华北四种常见乔木根系固土的力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索乔木阻止浅层滑坡、固持水土的力学机制,本文采用室内轴向拉伸试验对华北土石山区4种常见乔木:油松、白桦、落叶松和蒙古栎进行单根拉伸试验,测定其单根的抗拉力学特性;定性分析了直径、树种、标距以及拉伸速率等因素对抗拉强度、最大抗拉力和应力-应变关系的影响;在此基础上,进一步定量分析建立了单根抗拉强度的综合模型和描述应力-应变关系的经验模型。然后,选取油松根系作为试验根样与华北木兰围场取回的土样一起制备成根土复合体试样,采用全自动三轴压缩仪对复合体进行剪切试验,对复合体的剪切特性进行研究分析。
     主要研究成果如下:
     (1)4种乔木根系抗拉强度的水平:白桦>蒙古栎>油松>落叶松;4个研究树种根系的抗拉强度均与直径呈负相关关系;在同一径级下,标距与抗拉强度呈负相关关系;拉伸速率对其根系抗拉强度水平的影响均不太明显。
     (2)乔木单根的应力应变曲线整体都为单峰曲线,没有出现明显的径缩现象。四种乔木的应力应变曲线都表现出弹塑性材料特征,只是在受拉的初期阶段,表现为弹性材料特征;应力超过弹性极限,根系变形迅速进入弹塑性变形阶段。
     (3)引入了树种、标距作为控制变量,对4个树种根系构建林木单根抗拉的力学特性综合模型,其数学表达式为P=a(S,L)+b(S,L)/D。此模型在一定程度上能反映林木单根的力学作用机制,有一定的实际指导意义。
     (4)建立了一个反映林木单根本构关系的经验模型,并从数学角度,对模型进行了理论论证,推导给出了模型相关参数的计算方法。
     (5)加根能够明显提高土体抵抗剪切破坏的能力,且垂直加根的效果强于水平加根的效果,围压的增加和埋入根段直径的增大都使这种加强效果更为明显。
To explore the tree to prevent shallow slope, retaining water and soil mechanism, indoor axial tensile test of a single tensile tests were taken on the four kinds of common trees of the North China in mountainous area:Pinus tabulaeformis, birch, larch and Mongolian oak, and itssingle tensile mechanical properties were determinated; qualitative analysis of the diameter, species, distance and stretching rate and other factors were taken on the tensile strength, resistance to tension and stress-strain relations; on this basis, further quantitative analysis were taken to establish a single tensile strength of the model and describe the stress-strain relationship of empirical models. Then, Pinus tabulaeformis roots were selected as test root samples with the North China Hunting retrieve soil samples with the preparation of the root soil composite sample, using fully automated triaxial compression shear test in complex to study the complex shear characteristics.
     The major results were summarized as follow:
     (1) Level of tensile strength of four kinds of tree roots:birch> Mongolian oak> Pinus tabulaeformis> larch; four species root tensile strength was negatively correlated with the diameter gauge; in the same diameter class, root length and tensile strength was negatively correlated; the influence of stretching rate on root tensile strength is less obvious.
     (2) The stress-strain curve of single arbor root was a single peak curve, there was no obvious diameter reduction. Four trees in the stress-strain curves show the elastic-plastic material characteristics, but in the early stages of tensile, showed elastic material characteristics; once stress exceeds the elastic limit, root deformation rapidly went into the elastic and plastic deformation stage.
     (3) Introduced species, troot length as a control variable to build a comprehensive model of forest single tensile mechanical properties of four species roots, its mathematical expression for P=a(S,L)+b(S,L)/D. To some extent this model can reflect the trees of a single mechanical mechanism, a certain degree of practical significance.
     (4) An empirical model was established to reflect the single roots constitutive relation, and from a mathematical perspective, the theory argumentation and derivation of model were taken and its parameters were calculated out.
     (5) Root-soil can significantly improve the ability of soil to resist shear failure, and the effect of perpendicular to add the root is stronger than that of in the level of the root effect; the increase of confining pressure, and buried in the root segment diameter increases this strengthening effect is more obvious.
引文
1. 曹扬,赵忠,渠美,成向荣,王迪海.刺槐根系对深层土壤水分的影响[J].应用生态学报,2006,17(5):765-768.
    2. 陈丽华,余新晓,刘秀萍,等.林木根系本构关系[J].山地学报,2007,25(2):224-228.
    3. 陈丽华,余新晓,宋维峰等.林木根系固土力学机制[M].北京:科学出版社,2008.
    4. 程洪,谢涛,唐春等.植物根系力学与固土作用机理研究综述[J].水土保持通报,2006,26(1):97-102.
    5. 程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    6. 代全厚,张力,刘艳军,等.嫩江大堤植物根系固土护堤功能研究[J].水土保持通报,1998,18(6):8-11.
    7. 邓卫东,周群华,严秋荣.植物根系固坡作用的试验与计算[J].中国公路学报,2007,20(5):7-12.
    8. 封金财,王建华.植物根的存在对边坡稳定性的作用[J].华东交通大学学报,2003,20(5):42-45.
    9. 冯卫星,常绍东,胡万毅.北京细沙土邓肯-张模型参数试验研究[J].岩石力学与工程学报,1999,18(3):327-330.
    10.郭维俊,黄高宝,王芬娥,吴建民.植物根系若干力学问题研究[J].中国农机化,2006,(2):84-88.
    11.国家质量技术监督局,中华人民共和国建设部.土工试验方法标准(GB/T50123-1999)[S].北京:中国计划出版社,1999:90-107.
    12.国家质量监督检验检疫总局.金属材料室温拉伸试验方法(GB/T 228-2002)[S].北京:中国标准出版社,2002.
    13.郝彤琦,谢小妍,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究[J].华南农业大学学报,2000,21(4):78-80.
    14.姜志强,孙树林.堤防工程生态固坡浅析[J].岩石力学与工程学报,2004,23(12):2133-2136.
    15.解明曙.林木根系固坡力学机制研究[J].水土保持学报,1990,4(3):7-14.
    16.解明曙.乔灌木根系固坡力学强度的有效范围与最佳组构方式[J].水土保持学报,1990,4(1):17-23.
    17.李贺鹏,岳春雷,赵广琦,等.中亚热带常绿阔叶林中主要灌木根系力学特性[J].西北林学院学报,2010,25(5):33-36.
    18.李绍才,孙海龙,杨志荣,等.岩石边坡喷播植草护坡工程的抗侵蚀效应[J].北京林业大学学报,2006,28(1):43-47.
    19.李勇,武淑霞,夏侯国风.紫色上区刺槐林根系对土壤结构的稳定作用[J].土壤侵蚀与水土任持学报,1998,4(2):1-7.
    20.刘垂远.土工合成材料加筋土体的应力-应变特性研究[D].四川:四川大学,2004:24-33.
    21.刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-37.
    22.刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水土保持学报, 1996,2(3):21-28.
    23.刘秀萍,陈丽华,陈吉虎.刺槐和汕松根系密度分布特征研究[J].干旱研究,2007,24(5):647-651.
    24.刘秀萍,陈丽华,宋维峰,等.油松根系抗拉应力与应变全曲线试验研究[J].中国水土保持科学,2006,4(2):66-70.
    25.刘秀萍,陈丽华,宋维峰.林木根系与黄土复合体的抗剪强度试验研究[J].北京林业大学学报,2006,28(5):67-72.
    26.刘秀萍,陈丽华,张心平,等.黄土高原造林边坡应力应变特征及其稳定性分析[J].北京林业大学学报,2008,30(5):97-103.
    27.刘秀萍.林木根系固土有限元数值模拟[D].北京:北京林业大学,2008:41-42.
    28.吕春娟,陈丽华,周硕,等.不同乔木根系的抗拉力学特性[J].农业工程学报,2011,27(13):329-335.
    29.南京水利科学研究院.土工试验技术手册[M].北京:人民交通出版社,2003:86-103.
    30.史敏华,王棣.石灰岩区主要水保灌木根系分布特征与根抗拉力研究初报.山西林业科技,1994,(1):17-19
    31.宋维峰,陈丽华,刘秀萍.树木根系固土力学机制研究综述[J].浙汀林学院学报,2008,25(3):376-381.
    32.宋维峰.林木根系与均质土间相互物理作用机理研究[D].北京:北京林业大学,2006:65-70.
    33.王剑敏,沈烈英,赵广琦.中亚热带优势灌木根系对土壤抗剪切力的影响[J].南京林业大学学报(自然科学版),2011,35(2):47-50.
    34.王可钧,李焯芬.植物固坡的力学简析[J].岩石力学与工程学报,1998,17(6):687-691.
    35.吴正雄,陈信雄.森林植生根力应用在崩塌地处理上之研究[J].中华林学季刊,1989,22(4):3-19.
    36.向师庆,赵相华.北京主要造林树的松系研究[J].匕京林学院学报,1981,3(2):19-32.
    37.谢春华,关文彬,张东升,等.长江上游暗针叶林生态系统主要树种的根系结构与上体稳定性研究[J].水土保持学报,2002,16(2):76-79.
    38.熊燕梅,夏汉平,李志安,等.植物根系固坡抗蚀的效应与机理研究进展[J].应用生态学报,2007,18(4):895-904.
    39.颜正平.根系型在水上保持适用效能之研究[C].台中:水土保持植生工程研讨会论文集,2000:127-137.
    40.杨吉华,李红云,李焕平,杨德运,李萍.4种灌木林地根系分布特征及其固持土壤效应的研究[J].水土保持学报,2007,21(3):48-51.
    41.杨亚川,莫永京,王芝芳,等.上壤-草本植被根系复合体抗水蚀强度与抗剪度的试验研究[J].中国农业大学学报,1996,1(2):31-38.
    42.野久田捻郎,林拙郎,李晓华.由根系抗拉强度推算根系固坡效果[J].水土保持科技情报,1997,(1):25-28.
    43.张飞,陈静曦,陈向波.边坡生态防护中表层含根系土抗剪试验研究[J].土工基 础,2005,19(3):25-27.
    44.张东升.长江上游暗针叶林林木根系抗拉力学特性研究[D].北京林业大学硕士论文,2002.
    45.张晓明,王玉杰,夏一平,吴云,陈林.重庆缙云山典型植被原状土与重塑土抗剪强度研究[J].农业工程学报,2006,22(11):6-9.
    46.张超波.林木根系固土护坡力学基础研究[D].北京林业大学博士论文,2011.
    47.赵丽兵,张宝贵.紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J].农业工程学报,2007,23(9):7-12.
    48.赵忠,李鹏,王乃江.渭北黄土高原主要造林树种根系分布特征的研究[J].应用生态学报,2000,11(1):37-39.
    49.赵忠,李鹏.渭北黄土高原主要造林树种根系分布特征及抗旱性研究[J].水土保持学报,2002,16(1):96-99.
    50.郑文宁.植物防护对边坡稳定性的影响[J].中外公路,2005,25(4):218-220.
    51.周跃,陈晓平,李玉辉,等.云南松侧根对浅层土体的水平牵引效应的初步研究[J].植物生态学报,1999,23(5):458-465.
    52.周跃,李宏伟,徐强.云南松幼树垂直根的土壤增强作用[J].水土保持学报,2000,14(5):110-113
    53.周跃,张军,林锦屏,等.西南地区松属侧根的强度特征对其防护林固土护坡作用的影响[J].生态学杂志,2002,21(6):1-4.
    54.周朔.林木根系拉伸力学特性研究[D].北京林业大学硕士论文,2011.
    55.朱海丽,胡夏嵩,毛小青,等.青藏高原黄土区护坡灌木植物根系力学特性研究[J].岩石力学与工程学报,2008,27(Z2):3445-3452.
    56.朱清科,陈丽华,张东谢,谢春华.贡嘎山森林生态系统根系固土力学机制究[J].北京林业大学学报,2002,24(4):64-67.
    57.朱珊,莫永京,王芝芳,等.土壤—草本植被根系复合体执水蚀强度与抗剪切强度的试验研究[J].中国农业大学学报,1996,1(2):31-38.
    58. Abe K, Ziemer RR (1991b) Effect of tree roots on shallow-seated landslides. In:Proc. IUFRO technical session on geomorphic hazards in managed forests; 5-11 August 1990; Montreal, Canada. Rice R M., technical coordinator. Gen.Tech. Rep. PSW-GTR-130, Berkeley, CA:Pacific South-west Research Station, Forest Service, U.S.D.A. pp 11-20.
    59. Beismann H, Schweingruber F, Speck T, Korner C (2002) Mechanical properties of spruce and beech wood grown in elevated CO2. Trees:Struct Func 16:511-518.
    60. Bell A (1991) Plant form. An illustrated guide to flowering plant morphology. Oxford University Press, New York.
    61. Brisson J, Reynolds JF (1994) The effect of neighbors on root distribution in a creosote bush (Larrea tridentata) population. Ecology 75:1693-1702.
    62. Coppin NJ, Richards IJ (1990) Use of vegetation in civil engineering. ClRIA, Butterworths, London Coutts MP (1982) Growth of Sitka spruce seedlings with roots divided between soils of unequal matric potential. New Phytol 92:49-61.
    63. Deeks LK, Bengough AG, Stutter MI, Young IM, Zhang XX (2008) Characterisation of flow paths and saturated conductivity in a soil block in relation to chloride breakthrough. J Hydrol 348:431-441.
    64. Dhakal AS, Sidle RC (2003) Long-term modeling of landslides for different forest management practices. Earth Surf Proc Land 28:853-868.
    65. Docker BB, Hubble TCT (2008) Quantifying root-reinforcement of river bank soils by four Australian tree species. Geomorphology 100:401-418.
    66. Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479-490.
    67. Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley Ⅰ:the effect of nitrate concentration on the growth of root axes and laterals J. Exp Bot 24:1189-1202.
    68. Dupuy L, Fourcaud T, Stokes A, Danjon F (2005c) A density based approach for the modelling of root architecture:application to Maritime pine (Pinus pinaster Ait.)root systems. J Theor Biol 236:323-334.
    69. Dupuy L, Fourcaud T, Lac P, Stokes A (2007) A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture. Am J Bot 94:1506-1514.
    70. Farley RA, Fitter AH (1999) The response of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol 87:849-859.
    71. Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil.Blackwell Scientific, London, pp 87-106 British Ecological Society Special Publication No.4.
    72. Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems.1. Architectural correlates of exploitation efficiency. New Phytol 118:375-382.
    73. Genet M, Stokes A, Salin F, Mickovski SB, Fourcaud T, Dumail J, van Beek LPH (2005) The influence of cellulose content on tensile strength in tree roots. Plant Soil 278:1-9.
    74. Genet M, Stokes A, Fourcaud T, Li M, Luo T (2006) Effect of altitude on root mechanical and chemical properties of Abies georgei in Tibet. In:Salmen L (ed) Proc.5th Plant Biomechanics Conference. STFI-Packforsk AB, Sweden, pp 305-310.
    75. Greenway DR (1987) Vegetation and slope stability. In:Anderson MG, Richards KS (eds) Slope stability. Wiley, Chichester, pp 187-230.
    76. Greenwood JR (2006) Slip4ex—a program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes. Geotech Geol Eng 24:449-465.
    77. Guerrero-Campo J, Palacio S, Perez-Rontome C, Montserrat-Marti G (2006) Effect of root system morphology on root-sprouting and shoot-rooting abilities in 123 plant species from eroded lands in North-east Spain. Ann Bot 98:439-447.
    78. Hodge A (2004) The plastic plant:root responses to heterogeneous supplies of nutrients. New Phytol 162:9-24.
    79. Hodge A, Robinson D, Fitter AH (2000) An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. New Phytol 145:575-584.
    80. Ji Xiaodong, Lihua Chen, Honghua Zhao, Chaobo Zhang, Shuo Zhou, Pinghua Wang.2010. Experimental Study on the Constitutive Model of the Betula platyphylla Root System. Proceedings of 2010 International Conference of International Conference on Combating Land Degradation in Agricultral Areas, Springer,663-666.
    81. Karrenberg S, Blaser S, Kollmann J, Speck T, Edwards PJ (2003) Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. Funct Ecol 17:170-177.
    82. Kazda M, Schmid L (2008) Clustered distribution of tree roots and soil water exploitation. In: Luttge U, Beyschlag W, Budel B, Francis D (eds) Progress in botany 70. Springer-Verlag, Berlin, pp 219-235.
    83. Khuder H, Danjon F, Stokes A, Fourcaud T (2006) Growth response and root architecture of Black locust seedlings growing on slopes and subjected to mechanical perturbation. In:Salmen L (ed) Proceedings of the 5th Plant Biomechanics Conference. STFI-Packforsk AB, Sweden, pp 299-304.
    84. Khuder H, Stokes A, Danjon F, Gouskou K, Lagane F (2007) Is it possible to manipulate root anchorage in young trees? Plant Soil 294:87-102.
    85. Lihua Chen, Shuo Zhou, Xiaodong Ji, Chaobo Zhang, Honghua Zhao, Pinghua Wang.2010. Study on Mechanical Characteristics of Betula platyphylla Root System. Proceedings of 2010 International Conference of International Conference on Combating Land Degradation in Agricultral Areas, Springer,658-662.
    86. May LH, Randles FH, Aspinall D, Paleg LG (1967) Quantitative studies of root growth II:growth in the early stages of development. Aus J Biol Sci 20:273-283.
    87. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178-185.
    88. McKenzie BM, Bengough AG, Hallett PD, Thomas WTB, Forster BP, McNicol JW (2009) Deep rooting and drought screening of cereal crops:a novel field-based method and its application. Field Crops Research 112:165-171.
    89. Nicoll BC, Berthier S, Achim A, Gouskou K, Danjon F, van Beek LPH (2006) The architecture of Picea sitchensis structural root systems on horizontal and sloping terrain. Trees-Struct Func 20:701-712.
    90. Noguchi S, Tsuboyama Y, Sidle RC, Hosoda I (1997) Spatially distributed morphological characteristics of macropores in forest soils of Hitachi Ohta Experimental Watershed. Japan Jap J For Res 2:207-215.
    91. Norman SA,Schaetzl RJ, Small TW (1995) Effects of slope angle on mass movement by tree uprooting. Geomorphology 14:19-27.
    92. Norris JE (2005) Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England. Plant Soil 278:43-53.
    93. Norris JE, Stokes A, Mickovski SB, Cammeraat E, van Beek LPH, Nicoll B, Achim A (eds) (2008) Slope stability and erosion control:ecotechnological solutions. Springer, Dordrecht Operstein V, Frydman S (2000) The influence of vegetation on soil strength. Ground Improvement 4:81-89.
    94. Osman N, Barakbah SS (2006) Parameters to predict slope stability—soil water and root profiles. Ecol Eng 28:90-95.
    95. Palenzuela J, Azcon-Aguilar C, Figueroa D, Caravaca F, Roldan A, Barea JM (2002) Effects of mycorrhizal inoculation of shrubs from Mediterranean ecosystems and composted residue application on transplant performance and mycorrhizal developments in a desertified soil. Biol Fert Soils 36:170-175.
    96. Portas CAM, Taylor HM (1976) Growth and survival of young plant roots in dry soil. Soil Sci 121:170-175.
    97. Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture:a review. Trees:Struct Func 21:385-402.
    98. Rice RM, Foggin GT (1971) Effect of high intensity storms on soil slippage on mountainous watersheds in southern California. Water Resour Res 7:1485-1496.
    99. Schiechtl HM (1980) Bioengineering for land reclamation and conservation. University of Alberta Press, Edmonton Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2001) Root cohesion variability and shallow landslide susceptibility in the Oregon Coast.
    100.Shuo Zhou, Lihua Chen, Pinghua Wang, Honghua Zhao, Xiaodong Ji.2010. Study on Mechanical Characteristics of Four Common Arbor Root System In North China. Proceedings of 2010 International Conference of International Conference on Combating Land Degradation in Agricultral Areas, Springer,708-712.
    101. Range Can Geotech J 38:995-1024 Schwarz M, Preti F, Giadrossich F, Lehmann P, Or D (2009) Quantifying the role of vegetation in slope stability:a case study in Tuscany (Italy). Ecol Eng (in press). doi:10.1016/j.ecoleng.2009.6-14.
    102.Scippa GS, Di Michele M, Di Iorio A, Costa A, Lasserre B, Chiatante D (2006) The response of Spartium junceum roots to slope:anchorage and gene factors. Ann Bot 97:857-866.
    103. Sidle RC, Burt TP (2009) Temperate forests and rangelands. In:Slaymaker O, Spencer T, Embleton-Hamann C (eds) Geomorphology and Global Environmental Change, Chapter 12. Cambridge University Press, UK, pp 321-343.
    104. Sidle RC, Ziegler AD, Negishi JN, Abdul Rahim N, Siew R, Turkelboom F (2006) Erosion processes in steep terrain—truths, myths, and uncertainties related to forest management in Southeast Asia. For Ecol Manage 224:199-225.
    105. Simon A, Collison JC (2002) Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf Proc Land 27:527-546.
    106. Stokes A, Fitter AH, Coutts MP (1995) Responses of young trees to wind:effects on root architecture and anchorage strength. J Exp Bot 46:1139-1146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700