AVS视频编码关键技术研究及其在达芬奇平台上的实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AVS是由我国自主制定,拥有自主知识产权的新一代视频编码标准。它以当前国际上最先进的H.264框架为基础,强调自主知识产权,同时充分考虑了实现的复杂度,其编码效率与H.264相当,而算法复杂度仅为H.264的70%。AVS具有如下特点:(1)性能高,编码效率是MPEG-2的2倍以上,与H.264的编码效率处于同一水平;(2)复杂度低,算法复杂度比H.264明显低,软硬件实现成本都低于H.264;(3)我国掌握主要知识产权,专利授权模式简单,费用低。在这些优势的助推下, AVS已逐步成为全球范围内最有可能成为事实标准的第二代音视频编码标准,它必将在未来我国的视频应用领域发挥极为重要的作用。尽管如此,AVS提出的比较晚,其应用还不是很成熟,处于应用起步阶段,但在国家有关部门的大力支持下以及众多厂家加入,目前AVS已经打造出一条从AVS编码器、AVS-IPTV系统到AVS解码器、AVS解码芯片的完整产业链,随着AVS相关产业的成熟,其应用具有广阔前景。
     虽然AVS的编码复杂度比H.264低了很多,但其运算复杂度依然很高,因此实时编解码器的实现面临巨大的挑战,需要寻找高效的优化算法,以减少巨大的计算量。本文从实时视频应用的角度,对AVS编码过程中的帧内预测、帧间预测、运动估计、变换量化以及AVS编码器在达芬奇平台上的实现进行了研究。具体研究内容包括:
     首先,为了有效的提高编码效率,本文将结构相似度引入拉格朗日代价函数,对失真度量的表示进行修正,并在大量实验的基础上,建立了拉格朗日参数的经验公式。该算法平均可节约13.22%的比特率;尤其对于静止块较多的序列,在QP=10时,节省码率达到30%以上。与此同时,重建的图像质量仅下降0.14%,可忽略不计。
     其次,为了降低AVS帧内预测模式选择的复杂度,在深入分析帧内预测原理以及预测模式选择过程的基础上,提出了一种基于SATD准则和空间相关性的快速帧内预测算法来优化帧内模式的选择过程。首先,利用SATD准则确定候选模式,大幅度降低了帧内预测模式选择的数量;然后,利用相邻宏块预测模式相关性,进一步减少了亮度块候选模式数量;最后,在模式选择过程中结合全零块提前中止原则,提高模式选择速度。该算法平均提高编码速度54.34%。
     再次,为了降低匹配准则计算复杂度,提出了改进的基于直方图的部分失真搜索(IHPDS)算法。该算法首先将块划分为1×4子块,利用直方图分析子块复杂度,然后根据复杂度决定各子块计算顺序,最后依据子块复杂度大小自适应调整累加部分失真的阈值,从而增加提前退出失真计算的可能性,有效地降低了运动估计复杂度。在不考虑额外开销的情况下,IHPDS算法比PDS算法减少94%的计算量。IHPDS算法可平均节约68%的实际运动估计时间。
     然后,针对视频编码中DCT变换后有较多系数量化为零的特点,根据全零块统计特性得出了基于统计特性的全零块检测阈值,而后利用高斯模型推导出了ZQDCT系数检测阈值,并结合基于统计特性的全零块检测阈值,提出了基于高斯模型的ZQDCT系数检测算法,该算法可有效地降低DCT、Q、IQ、IDCT的计算量,平均减少20%左右的变换量化时间。
     最后,设计开发了基于DM6446的视频编码硬件平台,并将AVS编码器成功移植到DM6446上,同时基于达芬奇软件架构完成了算法的封装与集成,在DM6446上实现了AVS视频编码。
AVS is a new generation of video coding standard, which is formulated by Chinaand has the independent intellectual property rights. It is based on the framework ofH.264and emphasizes the independent intellectual property rights. Theimplementation complexity is taken into fully account in AVS, so that thecomputational complexity of AVS is only70%of H.264, while coding efficiency isequal to that of H.264. AVS has the following characteristics:(1) high-performance,its coding efficiency is2times more than MPEG-2, equal to that of H.264;(2) lowcomplexity, the algorithmic complexity is significantly lower than H.264resulting inlower costs of hardware and software implementation;(3) mastering the mainintellectual property rights, patent licensing model is simple and low cost. By virtue ofthese advantages, the AVS has gradually become a global scale standard, which ismost likely to be the defacto standard for second-generation audio and video codingstandard, and it will play an extremely important role in the future of videoapplications.
     However, due to the relatively late proposal, its application is not very mature,and still in the initial stage. With the vigorous support by national departmentsconcerned and many manufacturers, a complete industrial chain, from AVS encoder,AVS-IPTV system to the AVS decoder and the AVS decoder chip, is constructed. Along with development of relative industry, AVS has a broad application prospect.
     Though encoding complexity of AVS is lower than H.264, its computationalcomplexity is still high. So the real-time coding is facing challenges, and the efficientoptimization algorithm is needed to reduce the huge amount of calculation. In order toput AVS into the real-time applications, some procedures in AVS coding process areinvestigated that includes: intra prediction, inter prediction, motion estimation,transform and quantization, as well as its realization on the DaVinci platform. Themain works and achievements are as follows:
     First, in order to improve coding efficiency, SSIM is introduced into Lagrangiancost function to correct expression of distortion metric. Based on a large amount ofexperiments, empirical formula of Lagrangian parameter is established. The bit rate isaveragely reduced by13.22%. Especially, when the sequences have massivestationary blocks, the bite rate is saved more than30%with QP=10. At the same time,quality of reconstructed image is decreased by0.14%which could be ignored.
     Then, after the theory of the intra prediction and the process of the intra modedecision are analyzed, the fast intra prediction algorithm based on sum of absolutetransformed differences (SATD) criterion and spatial correlation is proposed tooptimize intra mode decision and reduce the complexity. First, some candidate modesare selected based on block’s SATD which decreases the number of intra predictionmode. Then, mode correlation of neighbor blocks is used to reduce the complexity ofluminance blocks. Finally, early termination principle based on all zero blockdetection is adopted in process of intra mode decision for improving the speed ofmode decision. Encoding time of the proposed approach is averagely reduced by54.34%.
     Third, in order to reduce the calculation complexity of matching criterion,improved histogram based partial distortion search (IHPDS) algorithm is presented. Inthis algorithm, block is firstly divided into1×4sub-blocks and the complexity ofsub-blocks is analyzed by histogram. Then the calculation order of sub-blocks isdetermined based on the complexity. Finally, the threshold of accumulated partialdistortion is adaptively changed according to the complexity of sub-blocks to increase the probability of early termination of distortion calculation and effectively reduce thecomplexity of motion estimation. The computational costs of IHPDS are averagelyreduced by94%, taking no account of overhead computation. The actual motionestimation time of IHPDS is saved by68%on average.
     Furthermore, according to the characteristics of DCT transform coefficients thata substantial number of transform coefficients are quantized to zeros in video coding,in order to improve the detection rate of the all-zero blocks, all-zero block detectionthreshold based on the statistical characteristics of all-zero blocks is obtained. Andthen zero quantized DCT (ZQDCT) coefficients detection threshold is derived basedon Gaussian model, meanwhile ZQDCT coefficients detection algorithm based onGaussian model is proposed by combining the all-zero block detection threshold andZQDCT coefficients detection threshold. The DCT, Q, IQ, IDCT calculation isreduced and its time is averagely saved by20%.
     Finally, the video encoding hardware platform is designed based on DM6446,and AVS encoder is successfully ported to the DM6446. At the same time, thepackaging and integration of the algorithm based on DaVinci software framework hasbeen done, AVS video coding is realized on the DM6446.
引文
[1]刘敏.面向移动的视频编码标准AVS-M关键算法研究[D]:[博士学位论文].山东:中国海洋大学,2007.
    [2]毕厚杰.新一代视频编码标准-H.264/AVC [M].北京:人民邮电出版社,2005.2-3.
    [3]数字音视频编解码技术标准工作组.数字音视频编解码技术标准工作组简况与进展[EB/OL]. http://www.avs.org.cn/aboutus.asp,2009.
    [4]陈益强,刘东华. AVS移动视频标准及其产业化[J].电信工程技术与标准化,2005(12),1-4.
    [5]孙杰贤. AVS-M雷响冲锋的战鼓[J].通讯世界,2006(2),62.
    [6] GB/T200090.2-2006.信息技术-先进音视频编码第2部分:视频[S].
    [7] GB/T20090.7,信息技术-先进音视频编码第7部分:移动视频[S].
    [8]方健.新一代视频压缩标准算法和应用研究[D]:[博士学位论文].浙江:浙江大学,2008.
    [9]江生. AVS:夺标路线图[J].中国质量万里行,2006(3):54-56.
    [10]高文,黄铁军. AVS,我国自己培育的编解码标准[J].计算机世界,2003,B10.
    [11]苏西.渐入佳境-AVS数字音视频发展研讨会[J].世界广播电视,2011,25(5),56-57.
    [12]黄铁军. AVS依托IPTV加速商品化合市场化进程[N].中国电子报,2008-03-20(22).
    [13]黄铁军. AVS将成为中国电视机统一视频标准[J].电视技术,2011,35(21),72.
    [14]王国中.基于中国AVS标准的地面数字电视解决方案[J].电视技术,2011,35(24):6.
    [15]张贤国,张莉,粱路宏等.面向监控应用的AVS视频编码标准技术[J].中国安防,2011(5):38-42.
    [16]白建军.数字音视频编解码技术标准AVS优势分析及应用前景展望[J].广播电视信息,2007(8):60-62.
    [17]Texas Instrments. TMS320DM6446Digital Media System-on-Chip (SPRS283F)
    [EB/OL]. http://www.ti.com.cn/product/cn/tms320dm6446,2008.
    [18]王翠. AVS视频编码标准的帧间预测算法的研究及其在DSP上的实现[D]:
    [硕士学位论文].山西:太原理工大学,2008.
    [19]林宇. AVS视频编码器性能优化及DSP实现研究[D]:[硕士学位论文].浙江:浙江大学,2008.
    [20]马骏. AVS视频编码中关键技术的研究[D]:[硕士学位论文].江苏:东南大学,2008.
    [21]陈栋. AVS视频编码中帧间预测算法及全零块检测研究[D]:[硕士学位论文].山东:山东大学,2010.
    [22]田晓华. AVS视频编码中整数变换与熵编码研究[D]:[硕士学位论文].湖北:华中科技大学,2004.
    [23]焦蓬蓬. AVS视频编码中整数变换与运动估计研究[D]:[硕士学位论文].江苏:江苏大学,2007.
    [24]王座博.基于DM6446的AVS视频编码器的研究与实现[D]:[硕士学位论文].天津:天津大学,2008.
    [25]裴雷.基于DSP的AVS实时解码器的研究与实现[D]:[硕士学位论文].山东:中国海洋大学,2007.
    [26]宋巍.基于TMS320DM6446的AVS编码器实现[D]:[硕士学位论文].山西:太原理工大学,2008.
    [27]愈海滨.基于达芬奇技术的AVS视频解码器的设计与实现[D]:[硕士学位论文].江苏:江苏大学,2008.
    [28]吴冶.基于嵌入式双核DSP平台的AVS解码器设计和实现[D]:[硕士学位论文].北京:北京邮电大学,2008.
    [29]黄铁军.我视频编码国家标准AVS与国际标准MPEG的比较[J].2005.
    [30]Li X, Oertel N, Hutter A, et al.. Advanced Lagrange multiplier selection forhybrid video coding[C]. Proceeding of IEEE International Conference onMultimedia&Expo (ICME2007). Beijing, China:2007,1(1):364-367.
    [31]Li X, Oertel N, Hutter A, et al. Extended Lagrange multiplier selection forhybrid video coding using interframe correlation[C]. Proceeding of the PictureCoding Symposium (PCS2007)(PCS2007).Lisbon, Portugal,2007,1(1):1-4.
    [32]Li X, Oertel N, Hutter A, et al. Laplace distribution based Lagrangian ratedistortion optimization for hybrid video coding [J]. IEEE Transactions on Circuitsand Systems for Video Technology,2009,19(2):193-205.
    [33]WANG Z,LU L,BOVICK A C. Video quaqlity assessment using structuraldistortion measurement[C].Proceedings of the IEEE International Conference onImage Processing,Rochester:2002:65-68.
    [34]WANG Zhou, BOVIK A C, SHEIKH H R, et al.. Image quality assessment:from error visibility to structural similarity [J]. IEEE Trans on Image Processing,2004,13(4):600-612.
    [35]杨春玲,王华兴.基于结构相似度的H.264快速运动估计算法[J].华南理工大学学报:自然科学版,2008,36(8):28-32.
    [36]赵连凤,郭宝龙,韩合民.基于结构相似度的快速运动估计算法[J].计算机应用研究,2007,24(11):306-308.
    [37]陈云善,高慧斌,苏宛新等.结构相似度在AVS帧间模式选择中的应用[J].光电子·激光,2011,22(3):435-439.
    [38]杨琬,吴乐华,李淑云,等.基于感兴趣区域的图像质量评价方法[J].计算机应用,2008,28(5):1310-1312.
    [39]王宇庆,刘维亚,王勇.一种基于局部方差和结构相似度的图像质量评价方法[J].光电子·激光,2008,19(11):1546-1553.
    [40]于彤,马社祥,刘铁根.基于多尺度边缘结构相似性的图像质量评价[J].光电子·激光,2009,20(6):843-846.
    [41]杨威,赵剡,许东.基于人眼视觉的结构相似度图像质量评价方法[J].哈尔滨工程大学学报,2010,31(3):340-344.
    [42]蒋刚毅,黄大江,王旭等.图像质量评价方法研究进展[J].电子与信息学报,2010,32(1):219-226.
    [43]WILEGAND T, GIROD B. Lagrangian multiplier selection in hybrid videocoder control[C].Proceedings of the IEEE International Conference on ImageProcessing, Thessaloniki:2001:542-545.
    [44]SULLIVAN G J, WIEGAND T. Rate-distortion optimization for videocompression [J].IEEE Signal Processing Magazine,1999,15(6):74-90.
    [45]祝世平,申晓东.十字交叉六边形块运动的估计搜索[J].光学精密工程,2009,17(12):3069-3076.
    [46]PAN F, LIN X. Fast Mode Decision Algorithm for Intra Prediction inH.264/AVC Video Coding [J]. IEEE Trans on Circuits and Systems for Videotechnology,2005,15(7):813-822.
    [47]何宜宝,陈再秀,毕笃彦,等.利用边缘方向检测实现H.264帧内预测编码的新算法[J].西安电子科技大学学报:自然科学版,2009,36(6):1126-1131.
    [48]曹雁,刘宁钟,崔子冠.基于边缘方向直方图的H.264帧内预测快速算法[J].计算机技术与发展,2008,18(5):60-63.
    [49]邵娟,张卫宁,魏磊,等. AVS中帧内预测模式的快速选择策略[J].计算机工程与应用,2009,45(25):163-165.
    [50]LI R X, ZENG B, LIOU M L. A new three-step search algorithm for blockmotion estimation [J]. IEEE Transactions on Circuits and Systems for VideoTechnology,1994,4(4):438-442.
    [51]PO L M, MA W C. A novel four-step search algorithm for fast block motionestimation [J]. IEEE Transactions on Circuits and Systems for Video Technology,1996,6(3):313-317.
    [52]LIU L K, FEIG E. A block based gradient descent search algorithm for blockmotion estimation in video coding [J]. IEEE Transactions on Circuits Systems forVideo Technology,1996,6(4):419-422.
    [53]ZHU S, MA K K. A new diamond search algorithm for fast block-matchingmotion estimation [J].IEEE Transactions on Image Processing,2000,9(2):287-290.
    [54]ZHU C, L IN X, CHAU L P. Hexagon-based search pattern for fast blockmotion estimation [J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2002,12(5):349-355.
    [55]Eckart S, Fogg C. ISO/IEC MPEG-2software video Codec [A]. Proc. SPIE2419[C].1995,100-18.
    [56]KIM J N, BYUN S C,KIM Y H, et al.. Fast full search motion estimationalgorithm using early detection of impossible candidate vectors [J]. IEEETransactions on Signal Processing,2002,50(9):2355-2365.
    [57]Montrucchio B, Quaglia D. New sorting-based lossless motion estimationalgorithms and a partial distortion elimination performance analysis [J].IEEETransactions on Circuits and Systems for Video Technology,2005,15(2):210-220.
    [58]Hui K C, Siu W C, Chan Y L. New adaptive partial distortion search usingclustered pixel matching error characteristic [J]. IEEE Transactions on ImageProcessing,2005,14(5):597-607.
    [59]Cheung C K, Po L M. Normalized partial distortion search algorithm for blockmotion estimation [J].IEEE Transactions on Circuits and Systems for VideoTechnology,2000,10(3):417-422.
    [60]刘敏,魏志强,惠力,等.一种适用于AVS-M的自适应快速运动估计算法[J].光电子·激光,2009,20(4):550-554.
    [61]向东.基于H.264框架的运动估计和变换研究[D]:[硕士学位论文].湖北:华中科技大学,2006.
    [62]Malvar H, Hallapuro A, Karczewicz M et al. Low complexity transform andquantization in H.264/AVC [J]. IEEE Trans. Circuits Syst. Video Technol.,2003,13(7):598-603.
    [63]周韬,刘少华,熊志辉,等. H.264中基于全零块的编码模式快速选择[J].计算机工程与设计,2007,28(14):3401-3403.
    [64]刘君,蔡灿辉.基于全零块及方向一致性的H.264帧间快速模式选择算法[J].中国图形图像学报,2008,13(10):1999-2002.
    [65]周韬,张茂军,刘少华,等. H.264/AVC中基于全零块的预测模式选择[J].计算机工程,2009,35(24):232-235.
    [66]谢正光,包志华,徐晨,等.全零块预判的运动估计及模式选择早结束研究[J].计算机工程与应用,2009,45(26):156-159.
    [67]刘敏,魏志强,李翠苹,等. AVS-M中基于全零块检测的运动估计快速算法[J].华中科技大学学报(自然科学版),2007,35(1):3096-3102.
    [68]张绘国,周经野,刘东华,等. AVS-M中基于准零块检测的快速率失真算法[J].计算机工程与应用,2007,43(6):34-36.
    [69]王熹微,粟强,崔慧娟,等.最佳零块判决准则下的运动搜索算法[J].清华大学学报(自然科学版),2003,43(7),938-941.
    [70]王嵩,刘济林,薛全,等.H.264/AVC中基于全零块检测的运动估计快速算法[J].电路与系统学报,2005,10(1):10-14.
    [71]成运,郭建军,戴葵,等. H.264/AVC中最佳零块判决技术研究[J].计算机工程,2006,32(9),203-205.
    [72]A. Yu, R. Lee, M. Flynn. Early diction of all-zero coefficients in H.263[C].Proceedings of the Picture Coding Symposium,1997:159-164.
    [73]周漩,谭径微,余松煜. H.263中预先判别全零系数的新方法[J].上海交通大学学报,1998,32(9):107-109.
    [74]Sousa L A. General method for elimination redundant computations in videocoding [J].Electron. Lett.2000,36(4):306-307.
    [75]Moon Y H, Kim G Y and Kim J H. An improved early detection algorithm forall-zero blocks in H.264video encoding. IEEE Trans on Circuits and Systems forVideo Technology.2005,15(8):1053-1057.
    [76]Wang H L, Kwong S, Kok C W. Efficient prediction algorithm of integer DCTcoefficients for H.264/AVC optimization [J].IEEE Trans on Circuits and Systems forVideo Technology.2006,16(4):547-552.
    [77]Wang H L, Kwong S, Kok C W.Fast video coding based on Gaussian model ofdct coefficients[C].in Proc. IEEE ISCAS’06.2006,1703-1706.
    [78]Wang H L, Kwong S.Hybrid model to detect zero quantized DCT Coefficients inH.264[J].IEEE Transactions on Multimedia.2007,9(4):728-735.
    [79]郭依正,焦蓬蓬.面向AVS的全零块预先判决算法[J].计算机工程与应用,2010,46(28):208-210.
    [80]李付江,张刚.快速AVS帧内预测模式选择算法[J].计算机工程与应用,2010,46(2):1-3.
    [81]景麟,王宏远,周娅.基于MSE匹配法则的全零块判决算法[J].华中科技大学学报(自然科学版),2008,36(5):16-19.
    [82]刘志成,周启亚. H.264/AVC全零块检测算法原理及性能分析[J].计算机与现代化,2011(3):52-56.
    [83]Texas Instrments. TMS320DM644x DMSoC ARM Subsystem Reference Guide(SPRUE14A)[EB/OL]. http://www.ti.com.cn/product/cn/tms320dm6446,2007.
    [84]Texas Instrments. TMS320DM644x DMSoC DSP Subsystem Reference Guide(SPRUE15)[EB/OL]. http://www.ti.com.cn/product/cn/tms320dm6446,2005.
    [85]Texas Instrments. TMS320DM644x DSP Megamodule Reference Guide(SPRU871I)[EB/OL]. http://www.ti.com.cn/product/cn/tms320dm6446,2008.
    [86]Texas Instrments. TMS320DM644x DMSoC Video Processing Front End(VPFE) User’s Guide (SPRUE38C)[EB/OL]. http://www.ti.com.cn/product/cn/tms-320dm6446,2007.
    [87]Texas Instrments. TMS320DM644x DMSoC Video Processing Back End(VPBE) User’s Guide (SPRUE37B)[EB/OL]. http://www.ti.com.cn/product/cn/tms-320dm6446,2007.
    [88]Texas Instrments. TMS320DM644x DMSoC DDR2Memory Controller User’sGuide(SPRUE22C)[EB/OL].http://www.ti.com.cn/product/cn/tms320dm6446,2007.
    [89]Texas Instrments. Implementing DDR2PCB Layout on the TMS320DM644xDSP (SPRAAC5G)[EB/OL]. http://www.ti.com.cn/product/cn/tms320dm6446,2008.
    [90]赵勇,袁誉乐,丁锐. DAVINCI技术原理与应用指南[M].南京:东南大学出版社,2008.2-3.
    [91]彭启琮.达芬奇技术-数字图像/视频信号处理平台[M].北京:电子工业出版社,2008.2-3.
    [92]Texas Instrments. DVEVM Getting Started Guide (SPRUE66A)[EB/OL].http://www. ti.com.cn/product/cn/tms320dm6446,2006.
    [93]Texas Instrments. Codec Engine Application Developer User’s Guide(SPRUE67D)[EB/OL]. http://www. ti.com.cn/product/cn/tms320dm6446,2007.
    [94]崔晶.如何构建达芬奇的DSP Server [EB/OL]. http://forum.ed-china.com/-FORUM_POST_98_8058_0.HTM,2007.
    [95]Texas Instrments. Codec Engine Algorithm Creator User’s Guide (SPRUED6C)[EB/OL]. http://www. ti.com.cn/product/cn/tms320dm6446,2007.
    [96]Texas Instrments. Codec Engine Server Integrator User’s Guide (SPRUED5B)[EB/OL]. http://www. ti.com.cn/product/cn/tms320dm6446,2007.
    [97]徐盛,胡剑凌. TMS320DSP算法标准[M].北京:清华大学出版社,2007.45-46.
    [98]Texas Instrments. xDAIS-DM (Digital Media)User’s Guide(SPRUEC8B)[EB/OL]. http://www. ti.com.cn/product/cn/tms320dm6446,2007.
    [99] Texas Instrments. RTSC Codec&Server Package Wizards Installation&Instructions [EB/OL]. http://www. ti.com.cn/product/cn/tms320dm6446,2008.
    [100] Texas Instrments. RTSC Codec&Server Package Wizards GeneratedContent [EB/OL]. http://www. ti.com.cn/product/cn/tms320dm6446,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700