22(3):23~25.
    [93] 胡红梅,许豪文.运动内源性自由基对大鼠心肌线粒体功能的影响[J].中国运动医学杂志,1998,17(1):23~25.
    [94] 房冬梅,冯美云.1,6二磷酸果糖对大负荷运动大鼠心肌组织的影响[J].体育与科学,1999,20(3):11~14.
    [95] 宋文民,马效萍,侯立军.有氧运动对大鼠心肌线粒体渗透性转运的影响与运动疲劳的
    
    相关性[J].中国临床康复,2002,6(11):1642~1643,
    [96] 张钧,郭勇力,黄叔怀.运动训练对大鼠大脑、心肌脂褐素含量及自由基代谢的影响[J].山东体育学院学报,1998,14(4):49~52.
    [97] 倪耀华,王秀业.不同运动强度对血浆氧自由基代谢水平的研究[J].四川体育科学,2000,89:15~16.
    [98] 辛东,李晖,李静先等.力竭性运动时大鼠脑组织自由基及氧化、抗氧化能力的动态观察[J].中国运动医学杂志,1999,18(4):321~323.
    [99] 李爱华 剧烈运动对自由基影响的实验研究 中国运动医学杂志,1991(4):162~164.
    [100] 韩立明.游泳运动对小白鼠某些组织中MDA含量及SOD活性的影响[J].烟台师范学院学报,1995,11(1):62~64.
    [101] 吴小平.一次性定量运动时肌细胞氧损伤与抗氧损伤作用的影响的实验研究[J].广西医科大学学报,1995,12(2):191~192.
    [102] Viinkka L. Lipid peroxides, prostacyclin and thrompoxane A_2 in runners during acute exercise [J]. Med Sci Sports Exerc, 1984, 16: 275~277.
    [103] 袁海平,孙蓉,史仍飞等.大鼠不同强度运动对肝细胞凋亡的影响[J].上海体育学院学报,2001,25(4):31~33.
    [104] Ji L L. Oxidative stress during exercise: implication of antioxidant nutrients [J]. Free Radic Biol Med, 1995, 18(6): 1079~1086.
    [105] Sen C K. Oxidants and antioxidants in exercise [J]. A Appl Physiol, 1995,79(3): 675~686.
    [106] 李晖,辛东,李静先等.递增负荷运动至力竭大鼠肾脏自由基产生及氧化抗氧化能力的研究[J].中国运动医学杂志,1999,18(1):31~33.
    [107] 张爱芳,王贵,胡艳龙.一次性递增负荷运动对足球运动员红细胞抗氧化能力和Na~+-K~+-ATP酶活性的影响[J].中国运动医学杂志,2000,19(4):429~431.
    [108] 陶占泉,李文辉,何兵.力竭运动后小鼠自由基反应的动态观察[J].南京师范大学学报(自然科学版),1998,21(4):83~87.
    [109] 时庆德,张勇,文立等.运动性疲劳的线粒体膜分子机制研究Ⅱ.运动性氧自由基代谢途径再探讨[J].中国运动医学杂志,2000,19(1):43~44.
    [110] 隋波,康健,张虞毅等.耐力运动对自由基、血清超氧化物歧化酶活性影响的研究[J].山东体育学院学报,2001,17(3):31~33.
    [111] 史亚丽,任杰,许豪文.运动训练对小白鼠心肌、肝脏与股四头肌自由基代谢的影响[J].山东体育学院学报,1994,10(3):16~20.
    [112] 王安利,池健,相子春等.对有氧运动(游泳)抗衰老作用的研究(一)—游泳对不同月龄小鼠自由基代谢的影响[J].北京体育大学学报,2000,23(4):474~477.
    [113] 金花,许豪文.耐力训练对大鼠大脑、小脑、心肌抗氧化酶及脂褐素含量的影响[J].中国运动医学杂志,1995,14(3):166~169.
    [114] 聂金雷.运动与抗氧化研究的新进展[J].天津体育学院学报,2000,15(1):25~28.
    [115] 尤春英,岑浩望,田亚平等.不同负荷跑台训练对大鼠脑自由基代谢及其防御系统酶活性的影响[J].中国运动医学杂志,2001,20(2):202~204.
    [116] 王长青,刘丽萍,李雷等.游泳训练后大鼠骨骼肌细胞自由基代谢.线粒体膜电位变化与细胞凋亡的关系[J].中国运动医学杂志,2002,21(3):256~260.
    
    
    [117] 刘洪珍,郭建军,武桂新.不同有氧耐力训练对肌组织自由基代谢和抗氧化系统的影响[J].中国运动医学杂志,2000,19(1):99~100.
    [118] 刘秉文,陈俊杰主编.医学分子生物学,北京:中国协和医科大学出版社,2000:139~140.
    [119] K Trge P, et al. The importance of ATPase microenvionment in muscle fatigue: a hypothesis [J]. Int J Sports Med, 1995, 16(3): 172~176.
    [120] 丁树哲,等.疲劳运动条件下对大鼠心肌线粒体膜结构的研究[J].中国运动医学杂志,1992,11(1):32.
    [121] 吴小春.自由基与Na~+-K~+-ATP酶的损伤[J].国外医学:临床生物化学与检验学分册,1991,12(2):54.
    [122] 吴玲.运动与生物膜结构和供能关系的研究进展[J].中国运动医学杂志,1995,14(3):152~156.
    [123] 马强.关于运动与骨骼肌钾泄漏研究的综述[J].体育科学,1993,13(4):76.
    [124] Micheal I L. Potassium regulation during exercise and recovery in humans: implications for skeletal cardiac muscle [J]. J Mol Cell Cardiol, 1995, 27: 1011.
    [125] Kjeldsen K. Muscle Na, K-pump dysfunction may expose the heart to dangerous K levels during exercise [J]. Can J Sport Sci, 1991: 16(1): 33.
    [126] 辛东等.运动与红细胞膜[J].天津体育学院学报.1996,11(4):1~6.
    [127] 衣雪洁.力竭性运动对大鼠红细胞脂质过氧化水平和Na~+-K~+-ATP酶活性的影响[J].沈阳体育学院学报,1999,(1):15~17.
    [128] 马强,李文选,窦兰君.游泳训练与大鼠骨骼肌细胞膜电位及Na~+-K~+-ATP酶活性之间关系的探讨[J].中国应用生理学杂志,1995,11(3):221~224.
    [129] 詹承烈,龙云芳,黄宇霞.太极拳运动地中老年人红细胞膜Na~+-K~+-ATP酶和Ca~(2+)-Mg~(2+)-ATP酶活性的影响[J].预防医学情报杂志,2002,18(1):30~32.
    [130] Steven R. Effects of age on red cell membrane sodium-potassium dependent adenosine triphosphatase (Na-K-ATPase) activity in healthy men [J]. J of Gerontology, 1983, 38(1): 23.
    [131] 丁国宪,陈家伟,何戎华.老年前期、老年期红细胞钠钾泵活性改变[J].实用老年医学,1995,9(6):263.
    [132] 魏源,罗桂珍,林石梅等.牛磺酸对运动力竭大鼠红肌线粒体抗氧化物和Na~+-K~+-ATP酶活性的影响[J].首都体育学院学报,2001,13(3):69~72.
    [133] 李磊,冯美云,张缨等.抗疲劳中药和跑台训练对大鼠红细胞抗氧化酶和Na~+-K~+-ATP酶活性影响[J].北京体育大学学报,2000,23(3):326~329.
    [134] 房冬梅.1,6二磷酸果糖对游泳大鼠心肌组织的保护作用[J].山东体育学院学报,2001,17(4):36~42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700