含氟丙烯酸酯共聚物结晶性及表面润湿性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预涂金属卷材由于其多变的色彩,轻便,易加工及优越的机械性能,越来越多的被应用到建筑、汽车、家电面板等领域。现代城市中,作为外墙建筑在使用的环境中,涂膜时刻遭受外界各种各样的污染。建筑物的保洁一直是难题,因此开发一种低表面能防涂鸦耐污型涂料迫在眉睫。含氟丙烯酸酯聚合物具有良好的特性,如疏水疏油性、化学惰性、热稳定性和良好的机械性能等特点,是目前防涂鸦涂料研究的热点方向之一。然而,要获得优异表面性能往往需要耗费大量昂贵的含氟单体,而且含氟丙烯酸酯聚合物在极性环境中容易发生表面重建,从而丧失了优异的表面性能。因此人们希望在满足性能要求的同时,尽量减少氟单体的用量。以较少含氟量构造具有优异表面性能的疏水疏油表面一直是当今一个巨大的挑战。本文合成了含氟丙烯酸酯共聚物,将无机纳米二氧化硅(SiO_2)粒子掺杂到含氟丙烯酸酯共聚物中,通过交联固化得到含氟丙烯酸酯/SiO_2复合涂层。复合涂层具有好的超疏水和疏油性。主要内容包括:
     (1)以全氟辛基乙基甲基丙烯酸酯(FOEMA)和不同烷烃链长丙烯酸酯(AA,CH_2=CHCOOC_nH_(2n+1),n=4,8,12,16,18)为单体,二甲苯做溶剂,BPO为引发剂,用自由基聚合法合成一系列的含氟丙烯酸酯聚合物。通过傅立叶红外光谱仪(FTIR)、核磁共振光谱(~1HNMR)、凝胶渗透色谱法(GPC)、X-射线衍射仪(XRD)、偏光显微镜(POM)和差示扫描量热仪(DSC)等对含氟丙烯酸酯共聚物化学组成和结晶性进行了分析。结果表明:结晶性与碳氢侧链长密切相关,当n=4,8,12时,在室温下不具有结晶性,为无定形物质;当n=16,18时在室温下结晶。而共聚物组成决定了晶体结构:当氟含量较低时,共聚物主要以烷烃侧链结晶为主;当氟含量较高时,共聚物主要以全氟侧链结晶为主。
     (2)利用分子动力学模拟软件MaterialStudio中Forcite模块下,在COMPASS力场下,模拟了含氟丙烯酸酯共聚物的X-射线衍射谱(XRD),研究了不同碳氢侧链长度对结晶性的影响。模拟结果与实验数据基本符合。
     (3)研究了不同碳氢链长的含氟丙烯酸酯共聚物涂膜的表面润湿性,考察了共聚物结晶性对涂膜的表面润湿性的影响,并对共聚物进行了表面成分和形貌分析。结果发现:碳氢侧链的结晶有利于全氟侧链往表面迁移,相较无定形共聚物,结晶共聚物涂膜中氟元素在表面富集度更高,表面疏水疏油性更好。结晶态共聚物涂膜有着明显的相分离,而相分离导致固体表面的粗糙度大大增加,提高了其表面的疏水性。在氟单体用量少的情况下,要得到疏水和疏油性能良好的涂膜,可以通过选择合适的丙烯酸酯单体,制备结晶态共聚物。
     (4)以丙烯酸十八酯、氟单体和甲基丙烯酸羟乙酯进行共聚,合成热固性树脂,考查了羟基单体用量和成膜条件对涂膜表面润湿性和机械性能的影响。XRD和DSC结果证明热固性共聚物结晶度比其热塑性共聚物结晶度大,分子排列更规整。XPS和AFM发现热固性共聚物中氟元素更易在表面富集,这是因为热固性共聚物的交联结构能将全氟链段被固定在表面,限制分子迁移与重排,因此具有更好的疏水疏油性和表面稳定性。
     (5)采用直接共混的方法,将二氧化硅粒子掺杂到含氟丙烯酸酯共聚物中,通过交联固化得到含氟丙烯酸酯/SiO_2复合涂层,分别考察了二氧化硅粒子加入量和涂层溶液浓度复合涂层表面润湿性的影响,结果表明:二氧化硅粒子添加量和涂层溶液的浓度对滤网涂层表面粗糙度具有重要影响,从而显著改变了涂层的疏水亲油性。当二氧化硅添加量为20%,溶液浓度为10 %得到的复合涂层疏水疏油性最佳。测试了复合涂层防涂鸦耐污性和机械性能,防涂鸦耐污性比市售的改性有机硅类涂料和聚氨酯类涂料更好,机械性能均已达到使用要求。
Due to properties of variety of colours, easy cut to required lengths, flectional, profiled or deep drawn, without damaging the organic coating, the prepainted coil has numerous applications in various industries, such as in the construction industry, the automotive and transport industries,etc. Films may suffer from all kinds of outdoor pollution as outside walls of building coatings in modern cities. It is extremely urgent to develop a kind of anti-graffiti and anti-fouling coil coating with the low surface energy because buildings cleaning is a challenge.?Fluorinated acrylate copolymers have become one of hot topics as anti-graffiti and anti-fouling coating due to their many special properties, including hydrophobicity and oleophobicity, chemical inertness, and thermal resistance, as well as excellent mechanical behavior. However, the fluorinated monomers are usually costly and the excellent surface performance of fluorinated acrylate copolymer may be lost when exposed in polar environment induced by surface reconstruction, it is challenging to fabricate excellent surface performance of hydrophobicity and oleophobicity with lower fluorine content. In this paper, fluorinated acrylate copolymer was synthesized and SiO_2/polyacryalte composite coating was prepared before further curing with HDI-trimer. Composite coating has good surper hydrophobicity and oleophobicity. The main research contents are listed as follows:
     First of all, a series of fluorinated acrylate copolymers by using monomers of 2-perfluorooctyl ethyl acrylate (FOEMA) and various lengths of side chains of n-alkyl acrylates (AAs) (n= 4, 8, 12, 16, 18) were synthesized by free radical polymerization in solvent of xylene and initiator of BPO. The copolymer chemical composition and crystallization were analyzed via Fourier Transform Infrared Spectroscopy (FTIR), Nuclear magnetic resonance spectrum(~1HNMR), gel permeation chromatography (GPC), X-ray Diffraction(XRD), Polarizing Optical Microscope(POM) and Differential Scanning Calorimetry (DSC) etc. The results suggest that crystallization of fluorinated acrylate copolymers closely related to the side-chain length of hydrocarbon. When n numbers of C_nH_(2n+1) were 16 and 18, the hydrocarbon side-chain of the copolymers crystallized at room temperature, while the copolymers with n of 4, 8 and 12 might not crystallize and was in the rubbery state at the same condition. The crystalline structure is determined by the copolymer composition: when the content of the fluorinated monomer is low, the copolymer is mainly crystallized with side chains of hydrocarbon chains; when the content of the fluorinated monomer is high, the copolymer is mainly crystallized with perfluoroalkyl side-chain.
     Secondly, molecular dynamics simulation was used to simulate X-ray Diffraction of fluorinated acrylate copolymers by Forcite module under COMPASS force field. The effect of different length of hydrocarbon side-chain on crystallization of fluorinated acrylate copolymers was studied. Simulation results were consistent with experiment date.
     Thirdly, surface wetting properties of fluorinated acrylate copolymers with different length of hydrocarbon side-chain were investigated and the effect of crystallization of fluorinated acrylate copolymers on surface wetting properties of films was discussed. In addition, surface composition and topography of copolymers were analysed. The results suggest that the crystallization of hydrocarbon side-chain can promote perfluoroalkyl side-chain to migrate to the polymer–air interface. Compared with amorphous copolymer, the enrichment of fluorine on surface of crystalline copolymers film is higher, and hydrophobicity and oleophobicity on those surface is better. Phase separation is observed obviously on crystalline copolymers film, moreover, it lead to a great increase in roughness and hence improve hydrophobicity. Preparation of crystalline copolymers through choosing a suitable acrylate monomer is an available way to get good hydrophobic and oleophobic copolymer film under the condition of low dosage of fluorinated monomer.
     Furthermore, thermosetting resin is synthetized by using monomers of stearyl acrylate, fluorinated monomer and hydroxyethyl methacrylate. The influence of hydroxylic monomer dosage and film formation condition on surface wetting and mechanical properties were investigated. XRD and DSC results indicated that the crystallinity of thermosetting copolymer is bigger than that of thermoplastic copolymer and the molecular arrangement is more orderly. XPS and AFM shows the fluorine of thermosetting copolymer prefer to enrich on the film suface, for perfluoroalkyl side-chain of thermosetting copolymers can be fixed on the surface by the cross-linked structure, which limitied molecular migration and rearrangement. Therefore it has better hydrophobicity and oleophobicity and surface stability.
     Finally, SiO_2/polyfluoroacrylate composite coating were prepared by directly blending nano-silica particles into fluorinated acrylate copolymer and further cured with HDI-trimer. The effects of silica dosage and concentration of coating solution on the wettability of composite coating were studied. The results suggest that the silica dosage and concentration of coating solution have important influence on the roughness of the composite coating. The composite coating has best hydrophobicity and oleophobicity when the silica dosage is 20% and the concentration of coating solution is 10%. Anti-graffiti, anti-fouling and mechanical properties of the composite coating were tested to be better than those of some commercial products with modified silicone and polyurethanes coating.
引文
[1]肖佑国,祝福君.预涂金属卷材及涂料[M].北京:化学工业出版社, 2003.
    [2] Schmidt D. L., Brady R. F., Lam K., Schmidt D. C..Chaudhury M. K. Contact angle hysteresis, adhesion, and marine biofouling[J]. Langmuir, 2004, 20 (7): 2830-2836.
    [3]何广英.国内外抗涂鸦涂料现状及进展情况[J].中国涂料, 2008, 23(10): 62-68.
    [4]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社, 2007.
    [5] Saidi S., Guittard F., Guimon C..Geribaldi S. Synthesis and characterization of copolymers based on styrene and partially fluorinated acrylates[J]. European Polymer Journal, 2006, 42 (3): 702-710.
    [6] Thomas R. R., Anton D. R., Graham W. F. et al. Preparation and surface properties of acrylic polymers containing fluorinated monomers[J]. Macromolecules, 1997, 30 (10): 2883-2890.
    [7] Tsibouklis J., Graham P., Eaton P. J. et al. Poly(perfluoroalkyl methacrylate) film structures: Surface organization phenomena, surface energy determinations, and force of adhesion measurements[J]. Macromolecules, 2000, 33 (22): 8460-8465.
    [8]顾易人,朱步瑶,李外郎,等.表面化学[M].北京:科学出版社, 2001.
    [9] Quere D. Wetting and roughness[J]. Annual Review of Materials Research, 2008, 38: 71-99.
    [10] Herminghaus S., Brinkmann M..Seemann R. Wetting and dewetting of complex surface geometries[J]. Annual Review of Materials Research, 2008, 38: 101-121.
    [11] Marmur A. Solid-Surface Characterization by Wetting[J]. Annual Review of Materials Research, 2009, 39: 473-489.
    [12] Feng X. J., Jiang L. Design and creation of superwetting/antiwetting surfaces[J]. Advanced Materials, 2006, 18 (23): 3063-3078.
    [13] Zhang X. Y., Zhao N., Liang S. M. et al. Facile creation of biomimetic systems at the interface and in bulk[J]. Advanced Materials, 2008, 20 (15): 2938-2946.
    [14] Wenzel R. N. Resistance of solid surfaces to wetting by water[J]. Journal of Industrial and Engineering Chemistry, 1936, 28 (8): 988-994.
    [15]郗金明.超疏水、超双疏材料的制备与研究[D].中国科学院研究生院博士学位论文, 2008.
    [16] Cassie A. B. D..Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
    [17] Marmur A. The Lotus Effect: Superhydrophobicity and Metastability[J]. Langmuir, 2004, 20 (9): 3517-3519.
    [18] Dupuis A..Yeomans J. M. Modeling Droplets on Superhydrophobic Surfaces: Equilibrium States and Transitions[J]. Langmuir, 2005, 21 (6): 2624-2629.
    [19] Patankar N. A. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces[J]. Langmuir, 2003, 19 (4): 1249-1253.
    [20] Patankar N. A. Transition between Superhydrophobic States on Rough Surfaces[J]. Langmuir, 2004, 20 (17): 7097-7102.
    [21] Dettre Robert H., Johnson Rulon E. Contact Angle Hysteresis[J]. American Chemical Society, 1964, 43:136-144.
    [22] Quere D. Rough ideas on wetting[J]. Physica A, 2002, 313 (1-2): 32-46.
    [23] Quere D., Lafuma A.,Bico J. Slippy and sticky microtextured solids[J]. Nanotechnology, 2003, 14 (10): 1109-1112.
    [24] Zhang X., Shi F., Niu J., et al.Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18 (6): 621-633.
    [25] Hirao A., Sugiyama K.,Yokoyama H. Precise synthesis and surface structures of architectural per- and semifluorinated polymers with well-defined structures[J]. Progress in Polymer Science, 2007, 32 (12): 1393-1438.
    [26] Li X. M., Reinhoudt D.,Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 2007, 36 (8): 1350-1368.
    [27] Sun T. L., Feng L., Gao X. F., et al. Bioinspired surfaces with special wettability[J]. Accounts of Chemical Research, 2005, 38 (8): 644-652.
    [28] Mendez-Vilas A., Jodar-Reyes A. B.,Gonzalez-Martin M. L. Ultrasmall Liquid Droplets on Solid Surfaces: Production, Imaging, and Relevance for Current Wetting Research[J]. Small, 2009, 5 (12): 1366- 1390.
    [29] Wang B., Feng J..Gao C. Surface wettability of compressed polyelectrolyte multilayers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 259 (1-3): 1-5.
    [30] Liu H., Zhai J.,Jiang L. Wetting and anti-wetting on aligned carbon nanotube films[J]. Soft Matter, 2006, 2 (10): 811-821.
    [31] Bernett M. K.,Zisman W. A. Wetting properties of tetrafluoroethylene and hexafluoropropylene copolymers [J]. The Journal of Physical Chemistry, 1960, 64 (9): 1292-1294.
    [32] Nishino T., Meguro M., Nakamae K., et al. The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15 (13): 4321-4323.
    [33] Fox H. W..Zisman W. A. The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene[J]. Journal of Colloid Science, 1950, 5 (6): 514-531.
    [34] Suzuki M., Saotome Y., Yanagisawa M. Characterization of monolayer and bilayer (polymer /monolayer) structures for their use as a lubricant[J]. Thin Solid Films, 1988, 160 (1-2): 453-462.
    [35] Yuung-Ching S., Yuan-Chang H., Chun-Syong L., et al.New approach to fabricate an extremely super-amphiphobic surface based on fluorinated silica nanoparticles[J]. Journal of Polymer Science, Part B (Polymer Physics), 2008, 46: 87-93.
    [36] Xi J. M., Feng L, Jiang L. A general approach for fabrication of superhydrophobic and superamphiphobic surfaces[J]. Applied Physics Letters, 2008, 92 (5):1-3
    [37] Meng H. F., Wang S. T., Xi J. M., et al. Facile means of preparing superamphiphobic surfaces on common engineering metals[J]. Journal of Physical Chemistry C, 2008, 112 (30): 11454-11458.
    [38] Ren S. L., Yang S. R., Zhao Y. P., et al. Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films[J]. Surface Science, 2003, 546 (2-3): 64-74.
    [39] Thünemann A. F., Lochhaas K. H. Self-Assembly of Perfluorodecanoic Acid with Cationic Copolymers: Ultra-Low Energy Surfaces and Mesomorphous Structures[J]. Langmuir, 1998, 14 (17): 4898-4903.
    [40] Shibuichi S., Yamamoto T., Onda T, et al. Super water- and oil-repellent surfaces resulting from fractal structure[J]. Journal J Colloid Interf Sci, 1998, 208 (1): 287-294.
    [41] Coulson S. R., Woodward I. S., Badyal J. P. S., et al. Ultralow surface energy plasma polymer films[J]. Chemistry of Materials, 2000, 12 (7): 2031-2038.
    [42] Coulson S. R., Woodward I., Badyal J. P. S., et al. Super-repellent composite fluoropolymer surfaces[J]. Journal of Physical Chemistry B, 2000, 104 (37): 8836-8840.
    [43] Laguardia L., Ricci D., Vassallo E, et al. Deposition of super-hydrophobic and oleophobic fluorocarbon films in radio frequency glow discharges[J]. Macromolecular Symposia, 2007, 247: 295-302.
    [44] Wang C. F., Chiou S. F., Ko F. H. et al. Fabrication of biomimetic super-amphiphobic surfaces throughplasma modification of benzoxazine films[J]. Macromolecular Rapid Communications, 2006, 27 (5): 333-337.
    [45] Hosono E., Fujihara S., Honma I., et al. Superhydrophobic perpendicular nanopin film by the bottom-up process[J]. Journal of the American Chemical Society, 2005, 127 (39): 13458-13459.
    [46] Li H. J., Wang X. B., Song Y. L. et al. Super-"amphiphobic" aligned carbon nanotube films[J]. Angewandte Chemie-International Edition, 2001, 40 (9): 1743-1746.
    [47] Nicolas M., Guittard F..Geribaldi S. Synthesis of stable super water- and oil-repellent polythiophene films[J]. Angewandte Chemie-International Edition, 2006, 45 (14): 2251-2254.
    [48] Nicolas M., Guittard F..Geribaldi S. Stable superhydrophobic and lipophobic conjugated polymers films[J]. Langmuir, 2006, 22 (7): 3081-3088.
    [49] Yang T., Haiqing L., Zifeng D. Electrochemical growth of gold pyramidal nanostructures: toward super-amphiphobic surfaces[J]. Chemistry of Materials, 2006: 5820-5822.
    [50] Darmanin T., Guittard F. One methylene unit to control super oil-repellency properties of conducting polymers[J]. Chemical Communications, 2009, (16): 2210-2211.
    [51] Darmanin T..Guittard F. Super oil-repellent surfaces from conductive polymers[J]. J Mater Chem, 2009, 19 (38): 7130-7136.
    [52]曲爱兰,文秀芳,皮丕辉等.超疏水涂膜的研究进展[J].化学进展, 2006, 18(11): 1434-1439.
    [53] Hsieh C. T., Wu F. L.,Chen W. Y. Super water- and oil-repellencies from silica-based nanocoatings[J]. Surface & Coatings Technology, 2009, 203 (22): 3377-3384.
    [54] Sheen Y. C., Huang Y. C., Liao C. S., et al. New approach to fabricate an extremely super- amphiphobic surface based on fluorinated silica nanoparticles[J]. Journal of Polymer Science Part B-Polymer Physics, 2008, 46 (18): 1984-1990.
    [55] Hikita M., Tanaka K., Nakamura T., et al. Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups[J]. Langmuir, 2005, 21 (16): 7299-7302.
    [56] Ma M. L., Hill R. M., Lowery J. L., et al. Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity[J]. Langmuir, 2005, 21 (12): 5549-5554.
    [57] Jiang L., Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angewandte Chemie-International Edition, 2004, 43 (33): 4338-4341.
    [58] Ma M. L., Mao Y., Gupta M., et al. Superhydrophobic fabrics produced by electrospinning andchemical vapor deposition[J]. Macromolecules, 2005, 38 (23): 9742-9748.
    [59] Han D. W..Steckl A. J. Superhydrophobic and Oleophobic Fibers by Coaxial Electrospinning[J]. Langmuir, 2009, 25 (16): 9454-9462.
    [60] Tuteja A., Choi W., Ma M. L. et al. Designing superoleophobic surfaces[J]. Science, 2007, 318 (5856): 1618-1622.
    [61] Oner D., McCarthy T. J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability[J]. Langmuir, 2000, 16 (20): 7777-7782.
    [62] Burton Z., Bhushan B. Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems[J]. Nano Letters, 2005, 5 (8): 1607-1613.
    [63] Jopp J., Grüll H., Yerushalmi-Rozen R. Wetting Behavior of Water Droplets on Hydrophobic Microtextures of Comparable Size[J]. Langmuir, 2004, 20 (23): 10015-10019.
    [64] Tuteja A., Choi W., Mabry J. M., et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (47): 18200-18205.
    [65] Tuteja A., Choi W. J., McKinley G. H., et al. Design parameters for superhydrophobicity and superoleophobicity[J]. Mrs Bulletin, 2008, 33 (8): 752-758.
    [66] Xie Q. D., Xu J., Feng L. et al. Facile creation of a super-amphiphobic coating surface with bionic microstructure[J]. Advanced Materials, 2004, 16 (4): 302-305.
    [67] Nakajima A., Abe K., Hashimoto K.Watanabe T. Preparation of hard super-hydrophobic films with visible light transmission[J]. Thin Solid Films, 2000, 376 (1-2): 140-143.
    [68] Tsujii K., Yamamoto T., Onda T, et al. Super oil-repellent surfaces[J]. Angew Chem Int Edit, 1997, 36 (9): 1011-1012.
    [69] Hsieh C. T., Chen J. M., Kuo R. R., et al. Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles[J]. Applied Surface Science, 2005, 240 (1-4): 318-326.
    [70] Liu X. J., Wu W. C., Wang X. L. et al. A replication strategy for complex micro/nanostructures with superhydrophobicity and superoleophobicity and high contrast adhesion[J]. Soft Matter, 2009, 5 (16): 3097-3105.
    [71] Choi W., Tuteja A., Chhatre S. et al. Fabrics with Tunable Oleophobicity[J]. Advanced Materials, 2009, 21 (21): 2190-+.
    [72] Cao L. L., Price T. P., Weiss M., et al. Super water- and oil-repellent surfaces on intrinsicallyhydrophilic and oleophilic porous silicon films[J]. Langmuir, 2008, 24 (5): 1640-1643.
    [73]李俊.陈庆民.含氟丙烯酸酯聚合物研究进展[J].高分子材料科学与工程, 2005, 21(05): 14-18.
    [74]周莉,钟庆东,杭建忠等.卷材涂料研究进展[J].腐蚀与防护, 2006, 27(05):217-221
    [75] Alessandrini G., Aglietto M., Castelvetro V. et al. Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone[J]. Journal of Applied Polymer Science, 2000, 76 (6): 962-977.
    [76] Lee H. J., Michielsen S. Preparation of a superhydrophobic rough surface[J]. J Polym Sci Pol Phys, 2007, 45 (3): 253-261.
    [77] Huang J. Q., Meng W. D., Qing F. L. Synthesis and repellent properties of vinylidene fluoride- containing polyacrylates[J]. J Fluorine Chem, 2007, 128 (12): 1469-1477.
    [78]倪华钢,张伟,王新平等.侧基含氟聚合物结构与表面性质研究进展[J].高分子材料科学与工程, 2007, 23(02): 14-18.
    [79]程时远,陈艳军.氟化丙烯酸酯聚合物的制备及表面性能的研究进展[J].高分子材料科学与工程, 2003, 19(03): 49-53.
    [80] Saidi S., Guittard F., Guimon C. et al. Fluorinated comblike homopolymers: The effect of Spacer lengths on surface properties[J]. Journal of Polymer Science Part a-Polymer Chemistry, 2005, 43 (17): 3737 -3747.
    [81] Honda K., Morita M., Otsuka H. et al. Molecular aggregation structure and surface properties of poly(fluoroalkyl acrylate) thin films[J]. Macromolecules, 2005, 38 (13): 5699-5705.
    [82] Kim J., Efimenko K., Genzer J. et al. Surface properties of poly[2-(perfluorooctyl)ethyl acrylate] deposited from liquid CO2 high-pressure free meniscus coating[J]. Macromolecules, 2007, 40 (3): 588-597.
    [83]杨浩,皮丕辉,文秀芳等.氟化(甲基)丙烯酸酯聚合物结构与表面润湿性[J].化学进展, 2010, 22(06):1133-1141
    [84] Corpart J. M., Girault S., Juhue D. Structure and surface properties of liquid crystalline fluoroalkyl polyacrylates: Role of the spacer[J]. Langmuir, 2001, 17 (23): 7237-7244.
    [85] Caillier L., de Givenchy E. T., Geribaldi S, et al. Liquid crystal polymers for non-reconstructing fluorinated surfaces[J]. Journal of Materials Chemistry, 2008, 18 (44): 5382-5389.
    [86] Tsibouklis J., Nevell T. G. Ultra-low surface energy polymers: The molecular design requirements[J]. Advanced Materials, 2003, 15 (7-8): 647-650.
    [87] Stone M., Nevell T. G., Tsibouklis J. Surface energy characteristics of poly(perfluoroacrylate) filmstructures[J]. Materials Letters, 1998, 37 (1-2): 102-105.
    [88] Lam C. N. C., Wu R., Li D., Hair M. L, et al. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis[J]. Advances in Colloid and Interface Science, 2002, 96 (1-3): 169-191.
    [89] Wang Q. Y., Zhang Q. H., Zhan X. L, et al. Structure and Surface Properties of Polyacrylates with Short Fluorocarbon Side Chain: Role of the Main Chain and Spacer Group[J]. Journal of Polymer Science Part a-Polymer Chemistry, 2010, 48 (12): 2584-2593.
    [90] Katano Y., Tomono H., Nakajima T. Surface Property of Polymer Films with Fluoroalkyl Side Chains[J]. Macromolecules, 1994, 27 (8): 2342-2344.
    [91] Park I. J., Lee S.-B., Choi C. K., et al. Surface Properties and Structure of Poly (Perfluoroalkylethyl Methacrylate)[J]. Journal of Colloid and Interface Science, 1996, 181 (1): 284-288.
    [92] DeSimone J. M., Guan Z., Elsbernd C. S. Synthesis of Fluoropolymers in Supercritical Carbon Dioxide[J]. Science, 1992, 257 (5072): 945-947.
    [93] Ha J. W., Park I. J., Lee S. B. Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films[J]. Macromolecules, 2005, 38 (3): 736-744.
    [94]魏海洋,李欣欣,王康等.含氟丙烯酸酯共聚物制备超疏水表面及其形成机理的研究[J].化学学报, 2008, 66(12): 1470-1476.
    [95]魏海洋,贺文潇,粟小理等.热处理对超疏水性含氟丙烯酸酯共聚物膜表面性能的影响[J].高等学校化学学报, 2009, 30(4): 821-824.
    [96]魏海洋,王康,粟小理等.用含氟丙烯酸酯无规共聚物制备超疏水膜[J].高分子学报, 2008, (1): 69-75.
    [97] Youssef A., Pabon M., Severac R., et al. The Effect of Copolymer Composition on the Surface Properties of Perfluoroalkylethyl Acrylates[J]. Journal of Applied Polymer Science, 2009, 114 (6): 4020-4029.
    [98] Morita M., Ogisu H., Kubo M. Surface properties of perfluoroalkylethyl acrylate/n-alkyl acrylate copolymers[J]. Journal of Applied Polymer Science, 1999, 73 (9): 1741-1749.
    [99] Nishino T., Urushihara Y., Meguro M., et al. Surface properties and structures of diblock and random copolymers with perfluoroalkyl side chains[J]. Journal of Colloid and Interface Science, 2004, 279 (2): 364-369.
    [100] Xue D. W., Wang X. P., Ni H. G., et al. Surface Segregation of Fluorinated Moieties on RandomCopolymer Films Controlled by Random-Coil Conformation of Polymer Chains in Solution[J]. Langmuir, 2009, 25 (4): 2248-2257.
    [101] Park I. J., Lee S. B., Choi C. K. Surface properties of the fluorine-containing graft copolymer of poly((perfluoroalkyl)ethyl methacrylate)-g-poly(methyl methacrylate)[J]. Macromolecules, 1998, 31 (21): 7555-7558.
    [102] Yokoyama H., Tanaka K., Takahara A, et al. Surface structure of asymmetric fluorinated block copolymers[J]. Macromolecules, 2004, 37 (3): 939-945.
    [103] Hansen N. M. L., Jankova K., Hvilsted S. Fluoropolymer materials and architectures prepared by controlled radical polymerizations[J]. Eur Polym J, 2007, 43 (2): 255-293.
    [104] Souzy R., Ameduri B., Boutevin B. Synthesis and (co)polymerization of monofluoro, difluoro, trifluorostyrene and ((trifluorovinyl)oxy)benzene[J]. Prog Polym Sci, 2004, 29 (2): 75-106.
    [105] Yang J. P., Ni H. G., Wang X. F., et al. Creating stable hydrophobic surfaces by poly(butyl methacrylate) end- capped with 2-perfluorooctylethyl methacrylate units[J]. Polymer Bulletin, 2007, 59 (1): 105-115.
    [106]倪华钢,薛东武,王晓芳等.氟化嵌段共聚物组成、溶液性质与其固化后的表面结构[J].中国科学(B辑:化学), 2008, 38(10): 914-921.
    [107] Hikita M., Tanaka K., Nakamura T., et al. Aggregation states and surface wettability in films of poly(styrene-block-2-perfluorooctyl ethyl acrylate) diblock copolymers synthesized by atom transfer radical polymerization[J]. Langmuir, 2004, 20 (13): 5304-5310.
    [108] Wang J. G., Mao G. P., Ober C. K., et al. Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces: Synthesis, liquid crystalline structure, and critical surface tension[J]. Macromolecules, 1997, 30 (7): 1906-1914.
    [109] Ni H. G., Wang X. F., Zhang W., et al. Stable hydrophobic surfaces created by self-assembly of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate units[J]. Surface Science, 2007, 601 (17): 3632-3639.
    [110] Wang X. F., Ni H. G., Xue D. W, et al. Solvent effect on the film formation and the stability of the surface properties of poly(methyl methacrylate) end-capped with fluorinated units[J]. Journal of Colloid and Interface Science, 2008, 321 (2): 373-383. [111 ]Koberstein J. T. Molecular design of functional polymer surfaces[J]. Journal of Polymer Science Part B-Polymer Physics, 2004, 42 (16): 2942-2956.
    [112] Ha J. W., Park I. J., Lee S. B., et al. Preparation and characterization of core-shell particles containing perfluoroalkyl acrylate in the shell[J]. Macromolecules, 2002, 35 (18): 6811-6818.
    [113] Cui X. J., Zhong S. L., Gao Y, et al. Preparation and characterization of emulsifier-free core-shell interpenetrating polymer network-fluorinated polyacrylate latex particles[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008, 324 (1-3): 14-21.
    [114] Liang J. Y., He L., Zheng Y. S. Synthesis and Property Investigation of Three Core-Shell Fluoroacrylate Copolymer Latexes[J]. Journal of Applied Polymer Science, 2009, 112 (3): 1615-1621.
    [115] Thomas R. R., Lloyd K. G., Stika K. M. et al. Low free energy surfaces using blends of fluorinated acrylic copolymer and hydrocarbon acrylic copolymer latexes[J]. Macromolecules, 2000, 33 (23): 8828-8841.
    [116] Zhang C. C., Chen Y. J. Investigation of fluorinated polyacrylate latex with core-shell structure[J]. Polymer International, 2005, 54 (7): 1027-1033.
    [117] Dreher W. R., Jarrett W. L., Urban M. W. Stable nonspherical fluorine-containing colloidal dispersions: Synthesis and film formation[J]. Macromolecules, 2005, 38 (6): 2205-2212.
    [118] Cheng S. Y., Chen Y. J., Chen Z. G. Core-shell latex containing fluorinated polymer rich in shell[J]. Journal of Applied Polymer Science, 2002, 85 (6): 1147-1153.
    [119] He L., Liang J. Y. Synthesis, modification and characterization of core-shell fluoroacrylate copolymer latexes[J]. Journal of Fluorine Chemistry, 2008, 129 (7): 590-597.
    [120] Cui X. J., Zhong S. L., Wang H. Y., Emulsifier-free core-shell polyacrylate latex nanoparticles containing fluorine and silicon in shell[J]. Polymer, 2007,48: 7241-7248.
    [121] Park I. J., Lee S.-B..Choi C. K. Synthesis of fluorine-containing graft copolymers of poly (perfluoroalkylethyl methacrylate)-g-poly(methyl methacrylate) by the macromonomer technique and emulsion copolymerization method[J]. Polymer, 1997, 38 (10): 2523-2527.
    [122] Hirao A., Matsuo A., Watanabe T. Precise synthesis of dendrimer-like star-branched poly(methyl methacrylate)s up to seventh generation by an iterative divergent approach involving coupling and transformation reactions[J]. Macromolecules, 2005, 38 (21): 8701-8711.
    [123] Hirao A., Sugiyama K., Tsunoda Y., et al. Precise synthesis of well-defined dendrimer-like star-branched polymers by iterative methodology based on living anionic polymerization[J]. Journal of Polymer Science Part a-Polymer Chemistry, 2006, 44 (23): 6659-6687.
    [124] Hirao A., Tsunoda Y., Matsuo A., et al. Precise synthesis of dendron-like hyperbranched polymersand block copolymers by an iterative approach involving living anionic polymerization, coupling reaction, and transformation reaction[J]. Macromolecular Research, 2006, 14 (3): 272-286.
    [125] Watanabe T., Tsunoda Y., Matsuo A., et al. Synthesis of dendrimer-like star-branched poly(methyl methacrylate)s of generations consisting of four branched polymer chains at each junction by iterative methodology involving coupling and transformation reactions[J]. Macromolecular Symposia, 2006, 240: 23-30.
    [1]倪华钢,张伟,王新平等.侧基含氟聚合物结构与表面性质研究进展[J].高分子材料科学与工程, 2007, 23(02): 14-18.
    [2] Reisinger J. J..Hillmyer M. A. Synthesis of fluorinated polymers by chemical modification[J]. Prog Polym Sci, 2002, 27 (5): 971-1005.
    [3] Hutchings L. R., Narrianen A. P., Thompson R. L., et al. Modifying and managing the surface properties of polymers[J]. Polym Int, 2008, 57 (2): 163-170.
    [4]倪华钢,薛东武,王晓芳等.氟化嵌段共聚物组成、溶液性质与其固化后的表面结构[J].中国科学(B辑:化学), 2008, 38(10): 914-921.
    [5] Brantley E. L., Jennings G. K. Fluorinated polymer films from acylation of ATRP surface-initiated poly(hydroxyethyl methacrylate)[J]. Macromolecules, 2004, 37 (4): 1476-1483.
    [6] Hikita M., Tanaka K., Nakamura T., et al. Aggregation states and surface wettability in films of poly(styrene-block-2-perfluorooctyl ethyl acrylate) diblock copolymers synthesized by atom transfer radical polymerization[J]. Langmuir, 2004, 20 (13): 5304-5310.
    [7] Bantz M. R., Brantley E. L., Weinstein R. D., et al. Effect of fractional fluorination on the properties of ATRP surface-initiated poly(hydroxyethyl methacrylate) films[J]. Journal of Physical Chemistry B, 2004, 108 (28): 9787-9794.
    [8] Schmidt D. L., Brady R. F., Lam K., et al. Contact angle hysteresis, adhesion, and marine biofouling[J]. Langmuir, 2004, 20 (7): 2830-2836.
    [9] Ha J. W., Park I. J., Lee S. B. Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films[J]. Macromolecules, 2005, 38 (3): 736-744.
    [10] Souzy R., Ameduri B., Boutevin B. Synthesis and (co)polymerization of monofluoro, difluoro, trifluorostyrene and ((trifluorovinyl)oxy)benzene[J]. Prog Polym Sci, 2004, 29 (2): 75-106.
    [11] Liang J. Y., He L., Zheng Y. S. Synthesis and Property Investigation of Three Core-Shell Fluoroacrylate Copolymer Latexes[J]. Journal of Applied Polymer Science, 2009, 112 (3): 1615-1621.
    [12] Saidi S., Guittard F., Guimon C, et al. Fluorinated comblike homopolymers: The effect of Spacer lengths on surface properties[J]. Journal of Polymer Science Part a-Polymer Chemistry, 2005, 43 (17): 3737-3747.
    [13] Yokoyama H., Tanaka K., Takahara A. et al. Surface structure of asymmetric fluorinated block copolymers[J]. Macromolecules, 2004, 37 (3): 939-945.
    [14] Hartmann P. C., Collet A., Viguier M., et al.Acrylic monomers and polymers with perfluoroalkylated biphenyl side groups: synthesis and phase transitions[J]. Journal of Fluorine Chemistry, 2004, 125 (12): 1909-1918.
    [15] Alessandrini G., Aglietto M., Castelvetro V, et al. Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone[J]. Journal of Applied Polymer Science, 2000, 76 (6): 962-977.
    [16] D.Satas Arthur A.Tracton.涂料涂装工艺应用手册(第二版)[M].北京:中国石化出版社, 2003.
    [17]魏铭,郑化,魏铭.涂料与涂装技术[M].北京:化学工业出版社, 2006.
    [18]管从胜,王威强.氟树脂涂料及应用[M].北京:化学工业出版社, 2004.
    [19]倪玉德. FEVE氟碳树脂与氟碳涂料[M].北京:化学工业出版社, 2006.
    [20]肖佑国,祝福君.预涂金属卷材及涂料[M].北京:化学工业出版社, 2003.
    [21] Hirao A., Sugiyama K..Yokoyama H. Precise synthesis and surface structures of architectural per- and semifluorinated polymers with well-defined structures[J]. Progress in Polymer Science, 2007, 32 (12): 1393-1438.
    [22]程时远,陈艳军.氟化丙烯酸酯聚合物的制备及表面性能的研究进展[J].高分子材料科学与工程, 2003, 19(03): 49-53.
    [23] Park I. J., Lee S.-B., Choi C. K., et al. Surface Properties and Structure of Poly (Perfluoroalkylethyl Methacrylate)[J]. Journal of Colloid and Interface Science, 1996, 181 (1): 284-288.
    [24] Morita M., Ogisu H., Kubo M. Surface properties of perfluoroalkylethyl acrylate/n-alkyl acrylate copolymers[J]. Journal of Applied Polymer Science, 1999, 73 (9): 1741-1749.
    [25] Tsibouklis J., Graham P., Eaton P. J. et al. Poly(perfluoroalkyl methacrylate) film structures: Surface organization phenomena, surface energy determinations, and force of adhesion measurements[J]. Macromolecules, 2000, 33 (22): 8460-8465.
    [26] Hartmann P., Collet A., Viguier M. Acrylic copolymers with perfluoroalkylated biphenyl side groups: Correlation structure-surface properties[J]. Macromolecules, 2006, 39 (20): 6975-6982.
    [27] Suresh K. L., Pakula T., Bartsch E. Synthesis, morphology and rheological behavior of fluoropolymer-polyacrylate nanocomposites[J]. Macromol React Eng, 2007, 1 (2): 253-263.
    [28] He L., Liang J. Y. Synthesis, modification and characterization of core-shell fluoroacrylate copolymer latexes[J]. J Fluorine Chem, 2008, 129 (7): 590-597.
    [29] Valtola L., Hietala S., Tenhu H., et al. Association behavior and properties of copolymers of perfluorooctyl ethyl methacrylate and eicosanyl methacrylate[J]. Polym Advan Technol, 2009, 20 (3): 225-234.
    [30]张东生.防涂鸦涂料的开发与测试[J].国际化工信息, 2006, 05: 1-4.
    [31]李俊.陈庆民.含氟丙烯酸酯聚合物研究进展[J].高分子材料科学与工程, 2005, 21(05): 14-18.
    [32] Narita T. Anionic polymerization of fluorinated vinyl monomers[J]. Prog Polym Sci, 1999, 24 (8): 1095-1148.
    [33] Genzer J., Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science, 2000, 290 (5499): 2130-2133.
    [34] Van de Grampel R. D., Van Geldrop J., Laven J., et al. P[CF3(CF2)5CH2MA-co-MMA] and P[CF3(CF2)5CH2MA-co-BA] copolymers: Reactivity ratios and surface properties[J]. Journal of Applied Polymer Science, 2001, 79 (1): 159-165.
    [35] Cheng S. Y., Chen Y. J., Chen Z. G. Core-shell latex containing fluorinated polymer rich in shell[J]. Journal of Applied Polymer Science, 2002, 85 (6): 1147-1153.
    [36] Wang J. G., Mao G. P., Ober C. K., et al. Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces: Synthesis, liquid crystalline structure, and critical surface tension[J]. Macromolecules, 1997, 30 (7): 1906-1914.
    [37] Honda K., Morita M., Otsuka H., et al. Molecular aggregation structure and surface properties of poly(fluoroalkyl acrylate) thin films[J]. Macromolecules, 2005, 38 (13): 5699-5705.
    [38] Caillier L., de Givenchy E. T., Geribaldi S., et al. Liquid crystal polymers for non-reconstructing fluorinated surfaces[J]. Journal of Materials Chemistry, 2008, 18 (44): 5382-5389.
    [39] Corpart J. M., Girault S., Juhue D. Structure and surface properties of liquid crystalline fluoroalkyl polyacrylates: Role of the spacer[J]. Langmuir, 2001, 17 (23): 7237-7244.
    [40] Wang Q. Y., Zhang Q. H., Zhan X. L., et al. Structure and Surface Properties of Polyacrylates withShort Fluorocarbon Side Chain: Role of the Main Chain and Spacer Group[J]. Journal of Polymer Science Part a-Polymer Chemistry, 2010, 48 (12): 2584-2593.
    [41] Saidi S., Guittard F., Guimon C., et al. Low surface energy perfluorooctyalkyl acrylate copolymers for surface modification of PET[J]. Macromolecular Chemistry and Physics, 2005, 206 (11): 1098-1105.
    [42] Bonglovanni R., Di Meo A., Pollicino A., et al. New perfluoropolyether urethane methacrylates as surface modifiers: Effect of molecular weight and end group structure[J]. Reactive & Functional Polymers, 2008, 68 (1): 189-200.
    [43]宋林花,姜翠玉.韩哲茵.丙烯酸高碳醇酯的制备[J].石油化工, 2002, 12: 991-993.
    [44] Thomas R. R., Anton D. R., Graham W. F. et al. Preparation and surface properties of acrylic polymers containing fluorinated monomers[J]. Macromolecules, 1997, 30 (10): 2883-2890.
    [45]宋昭峥,张贵才.彭俊文等.甲基丙烯酸十八酯的合成[J].曲阜师范大学学报(自然科学版), 2001, 27 (1): 49-52.
    [46] Nishino T., Urushihara Y., Meguro M., et al. Surface properties and structures of diblock and random copolymers with perfluoroalkyl side chains[J]. Journal of Colloid and Interface Science, 2004, 279 (2): 364-369.
    [47] Yang J. P., Ni H. G., Wang X. F., et al. Creating stable hydrophobic surfaces by poly(butyl methacrylate) end- capped with 2-perfluorooctylethyl methacrylate units[J]. Polymer Bulletin, 2007, 59 (1): 105-115.
    [48]魏海洋,王康,粟小理等.用含氟丙烯酸酯无规共聚物制备超疏水膜[J].高分子学报, 2008, (1): 69-75.
    [49] Li K., Wu P. P., Han Z. W. Preparation and surface properties of fluorine-containing diblock copolymers[J]. Polymer, 2002, 43 (14): 4079-4086.
    [50] Xue D. W., Wang X. P., Ni H. G., et al. Surface Segregation of Fluorinated Moieties on Random Copolymer Films Controlled by Random-Coil Conformation of Polymer Chains in Solution[J]. Langmuir, 2009, 25 (4): 2248-2257.
    [51] Shibasaki Y., Saitoh H., Chiba K. DSC and X-ray studies on side-chain crystallization of comb-like polymers - Fluorinated n-alkyl acrylate and methacrylate polymers[J]. Journal of Thermal Analysis, 1997, 49 (1): 115-121.
    [52] Matsunaga M., Suzuki T., Yamamoto K., et al. Molecular structure analysis in a dip-coated thin film of poly (2-perfluorooctylethyl acrylate) by infrared multiple-angle incidence resolution spectrometry[J].Macromolecules, 2008, 41 (15): 5780-5784.
    [53] Fujimori A., Kobayashi S., Hoshizawa H., et al. Solid-state structure and formation of organized molecular films of methacrylate copolymers containing fluorinated and hydrogenated side-chains[J]. Polymer Engineering and Science, 2007, 47 (4): 354-364.
    [54] Fujimori A., Saitoh H., Shibasaki Y. Polymorphism of acrylic and methacrylic acid esters containing long fluorocarbon chains and their polymerizability[J]. Journal of Thermal Analysis and Calorimetry, 1999, 57 (3): 631-642.
    [55] Fujimori A., Masuya R., Masuko T. et al. Formation and structure of organized molecular films for fluorinated comb copolymers[J]. Polymers for Advanced Technologies, 2006, 17 (9-10): 653-663.
    [56] Fujimori A., Hoshizawa H., Kobayashi S. et al. Layer structure estimation of three-dimensional crystal and two-dimensional molecular film for fluorinated comb copolymers[J]. Journal of Polymer Science Part B-Polymer Physics, 2008, 46 (5): 534-546.
    [57]杨富.温敏性侧链结晶聚丙烯酸酯材料的研究[D].哈尔滨工程大学博士学位论文, 2009.
    [1] Lyulin A. V., Michels M. A. J. Molecular Dynamics Simulation of Bulk Atactic Polystyrene in the Vicinity of Tg[J]. Macromolecules, 2002, 35 (4): 1463-1472.
    [2] Gestoso P., Brisson J. Towards the simulation of poly(vinyl phenol)/poly(vinyl methyl ether) blends by atomistic molecular modelling[J]. Polymer, 2003, 44 (8): 2321-2329.
    [3] Zhao L., Choi P. Study of the correctness of the solubility parameters obtained from indirect methods by molecular dynamics simulation[J]. Polymer, 2004, 45 (4): 1349-1356.
    [4] Zhang X. B., Li Z. S., Lu Z. Y., et al.The crystallization of low-density polyethylene: a molecular dynamics simulation[J]. Polymer, 2002, 43 (11): 3223-3227.
    [5] Fujiwara S., Sato T. Structure formation of a single polymer chain. I. Growth of trans domains[J]. Journal of Chemical Physics, 2001, 114 (14).
    [6] Abu-Sharkh B., Hussein I. A. MD simulation of the influence of branch content on collapse and conformation of LLDPE chains crystallizing from highly dilute solutions[J]. Polymer, 2002, 43 (23): 6333-6340.
    [7]殷开梁.分子动力学模拟的若干基础应用和理论[D],浙江大学博士学位论文, 2006.
    [8] Moreno M., Casalegno M., Raos G., et al. Molecular Modeling of Crystalline AlkylthiopheneOligomers and Polymers[J]. Journal of Physical Chemistry B, 2010, 114 (4): 1591-1602.
    [9] Romanos N. A., Theodorou D. N. Crystallization and Melting Simulations of Oligomeric alpha 1 Isotactic Polypropylene[J]. Macromolecules, 2010, 43 (12): 5455-5469.
    [10] Colquhoun H. M., Aldred P. L., Zhu Z., et al. First Structural Analysis of a Naphthalene-Based Poly(ether ketone):? Crystal and Molecular Simulation from X-ray Powder Data and Diffraction Modeling[J]. Macromolecules, 2003, 36 (17): 6416-6421.
    [11] Gee R. H., Fried L. E. Ultrafast crystallization of polar polymer melts[J]. Journal of Chemical Physics, 2003, 118 (8): 3827-3834.
    [12]张朝阳,舒远杰,赵晓东等.用Polymorph Predictor方法模拟TATB的晶体结构[J].含能材料, 2004, 12(1):48-51
    [13]王进,王军霞,曾凡桂等.蒙脱石晶体结构构型及其XRD、IR的分子模拟[J].矿物学报, 2011, 31(1):133-138
    [14] Funasaki N., Fukuba M., Kitagawa T. et al. Two-Dimensional NMR Study on the Structures of Micelles of Sodium Taurocholate[J]. The Journal of Physical Chemistry B, 2004, 108 (1): 438-443.
    [15] Léonard A., Escrive C., Laguerre M. et al. Location of Cholesterol in DMPC Membranes. A Comparative Study by Neutron Diffraction and Molecular Mechanics Simulation?[J]. Langmuir, 2001, 17 (6): 2019-2030.
    [16] Saito K. H-Aggregate Formation in Squarylium Langmuir?Blodgett Films[J]. The Journal of Physical Chemistry B, 2001, 105 (19): 4235-4238.
    [17] Sun H. COMPASS:An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds[J]. The Journal of Physical Chemistry B, 1998, 102 (38): 7338-7364.
    [18]何岩,张敏华.姜浩锡.纯CO2体系扩散性质的分子动力学模拟[J].化学工业与工程, 2009, 26(1):57-61
    [19] Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds[J]. Journal of Physical Chemistry B, 1998, 102 (38): 7338-7364.
    [20]支微.氨基芳基有机膦酸阻垢缓蚀剂的QM/MD研究[D].南京理工大学博士学位论文, 2007.
    [21]石琴,徐日炜,仲崇立等.聚丙烯/八苯基倍半硅氧烷的分子模拟和性质[J].合成材料老化与应用, 2008, 37(4):1-4
    [22] Sun H., Ren P., Fried J. R. The COMPASS force field: parameterization and validation for phosphazenes[J]. Computational and Theoretical Polymer Science, 1998, 8 (1-2): 229-246.
    [23] Sun H., Rigby D. Polysiloxanes: Ab initio force field and structural, conformational and thermophysical properties[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 1997, 53 (8): 1301-1323.
    [24] Yang H., Li Z. S., Lu Z. Y., et al. A molecular dynamics simulation study on the crystallization of 22,8-polyurethane[J]. Polymer, 2004, 45 (19): 6753-6759.
    [25]肖继军,谷成刚,方国勇等. TATB基PBX结合能和力学性能的理论研究[J].化学学报, 2005, 63(6):439-444.
    [26] Li S., Fried J. R., Colebrook J,et al. Molecular simulations of neat, hydrated, and phosphoric acid-doped polybenzimidazoles. Part 1: Poly(2,2 '-m-phenylene-5,5 '-bibenzimidazole) (PBI), poly(2,5-benzimidazole) (ABPBI), and poly(p-phenylene benzobisimidazole) (PBDI)[J]. Polymer, 2010, 51 (23): 5640-5648.
    [27] Bao G., Duan D., Zhou D. et al. A New High-Pressure Polar Phase of Crystalline Bromoform: A First-Principles Study[J]. Journal of Physical Chemistry B, 2010, 114 (44): 13933-13939.
    [28] Bao G., Duan D., Tian F. et al. Structural, electronic, and optical properties of crystalline iodoform under high pressure: A first-principles study[J]. Journal of Chemical Physics, 2011, 134 (3).
    [29]赵素,李金富,周尧和.分子动力学模拟及其在材料科学中的应用[J].材料导报, 2007, 21(04):5-8.
    [30]余大启.陈民.刚性多原子分子的正则系综分子动力学算法[J].物理学报, 2006, 55(4):1628-1633.
    [31] Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature[J]. Chem.Phys, 1980, 72(4):2384-2393.
    [32]吴人杰主编.现代分析技术-在高聚物中的应用[M].上海:上海科学技术出版社, 1987.
    [33] Karasawa N., Goddard W. A., III. Force fields, structures, and properties of poly(vinylidene fluoride) crystals[J]. Macromolecules, 1992, 25 (26): 7268-7281.
    [34] Berendsen H. J. C., Postma J. P. M., Van Gunsteren W. F., et al. Molecular dynamics with coupling to an external bath[J]. J. Chem. Phys., 1984, 81(8): 3684-3690
    [35]夏露,肖继军,樊建芬等.硝酸酯增塑剂力学性能和界面相互作用的分子动力学模拟[J].化学学报, 2008, 66(8): 874-878
    [36] Shibasaki Y., Saitoh H., Chiba K. DSC and X-ray studies on side-chain crystallization of comb-likepolymers - Fluorinated n-alkyl acrylate and methacrylate polymers[J]. Journal of Thermal Analysis, 1997, 49 (1): 115-121.
    [37] Matsunaga M., Suzuki T., Yamamoto K., et al. Molecular structure analysis in a dip-coated thin film of poly (2-perfluorooctylethyl acrylate) by infrared multiple-angle incidence resolution spectrometry[J]. Macromolecules, 2008, 41 (15): 5780-5784.
    [38] Fujimori A., Kobayashi S., Hoshizawa H., et al. Solid-state structure and formation of organized molecular films of methacrylate copolymers containing fluorinated and hydrogenated side-chains[J]. Polymer Engineering and Science, 2007, 47 (4): 354-364.
    [39] Fujimori A., Saitoh H., Shibasaki Y. Polymorphism of acrylic and methacrylic acid esters containing long fluorocarbon chains and their polymerizability[J]. Journal of Thermal Analysis and Calorimetry, 1999, 57 (3): 631-642.
    [40] Honda K., Morita M., Otsuka H., et al. Molecular aggregation structure and surface properties of poly(fluoroalkyl acrylate) thin films[J]. Macromolecules, 2005, 38 (13): 5699-5705.
    [1] Vogler E. A. Structure and reactivity of water at biomaterial surfaces[J]. Adv Colloid Interface Sci, 1998, 74 (1-3): 69-117.
    [2] Yoon R. H., Flinn D. H., Rabinovich Y. I. Hydrophobic interactions between dissimilar surfaces[J]. Journal of Colloid and Interface Science, 1997, 185 (2): 363-370.
    [3] Berg J. M., Eriksson L. G. T., Claesson P. M., et al. Three-Component Langmuir-Blodgett Films with a Controllable Degree of Polarity[J]. Langmuir, 1994, 10 (4): 1225-1234.
    [4] Hartmann P., Collet A., Viguier M. Acrylic copolymers with perfluoroalkylated biphenyl side groups: Correlation structure-surface properties[J]. Macromolecules, 2006, 39 (20): 6975-6982.
    [5] Bartell F. E., Shepard J. W. Surface Roughness as Related to Hysteresis of Contact Angles. II. The Systems Paraffin Molar Calcium Chloride Solution–Air and Paraffin–Glycerol–Air[J]. J Phys Chem, 1953, 57 (4): 455-458.
    [6] Eick J. D., Good R. J., Neumann A. W. Thermodynamics of contact angles. II. Rough solid surfaces[J]. J Colloid Interf Sci, 1975, 53 (2): 235-238.
    [7] Johnson R. E., Dettre R. H. Contact Angle Hysteresis. III. Study of an Idealized Heterogeneous Surface[J]. J Phys Chem, 1964, 68 (7): 1744-1750.
    [8] Good R. J. A Thermodynamic Derivation of Wenzel's Modification of Young's Equation for Contact Angles; Together with a Theory of Hysteresis1[J]. J Am Chem Soc, 1952, 74 (20): 5041-5042.
    [9] Dettre R. H., Johnson R. E. Contact Angle Hysteresis. IV. Contact Angle Measurements on Heterogeneous Surfaces1[J]. J Phys Chem, 1965, 69 (5): 1507-1515.
    [10] Neumann A. W., Good R. J. Thermodynamics of contact angles. I. Heterogeneous solid surfaces[J]. J Colloid Interf Sci, 1972, 38 (2): 341-358.
    [11] Marmur A. Contact Angle Hysteresis on Heterogeneous Smooth Surfaces[J]. J Colloid Interf Sci, 1994, 168 (1): 40-46.
    [12] Brandon S., Marmur A. Simulation of Contact Angle Hysteresis on Chemically Heterogeneous Surfaces[J]. J Colloid Interf Sci, 1996, 183 (2): 351-355.
    [13] Sedev R. V., Budziak C. J., Petrov J. G., et al. Dynamic Contact Angles at Low Velocities[J]. J Colloid Interf Sci, 1993, 159 (2): 392-399.
    [14] Sedev R. V., Petrov J. G., Neumann A. W. Effect of Swelling of a Polymer Surface on Advancing and Receding Contact Angles[J]. J Colloid Interf Sci, 1996, 180 (1): 36-42.
    [15] Lam C. N. C., Wu R., Li D., Hair M. L., et al.Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis[J]. Adv Colloid Interface Sci, 2002, 96 (1-3): 169-191.
    [16] Chen W., McCarthy T. J. Layer-by-layer deposition: A tool for polymer surface modification[J]. Macromolecules, 1997, 30 (1): 78-86.
    [17] Fadeev A. Y., McCarthy T. J. Trialkylsilane monolayers covalently attached to silicon surfaces: Wettability studies indicating that molecular topography contributes to contact angle hysteresis[J]. Langmuir, 1999, 15 (11): 3759-3766.
    [18] Ameduri B., Bongiovanni R., Malucelli G., et al. New fluorinated acrylic monomers for the surface modification of UV-curable systems[J]. J Polym Sci Pol Chem, 1999, 37 (1): 77-87.
    [19] Rangwalla H., Schwab A. D., Yurdumakan B. et al. Molecular structure of an alkyl-side-chain polymer-water interface: Origins of contact angle hysteresis[J]. Langmuir, 2004, 20 (20): 8625-8633.
    [20]杨浩,皮丕辉,文秀芳等.氟化(甲基)丙烯酸酯聚合物结构与表面润湿性[J].化学进展, 2010, 22(06):1133-1141
    [21] Stone M., Nevell T. G., Tsibouklis J. Surface energy characteristics of poly(perfluoroacrylate) film structures[J]. Mater Lett, 1998, 37 (1-2): 102-105.
    [22] Furmidge C. G. L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and atheory for spray retention[J]. Journal of Colloid Science, 1962, 17 (4): 309-324.
    [23] Wang J. G., Mao G. P., Ober C. K., et al. Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces: Synthesis, liquid crystalline structure, and critical surface tension[J]. Macromolecules, 1997, 30 (7): 1906-1914.
    [24] Genzer J., Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science, 2000, 290 (5499): 2130-2133.
    [25] Nishino T., Meguro M., Nakamae K., et al. The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15 (13): 4321-4323.
    [26] Koberstein J. T. Molecular design of functional polymer surfaces[J]. Journal of Polymer Science Part B-Polymer Physics, 2004, 42 (16): 2942-2956.
    [27] Morita M., Ogisu H., Kubo M. Surface properties of perfluoroalkylethyl acrylate/n-alkyl acrylate copolymers[J]. Journal of Applied Polymer Science, 1999, 73 (9): 1741-1749.
    [28] Toselli M., Messori M., Bongiovanni R. et al. Poly(epsilon-caprolactone)-poly(fluoroalkylene oxide)-poly(epsilon-caprolactone) block copolymers. 2. Thermal and surface properties[J]. Polymer, 2001, 42 (5): 1771-1779.
    [29] Youssef A., Pabon M., Severac R., et al.The Effect of Copolymer Composition on the Surface Properties of Perfluoroalkylethyl Acrylates[J]. Journal of Applied Polymer Science, 2009, 114 (6): 4020-4029.
    [30] de Grampel R. D. V., Ming W., Gildenpfennig A. et al. The outermost atomic layer of thin films of fluorinated polymethacrylates[J]. Langmuir, 2004, 20 (15): 6344-6351.
    [31]倪华钢,薛东武,王晓芳等.氟化嵌段共聚物组成、溶液性质与其固化后的表面结构[J].中国科学(B辑:化学), 2008, 38(10): 914-921.
    [32] Shibuichi S., Yamamoto T., Onda T., et al. Super water- and oil-repellent surfaces resulting from fractal structure[J]. J Colloid Interf Sci, 1998, 208 (1): 287-294.
    [33] Park I. J., Lee S.-B., Choi C. K., et al. Surface Properties and Structure of Poly (Perfluoroalkylethyl Methacrylate)[J]. Journal of Colloid and Interface Science, 1996, 181 (1): 284-288.
    [34] Park I. J., Lee S. B., Choi C. K. Surface properties of the fluorine-containing graft copolymer of poly((perfluoroalkyl)ethyl methacrylate)-g-poly(methyl methacrylate)[J]. Macromolecules, 1998, 31 (21): 7555-7558.
    [35] Park I. J., Lee S.-B., Choi C. K. Synthesis of fluorine-containing graft copolymers ofpoly(perfluoroalkylethyl methacrylate)-g-poly(methyl methacrylate) by the macromonomer technique and emulsion copolymerization method[J]. Polymer, 1997, 38 (10): 2523-2527.
    [36]倪华钢,张伟,王新平等.侧基含氟聚合物结构与表面性质研究进展[J].高分子材料科学与工程, 2007, 23(02): 14-18.
    [37]顾锡人,朱埗瑶,李外郎.表面化学[M].北京:科学出版社, 2001
    [38] Ni H. G., Wang X. F., Zhang W., et al. Stable hydrophobic surfaces created by self-assembly of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate units[J]. Surface Science, 2007, 601 (17): 3632-3639.
    [39] Yang J. P., Ni H. G., Wang X. F., et al. Creating stable hydrophobic surfaces by poly(butyl methacrylate) end- capped with 2-perfluorooctylethyl methacrylate units[J]. Polymer Bulletin, 2007, 59 (1): 105-115.
    [40] Nishino T., Urushihara Y., Meguro M., et al. Surface properties and structures of diblock and random copolymers with perfluoroalkyl side chains[J]. Journal of Colloid and Interface Science, 2004, 279 (2): 364-369.
    [41] Wang X. F., Ni H. G., Xue D. W. et al. Solvent effect on the film formation and the stability of the surface properties of poly(methyl methacrylate) end-capped with fluorinated units[J]. Journal of Colloid and Interface Science, 2008, 321 (2): 373-383.
    [42] Urushihara Y., Nishino T. Effects of film-forming conditions on surface properties and structures of diblock copolymer with perfluoroalkyl side chains[J]. Langmuir, 2005, 21 (6): 2614-2618.
    [43] Kassis C. M., Steehler J. K., Betts D. E. et al. XPS Studies of Fluorinated Acrylate Polymers and Block Copolymers with Polystyrene[J]. Macromolecules, 1996, 29 (9): 3247-3254.
    [44] Li H. J., Wang X. B., Song Y. L. et al. Super-"amphiphobic" aligned carbon nanotube films[J]. Angewandte Chemie-International Edition, 2001, 40 (9): 1743-1746.
    [45] Qian B. T., Shen Z. Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21 (20): 9007-9009.
    [46] Xue D. W., Wang X. P., Ni H. G., et al. Surface Segregation of Fluorinated Moieties on Random Copolymer Films Controlled by Random-Coil Conformation of Polymer Chains in Solution[J]. Langmuir, 2009, 25 (4): 2248-2257.
    [47] Nishino T., Urushihara Y., Meguro M., et al. Surface properties and structures of diblock copolymer and homopolymer with perfluoroalkyl side chains[J]. Journal of Colloid and Interface Science, 2005, 283(2): 533-538.
    [48] Sauer B. B., McLean R. S., Thomas R. R. Tapping Mode AFM Studies of Nano-Phases on Fluorine-Containing Polyester Coatings and Octadecyltrichlorosilane Monolayers[J]. Langmuir, 1998, 14 (11): 3045-3051.
    [49] Al-Hussein M., Serero Y., Konovalov O. et al. Nanoordering of fluorinated side-chain liquid crystalline/amorphous diblock copolymers[J]. Macromolecules, 2005, 38 (23): 9610-9616.
    [50] Tocha E., Sch?nherr H., Vancso G. J. Quantitative Nanotribology by AFM:? A Novel Universal Calibration Platform[J]. Langmuir, 2006, 22 (5): 2340-2350.
    [51] Ming W., Tian M., van de Grampel R. D. et al. Low Surface Energy Polymeric Films from Solventless Liquid Oligoesters and Partially Fluorinated Isocyanates[J]. Macromolecules, 2002, 35 (18): 6920-6929.
    [52] Butt H. J., Cappella B., Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59 (1-6): 1-152.
    [53] Wu S. Polymer interface and adhesion[M]. New York: Marcel Dekker, 1982.
    [54] Al-Hussein M., Séréro Y., Konovalov O, et al. Nanoordering of Fluorinated Side-Chain Liquid Crystalline/Amorphous Diblock Copolymers[J]. Macromolecules, 2005, 38 (23): 9610-9616.
    [1] Lindner E. A low surface free energy approach in the control of marine biofouling[J]. Biofouling, 1992, 6 (2): 193-205.
    [2] Nishino T., Meguro M., Nakamae K., et al. The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15 (13): 4321-4323.
    [3] Wang J. G., Mao G. P., Ober C. K., et al. Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces: Synthesis, liquid crystalline structure, and critical surface tension[J]. Macromolecules, 1997, 30 (7): 1906-1914.
    [4] Tsibouklis J., Graham P., Eaton P. J. et al. Poly(perfluoroalkyl methacrylate) film structures: Surface organization phenomena, surface energy determinations, and force of adhesion measurements[J]. Macromolecules, 2000, 33 (22): 8460-8465.
    [5] Van de Grampel R. D., Van Geldrop J., Laven J., et al. P[CF3(CF2)5CH2MA-co-MMA] and P[CF3(CF2)5CH2MA-co-BA] copolymers: Reactivity ratios and surface properties[J]. Journal of AppliedPolymer Science, 2001, 79 (1): 159-165.
    [6] de Grampel R. D. V., Ming W., Gildenpfennig A. et al. The outermost atomic layer of thin films of fluorinated polymethacrylates[J]. Langmuir, 2004, 20 (15): 6344-6351.
    [7] Hikita M., Tanaka K., Nakamura T., et al. Aggregation states and surface wettability in films of poly(styrene-block-2-perfluorooctyl ethyl acrylate) diblock copolymers synthesized by atom transfer radical polymerization[J]. Langmuir, 2004, 20 (13): 5304-5310.
    [8] Yarbrough J. C., Rolland J. P., DeSimone J. M. et al. Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers[J]. Macromolecules, 2006, 39 (7): 2521-2528.
    [9] Ping T. X., De P. L., Pei Z. C., et al. Preparation and surface properties of latexes with fluorine enriched in the shell by silicon monomer crosslinking[J]. Eur Polym J, 2007, 43 (5): 2117-2126.
    [10] Yang T. T., Peng H., Cheng S. Y., et al. Surface immobilization of perfluorinated acrylate copolymers by self-crosslinking[J]. J Fluorine Chem, 2005, 126 (11-12): 1570-1577.
    [11] Cui X. J., Zhong S. L., Gao Y, et al. Preparation and characterization of emulsifier-free core-shell interpenetrating polymer network-fluorinated polyacrylate latex particles[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008, 324 (1-3): 14-21.
    [12]杨浩.超疏水/超亲油不锈钢滤网涂层的制备及表面润湿性研究[D],华南理工大学博士学位论文, 2010.
    [13] Thomas R. R., Anton D. R., Graham W. F. et al. Preparation and surface properties of acrylic polymers containing fluorinated monomers[J]. Macromolecules, 1997, 30 (10): 2883-2890.
    [14] Lee C. Y., Ha J. W., Park I. J., et al. Surface characteristics of water-soluble cationic fluoro copolymers containing perfluoroalkyl, quaternized amino, and hydroxyl groups[J]. Journal of Applied Polymer Science, 2002, 86 (14): 3702-3707.
    [15] Wang X. F., Ni H. G., Xue D. W. et al. Solvent effect on the film formation and the stability of the surface properties of poly(methyl methacrylate) end-capped with fluorinated units[J]. Journal of Colloid and Interface Science, 2008, 321 (2): 373-383.
    [16] Urushihara Y., Nishino T. Effects of film-forming conditions on surface properties and structures of diblock copolymer with perfluoroalkyl side chains[J]. Langmuir, 2005, 21 (6): 2614-2618.
    [17] Wei H. Y., Li X. X., Wang K., et al. Study on preparation and forming mechanism of super -hydrophobic surface by perfluoroalkyl ethyl acrylate copolymers[J]. Acta Chim Sinica, 2008, 66 (12):1470-1476.
    [18] Kim J., Efimenko K., Genzer J., et al. Surface properties of poly[2-(perfluorooctyl)ethyl acrylate] deposited from liquid CO2 high-pressure free meniscus coating[J]. Macromolecules, 2007, 40 (3): 588-597.
    [19]魏海洋,贺文潇,粟小理等.热处理对超疏水性含氟丙烯酸酯共聚物膜表面性能的影响[J].高等学校化学学报, 2009, 30(4): 821-824.
    [20] Nishino T., Urushihara Y., Meguro M., et al. Surface properties and structures of diblock and random copolymers with perfluoroalkyl side chains[J]. Journal of Colloid and Interface Science, 2004, 279 (2): 364-369.
    [21] Morita M., Ogisu H., Kubo M. Surface properties of perfluoroalkylethyl acrylate/n-alkyl acrylate copolymers[J]. Journal of Applied Polymer Science, 1999, 73 (9): 1741-1749.
    [22] Fujimori A., Masuya R., Masuko T. et al. Formation and structure of organized molecular films for fluorinated comb copolymers[J]. Polymers for Advanced Technologies, 2006, 17 (9-10): 653-663.
    [23] Fujimori A., Saitoh H., Shibasaki Y. Polymorphism of acrylic and methacrylic acid esters containing long fluorocarbon chains and their polymerizability[J]. Journal of Thermal Analysis and Calorimetry, 1999, 57 (3): 631-642.
    [24] Fujimori A., Hoshizawa H., Kobayashi S. et al. Layer structure estimation of three-dimensional crystal and two-dimensional molecular film for fluorinated comb copolymers[J]. Journal of Polymer Science Part B-Polymer Physics, 2008, 46 (5): 534-546.
    [25] Youssef A., Pabon M., Severac R., et al. The effect of copolymer composition on the surface properties of perfluoroalkylethyl acrylates[J]. Journal of Applied Polymer Science, 2009, 114 (6): 4020-4029.
    [26] Kassis C. M., Steehler J. K., Betts D. E. et al. XPS Studies of Fluorinated Acrylate Polymers and Block Copolymers with Polystyrene[J]. Macromolecules, 1996, 29 (9): 3247-3254.
    [27] Katano Y., Tomono H., Nakajima T. Surface Property of Polymer Films with Fluoroalkyl Side Chains[J]. Macromolecules, 1994, 27: 2342.
    [28] Sauer B. B., McLean R. S., Thomas R. R. Tapping Mode AFM Studies of Nano-Phases on Fluorine-Containing Polyester Coatings and Octadecyltrichlorosilane Monolayers[J]. Langmuir, 1998, 14 (11): 3045-3051.
    [29] Ming W., Tian M., van de Grampel R. D. et al. Low Surface Energy Polymeric Films from Solventless Liquid Oligoesters and Partially Fluorinated Isocyanates[J]. Macromolecules, 2002, 35 (18): 6920-6929.
    [30] Al-Hussein M., Séréro Y., Konovalov O, et al. Nanoordering of Fluorinated Side-Chain Liquid Crystalline/Amorphous Diblock Copolymers[J]. Macromolecules, 2005, 38 (23): 9610-9616.
    [1]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社, 2007
    [2] Zhang X., Shi F., Niu J., et al. Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18 (6): 621-633.
    [3] Herminghaus S., Brinkmann M., Seemann R. Wetting and dewetting of complex surface geometries[J]. Annual Review of Materials Research, 2008, 38: 101-121.
    [4] Quere D. Wetting and roughness[J]. Annual Review of Materials Research, 2008, 38: 71-99.
    [5] Hirao A., Sugiyama K., Yokoyama H. Precise synthesis and surface structures of architectural per- and semifluorinated polymers with well-defined structures[J]. Progress in Polymer Science, 2007, 32 (12): 1393-1438.
    [6] Li X. M., Reinhoudt D., Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 2007, 36 (8): 1350-1368.
    [7] Sun T. L., Feng L., Gao X. F., et al. Bioinspired surfaces with special wettability[J]. Accounts of Chemical Research, 2005, 38 (8): 644-652.
    [8] Mendez-Vilas A., Jodar-Reyes A. B., Gonzalez-Martin M. L. Ultrasmall Liquid Droplets on Solid Surfaces: Production, Imaging, and Relevance for Current Wetting Research[J]. Small, 2009, 5 (12): 1366-1390.
    [9] Wang B., Feng J., Gao C. Surface wettability of compressed polyelectrolyte multilayers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 259 (1-3): 1-5.
    [10] Liu H., Zhai J., Jiang L. Wetting and anti-wetting on aligned carbon nanotube films[J]. Soft Matter, 2006, 2 (10): 811-821.
    [11] Yüce M. Y., Demirel A. L., Menzel F. Tuning the Surface Hydrophobicity of Polymer/Nanoparticle Composite Films in the Wenzel Regime by Composition[J]. Langmuir, 2005, 21 (11): 5073-5078.
    [12] Sawada H., Koizumi M., Tojo T., et al. Synthesis of novel fluoroalkyl end-capped oligomers/silica gel polymer hybrids possessing antibacterial activity[J]. Polym Advan Technol, 2005, 16 (6): 459-465.
    [13] Shirtcliffe N. J., McHale G., Newton M. I., et al. Intrinsically Superhydrophobic Organosilica Sol?GelFoams[J]. Langmuir, 2003, 19 (14): 5626-5631.
    [14] Hoefnagels H. F., Wu D., de With G., et al. Biomimetic superhydrophobic and highly oleophobic cotton textiles[J]. Langmuir, 2007, 23 (26): 13158-13163.
    [15] Fabbri P., Messori M., Montecchi M. et al. Surface properties of fluorinated hybrid coatings[J]. Journal of Applied Polymer Science, 2006, 102 (2): 1483-1488.
    [16] Nakajima A., Abe K., Hashimoto K., et al. Preparation of hard super-hydrophobic films with visible light transmission[J]. Thin Solid Films, 2000, 376 (1-2): 140-143.
    [17] Hsieh C. T., Chen J. M., Kuo R. R., et al. Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles[J]. Applied Surface Science, 2005, 240 (1-4): 318-326.
    [18] Nakajima A., Hashimoto K., Watanabe T. et al. Transparent Superhydrophobic Thin Films with Self-Cleaning Properties[J]. Langmuir, 2000, 16 (17): 7044-7047.
    [19] Tadanaga K., Morinaga J., Matsuda A., et al. Superhydrophobic?Superhydrophilic Micropatterning on Flowerlike Alumina Coating Film by the Sol?Gel Method[J]. Chemistry Of Materials, 2000, 12 (3): 590-592.
    [20] Han J. T., Zheng Y., Cho J. H., et al. Stable Superhydrophobic Organic?Inorganic Hybrid Films by Electrostatic Self-Assembly[J]. The Journal of Physical Chemistry B, 2005, 109 (44): 20773-20778.
    [21] Fabbri P., Messori M., Montecchi M. et al. Perfluoropolyether-based organic-inorganic hybrid coatings[J]. Polymer, 2006, 47 (4): 1055-1062.
    [22] Hikita M., Tanaka K., Nakamura T., et al. Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups[J]. Langmuir, 2005, 21 (16): 7299-7302.
    [23] Yu Z. G., Zhang Z. B., Yuan Q. L., et al. Surface analysis of coating based on novel water-diluted fluorinated polymer/silica hybrids[J]. Adv Polym Tech, 2002, 21 (4): 268-274.
    [24] Hsieh C. T., Wu F. L., Chen W. Y. Super water- and oil-repellencies from silica-based nanocoatings[J]. Surface & Coatings Technology, 2009, 203 (22): 3377-3384.
    [25] Sheen Y. C., Huang Y. C., Liao C. S., et al. New approach to fabricate an extremely super -amphiphobic surface based on fluorinated silica nanoparticles[J]. Journal of Polymer Science Part B-Polymer Physics, 2008, 46 (18): 1984-1990.
    [26] Zanetti M., Lomakin S., Camino G. Polymer layered silicate nanocomposites[J]. Macromolecular Materials and Engineering, 2000, 279 (1): 1-9.
    [27] Shouji E., Buttry D. A. New Organic?Inorganic Nanocomposite Materials for Energy StorageApplications[J]. Langmuir, 1999, 15 (3): 669-673.
    [28] Liu Y.Y., Chen X.Q., Xin J.H. Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach[J]. Nanotechnology, 2006, 17(13):3259-3263
    [29] Yang J., Pi P., Wen X. et al. A novel method to fabricate superhydrophobic surfaces based on well-defined mulberry-like particles and self-assembly of polydimethylsiloxane[J]. Applied Surface Science, 2009, 255 (6): 3507-3512.
    [30] Ou Y., Yang F., Yu Z.-Z. A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization[J]. Journal of Polymer Science Part B: Polymer Physics, 1998, 36 (5): 789-795.
    [31] Zhang Y., Zhou G. E., Zhang Y. H. et al. Preparation and optical absorption of dispersions of nano-TiO2/MMA (methylmethacrylate) and nano-TiO2/PMMA (polymethylmethacrylate)[J]. Materials Research Bulletin, 1999, 34 (5): 701-709.
    [32]郝凌云,周勇,朱春玲等.紫外辐照同步合成无机-有机聚合物纳米复合材料[J].稀有金属材料与工程, 2001, 30(2):138-140
    [33] Wenzel R. N. Resistance of solid surfaces to wetting by water[J]. Journal of Industrial and Engineering Chemistry, 1936, 28 (8): 988-994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700