细菌氧化含砷金矿中脱砷试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过在摇瓶中设定不同初始pH值梯度,对细菌的活化以及金精矿的脱砷浸出进行研究,结果发现,最适细菌活化初始pH值为1.3-1.9,在此范围内,电位上升速度快,亚铁氧化效果好。在金精矿细菌氧化脱砷试验中,初始pH值低于1.7或高于1.9都不利于细菌对金精矿的氧化脱砷,HQ0211菌的最佳脱砷初始pH值为1.7-1.9。细菌对金精矿氧化处理后,含砷物相发生了转变,经X射线衍射分析发现,绝大多数的毒砂、斜方砷铁矿在此过程中溶解,砷溶解进入溶液中,少部分砷转化为臭葱石沉淀出来。
     细菌氧化处理2#和3#含砷金精矿,低砷条件下(矿浆浓度为2.5%),2#金精矿经过6天的氧化,脱砷率达到98.33%;3#金精矿经过5天的氧化,脱砷率达到98.16%。高砷条件下(矿浆浓度为5.0%),细菌的适应期较长,氧化速率相对低砷条件较慢,2#金精矿经过10天的氧化,脱砷率达到98.25%;3#金精矿经过10天的氧化,脱砷率达到97.81%。
     在细菌处理含砷金矿中,进行砷的价态转化分析,定期测定氧化液中三价砷和五价砷的浓度,研究发现在细菌浸矿过程中,矿样中的砷先以As(Ⅲ)的形态进入溶液中,然后在Fe3+、氧和细菌的共同作用下,转化为As(Ⅴ)。在金精矿氧化处理的初期,氧化液的电位比较低,溶液中的砷主要以As(Ⅲ)的形态存在,As(Ⅴ)的含量较少;到氧化的后期,在高电位条件下,As(Ⅲ)加速转化为As(Ⅴ),砷主要以As(Ⅴ)的形态存在。
It was studied the bacteria activation and the dearsenification of gold concentrations by setting different grads of pH value in shaking flask. The results show that the optimum initial pH for bacteria activation is 1.3-1.9. Within the optimum initialization, the potential rises quickly and ferrous ion is oxidated well. The optimum initial pH of the bacteria HQ0211 for dearsenification is 1.7-1.9, and it is not good for the concentrations to be oxidated and dearsenificated by bacteria if the initial pH value is outside the scope. The results of X-ray diffraction analysis to oxidation residue show that the phase containing arsenic changed; The arsenic was dissolved into solution when arsenopyrite and lollingite were oxidated, and deposited as the form of scorodite under certain conditions.
     2# and 3# concentration containing arsenic were processed by bacterial oxidation craft. The results indicated that under low arsenic condition, the bacterial activity was good and oxidation rate was quicker; after 6 days' oxidation to the 2# concentration,the dearsenificating rate reached 98.33%, and after 5 days' oxidation to the 3# concentration,the dearsenificating rate reached 98.16%; Under high arsenic condition, period for adaptation of bacteria was long and oxidation rate was slower than the one under low arsenic condition; after 10 days' oxidation to the 2# concentration,the dearsenificating rate reached 98.25%, and after 10 days' oxidation to the 3# concentration,the dearsenificating rate reached 97.81%.
     The process of arsenic valence transformation during oxidation of gold ore containing arsenic by bacillus was analyzed, and concentration of As(Ⅲ)As(Ⅴ)in solution were tested regularly. The results show that during the process of bacterial leaching, arsenic in the ore dissolved into solution as the form of As(Ⅲ) at the first, and then transformed into As(Ⅴ) because of the co-functions of Fe3+、oxygen and bacillus. The potential was low in the earlier period of oxidation to concentration, arsenic in solution existed as the form of (Ⅲ), and the quantity of As(Ⅴ) was few; In the last period, As(Ⅲ)transformed into As(Ⅴ) quickly in the condition of high potential, and arsenic mostly existed as the form of As(V).
引文
1.杨松荣, 邱冠周,谢纪元等.国外生物氧化提取技术的进展[J],有色金属,2001,53(3):84-87.
    2.黄孔宣译.难浸出金矿石微生物氧化厂[J],国外黄金参考,1997,(7):17-23.
    3.张广积,方兆珩.生物氧化浸矿的发展和现状[J],黄金科学技术,2000,8(6):28-35.
    4. Poglazova M N, Mitskevich I N, Kuzhinovsky V A. A spectroflurimetric method for determination of total bacterial counts inenvironmental samples [J], Journal of microbiological methods,1996,24 (4):211-213.
    5. Bennet J C, Tributsch H. Bacterial leaching patterns on pyrite crystal surface [J], Journal of bacteriology,1978,134(11):310-314.
    6. Kran G, Natarajan K A,Modak J M. Estimation of mineral-adhered biomass of Thiobacillus ferrooxidans by protein assay:some problems and remedies [J], Hydrometallurgy,1996, 42(3):169-172.
    7. Hiltunen P, Vuorinen A. Bacterial pyrite oxidation:release of iron and scanning electron microscope observation [J], Hydrometallurgy,1981,7(15):147-148.
    8. Douglas E, Rawlings. Biomining:Theory, Microbes and Industrial Processes[M], Springer-Verlag and Landes Bioscience,1997,128-135.
    9.李宏煦,王淀佐,陈景河等.细菌浸矿作用分析[J],有色金属,2003,8,55(3):55-63.
    10. Fowler T A, Holmes P R, Crundwell K. On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans[J], Hydrometallurgy,2001,59(25): 68-70.
    11. Lundgren D G. Ore leaching by bacteria[M], Ann, Rev:Microbial,1980,78-84.
    12.胡凯光.细菌浸矿机理和影响因素[J],中国矿业,2004,13(4):73-77.
    13.李宏煦,王淀佐.生物冶金中的微生物及其作用[J],有色冶金,2003,55(2):58-63.
    14.李宏煦,刘晓荣.黄铁矿和镍黄铁矿混合细菌浸出过程的原电池效应[J],有色金属,2002,54(2):47-51.
    15.姜成林,徐丽华.微生物资源学[M],上海:科学出版社,1997,168-170.
    16.陈华癸,樊庆笙.微生物学[M],北京:农业出版社,1984,16-21.
    17. Brown E J, Luong H V, Forshsnug J M. The occurrence of Thiobacillus Ferrooxidans and arsenic in subarctic streams affected by gold-mine drainage[J], Arctie,1982, 35(3):417-421.
    18. Brown E J, Forshaug J M. Metabolic Properties of Thiobacillus ferooxidans isolated from neutal pH mine drainage [J], Gov ReP Announce index,1983,83(18):44-65.
    19. Ehrlieh H L. Ocean manganese nodules:Biogenesis and bioleaching possibilities[J], Minerals and Metallurgical Processing,2000,17(2):121-128.
    20.方兆珩.硫化矿细菌氧化浸出机理[J],黄金科学技术,2002,1(5):26-31.
    21.沈萍.微生物学[M],北京:高等教育出版社,2000,445-447.
    22.钟慧芳,陈秀珠,李雅芹等.一个嗜热嗜酸细菌的新种-硫球菌属[J],微生物学报,1982,22(1):4-7.
    23.邹平,杨家明.嗜热嗜酸菌对低品位原生硫化铜矿的柱浸实验[J],有色金属2003,55(4):48-51.
    24.刘汉钊,张永奎.微生物在矿物工程上应用的新进展[J],国外金属矿选矿,1999,36(12): 9-12.
    25. Liselotte Larsson, Gunnel Olsson, Olle Holst. Pyrite oxidation by thermophilic archae bacteria[J], Appl Environment Microbiol,1990,56(3):697-701.
    26.王玉明,李寿元,陈克荣.次显微金在黄铁矿和毒砂中的赋存状态新探讨[J],矿物学报,1994,(14):83-87.
    27. Ubaldini S, Veglio F, Toro L et.al. Biooxidation of arsenopyrite to improve gold cyanidation:study of some parameters and comparison with grinding [J], Miner Proeess, 1997,52(23):65-80.
    28.杨洪英.难处理金矿中硫化矿物细菌氧化过程的研究[D],沈阳东北大学,2000
    29.裘荣庆.含砷金精矿细菌氧化预处理[J],有色金属,1991(3):72-77.
    30.周峨,刘中华,陈雯.含砷硫化矿的细菌浸出[J],昆明理工大学学报,2002(1):40-43.
    31. Taxiarchou M,Adam K,Kontopoulos A. Bacterial oxidation conditions for gold extraction from Olympias refractory arsenical pyrite concentrate[J], Hydrometallurgy 1994,36(12)169-185.
    32.徐海岩.T.f抗砷工程菌的构建及对含砷金精矿的脱砷研究[D],北京图书馆,1995
    33.杨松荣,邱冠周,胡岳华.As3+及As5+对生物氧化过程的影响及其转化过程的探讨[J], 国外金属矿选矿,2003,(1):4-7.
    34.刘承科主编.大学化学——元素化学[M],长沙:中南工业大学出版社,1994,267-230.
    35. Sampson M I, Phillips C V. Influence of basemetals on theoxidising ability of acidophilic bacteria during theoxidation of ferrous sulfate and mineral sulfide concentrates using mesophiles and moderate thermophiles[J].Mineral Engineering,2001.14(3):317-318.
    36. Frolund B. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J], Wat Res,1996,30(1):1749-1758.
    37. Fraser K S. Mineral Engineering[M],1991,4-5.
    38. Adamson R J. Gold Metallrugy in South Africa.Johannesburg [J], Chamber of Mines of S.Afr(ed)1952,4(2):64-66.
    39. Jack Barrctt. Internation Gold Mining Newsletter[M],1990,124-126.
    40.袁俊炬译.黄金科学技术[M],1995,(11):4-5.
    41. Lawrance R W. CJM Bulletin [M],1993,87(985):58-59.
    42. Pares M Y. Annales de L'Institut Pasterur[M],1964,107(4):86-88.
    43.蒋磊,周怀阳,彭晓彤.氧化亚铁硫杆菌对黄铁矿、黄铜矿和磁黄铁矿的生物氧化作用研究[J],科学通报,2007,52(15):1802-1812.
    44.巩冠群,陶秀祥,张兴.氧化亚铁硫杆菌优化培养及脱硫的研究[J],中国矿业大学学报,2006,35(4):510-514.
    45.魏以和等.国外金属矿选矿[M],1996,(1):1-3.
    46. Nieves I. Hydrometallurgy[M],1994, (34):383-384.
    47. Roy P. Indian J Exper Bilol[M],1981,19:728-729.
    48. McGoran C J M. Can J Microbiol[M],1969,15(4):135-137.
    49.金世斌.难处理金精矿生物氧化预处理工艺的工业应用现状及工艺因素分析[J],黄金,2001,10(22):28-31.
    50.杨洪英,杨立,范有静等.广西某难处理金矿金的赋存状态研究[J],贵金属,2003,24(4):32-35.
    51. World Health Organization. Environmental Health Criteria,18, Arsenic, WHO, Geneva[M],1981:174-175.
    52.毛德明,黎文辉.我国微细浸染型金矿原生矿石工艺研究进展[J],世纪之交矿物学 岩石学地球化学的回顾与展望-全国第六届矿物岩石地球化学学术交流会论文集-欧阳自远主编,北京:原子能出版社,1998:52-55.
    53.刘英俊,曹励明,李兆麟等.元素地球化学[M],北京:科学出版社,1984,326-331.
    54.栾世伟等.金矿床地质及找矿方法[M],成都:四川科学出版社,1987,78-89.
    55.杨洪英,杨立,魏绪钧.氧化亚铁硫杆菌(SH-T)菌株对毒砂氧化的机理研究[J],中国有色金属学报,2001,(1):323-327.
    56.潘兆橹.结晶学与矿物学(下册)[M].北京:地质出版社,1993,40-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700