膨胀石墨的制备及其导电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨胀石墨(EG)是由天然鳞片石墨经氧化、插层、水洗、干燥及高温膨胀而得到的一种疏松多孔的物质,是一种新型的导电材料。本论文研究以HNO3和H2SO4共同插入法、分步插层法和电解氧化法制备EG的工艺路线,探讨主要因素对膨胀体积的影响规律,正交试验优化EG的制备条件,测试优化条件下制得石墨层间化合物(GICs)的各项技术指标,并采用扫描电镜、X射线衍射、红外光谱和热分析等现代分析技术对优化的工艺条件得到的GICs进行表征,确定其结构、形貌等相关信息。将制得的EG与丙烯酸树脂复配,分析了填料的含量与涂层表面电阻率的关系。
     本论文的主要研究结果如下:
     1)采用HNO_3、H_2SO_4共同插入法制备了在900℃下膨胀体积达到290ml/g的EG。优化的工艺条件为:混酸量为60g,KMnO4用量为1.8g,硝酸与硫酸的质量比为1:3,反应时间是50min。制得的EG具有蠕虫状蓬松结构,石墨蠕虫由许多微胞连接在一起组成。微胞间的狭缝宽度为40~50μm。插入剂破坏了鳞片石墨晶体结构,但是未破坏石墨的C-C键,X射线衍射峰对应2θ为29.5°处的特征峰是插层物结晶区引起的。GICs片层间存在SO_4~(2+)和NO_3~-,500℃前热失重达21.452%,这是由插层物的气化、分解所致。
     2)采用分步插层法制备的EG在900℃下膨胀体积可达300mL/g。分步插层法是一次插层后再插入低沸点甲酸,有利于得到更高膨胀体积的EG,同时降低了GICs的含硫量。优化工艺条件为:混酸量为60g,KMnO4用量为2.2g,硝酸与硫酸比为1:3,反应时间为50min,在甲酸中浸泡2小时。分步插层法获得的GICs石墨层比较疏松,层间距离较大。EG有良好的孔隙结构,从表面观察为许多网状的多边形孔,孔隙开口比HNO_3、H_2SO_4共同插层EG的深。插入剂破坏了鳞片石墨晶体结构,但是未破坏石墨的C-C键,X射线衍射峰对应2θ为28.5°处的特征峰是插层物结晶区引起的。GICs片层间存在SO_4~(2+)、NO_3~-和COOH~-,500℃前热失重达15.156%。
     3)采用电解氧化法制备的EG在900℃下膨胀体积达到200ml/g。硫酸的质量分数控制在75 %左右最佳,优化的电流密度为0.75 A/m2 ,m(H_2SO_4):m(KMnO4)=90:1为宜,较好的电解氧化时间为5小时。电解氧化后的EG层间显得较为松散,呈层状开裂。插入剂破坏了鳞片石墨晶体结构,但是未破坏石墨的C-C键,X射线衍射峰对应2θ为29.6°处的特征峰是插层物结晶区引起的。GICs片层间存在SO_4~(2+),500℃前热失重达10.766%。
     4)以鳞片石墨做导电填料的涂层渗滤阈值为33.33 wt.%,表面电阻率最低为1.76×10~4Ω·cm~(-2),当含量大于41.18 wt.%,表面电阻率有所回升。以EG为导电填料的涂层渗滤阈值(0.5 wt.%)很低。当填料含量大于2 wt.%后,相同质量分数条件下EG为填料的涂层电阻率比鳞片石墨为填料的涂层低约10个数量级,并且非常稳定。
Exfoliated graphite (EG) is a porous and conductive material which is produced by natural flake graphite by means of oxidation, inserting, watering, dryness and expansion. In this thesis, what to study was to synthesize EG by chemical and electrochemical methods. The influence factors were discussed in detail,and the best reaction conditions were obtained by orthogonal tests. Specifications of graphite intercalation compounds (GICs) were tested. In addition, the structure and apparent performance of GICs were studied by means of XRD, SEM, TGA, and IR. In the present investigation,three acrylic resin / graphite conductive coatings were prepared from natural flake graphite, EG prepared by chemical method and EG prepared by electrochemical method, respectively. Surface resistivity was tested, and relationships of content and surface resistivity were investigated. The main research work was as follows:
     1) EG were prepared by a chemical method from natural flake graphite, using sulfuric acid and nitric acid mixing as intercalation agent and potassium permanganate as oxidant. EG with 290 ml/g exfoliation volume at 900℃was obtained in the best process condition. The optimum conditions of processing were obtained as follows: the amount of mixed acid was 60g, weight ratio of nitric acid to sulfuric acid in mixed acid was 1:3, 2.5 g of KMnO_4 was the best amount, and reaction time was 50 min. The exfoliated domain had a multilayer structure with many diamond-shaped pores. EG is worm-like or accordion-like and microcells are held together at their edges. Crystalline of graphite was damaged because of oxidation intercalation, but the C-C bond was not undermined. The medial strength feature diffraction peak of GICs at 2θ=29.5o was also determined by the damaged graphite crystalline. Sulfuric acid and nitric acid were intercalated into the graphite layers. The thermal event in GICs occurred at 71 ~ 500℃,which attained 21.45%, which seemed to be evidence for a removal of the intercalate from GICs.
     2) EG with 300 ml/g exfoliation volume at 900℃was obtained, which was prepared by the step method in the best process condition. The optimum technological conditions are as follows: the amount of mixed acid was 60g, weight ratio of nitric acid to sulfuric acid in mixed acid was 1:3, 2.2 g of KMnO4 was the best amount, reaction time was 50 min, and it was dipped in formic acid for two hours. Graphite layers of GICs appeared relatively looser than that of natural flake graphite,and EG possessed better pore structure. Crystalline of graphite was damaged because of oxidation intercalation, but the C-C bond was not undermined. The medial strength feature diffraction peak of GICs at 2θ=28.5o was also determined by the damaged graphite crystalline. Sulfuric acid, nitric acid and formic acid were intercalated into graphite layers. The thermal event in GICs occurred at 89 ~ 500℃,which attained 21.45%, which seemed to be evidence for a removal of the intercalate from GICs.
     3) EG with 200 ml/g exfoliation volume at 900℃was obtained, which was prepared by the electrochemical method in the best process condition. Experimental results show that the best process conditions were following: the current intensity was 0.75 A/m2, the sulfuric acid concentration was 75%,m(H2SO4):m(KMnO4)=90:1,and reaction time was 5 hours. Graphite layers of GICs appeared relatively looser than that of natural flake graphite. Crystalline of graphite was damaged because of oxidation intercalation, but the C-C bond was not undermined. The medial strength feature diffraction peak of GICs at 2θ=29.6o was also determined by the damaged graphite crystalline. Sulfuric acid was intercalated into the graphite layers. The thermal event in GICs occurred at 266 ~ 500℃,which attained 10.766%, which seemed to be evidence for a removal of the intercalate from GICs.
     4) When natural flake graphite was used as conductive filler, percolation threshold of coating was 33.33 wt. % and surface resistivity was decreased obviously to 1.76×10~4Ω·cm~(-2). The coating with EG as conductive filler possessed a lower percolation threshold (0.5 wt. %) and a better electrical conductivity, reaching about 20.8Ω·cm~(-2)Ω, which was nearly independent of the amount of the EG.
引文
[1] Omastova M, Chodak I, Pionteck J. Electrical and mechanical properties of conducting polymer composites[J]. Synth Met, 1999, 102:1251-1256.
    [2]李星玮.导电高分子材料的性能及应用[J].化工新型材料, 1997, (4): 3-5.
    [3]佘银辉膨胀石墨的包覆改性及其导电复合材料的制备[D].华侨大学,2007.
    [4] Strümpler R, Maidorn G, Rhyner J. Fast current limitation by conducting polymer composites[J]. Journal of Applied Physics, 1997, 81(10): 6786-6794.
    [5] Lu J R, Chen X F, Lu W, et al. The piezoresistive behaviors of polyethylene/foliated graphite nanocomposites[J]. European Polymer Journal, 2006, 42: 1015–1021.
    [6]杜仕国,李良春.导电聚合物复合材料技术进展[J].玻璃钢?复合材料, 1998, (4): 39-42.
    [7]孟淑媛,林海斌,吴松平.超细银粉的制备及其导电性研究[J].电子元件与材料, 2004, (7): 37-39.
    [8]赵灵智,胡社军,何琴玉.电磁屏蔽材料的屏蔽原理与研究现状[J].包装工程, 2006, 27, (2): 1-4.
    [9]钟庆东,杭建忠,张文涛等.导电涂料研究进展[J].上海电力学院学报,2005, 21(2): 143-148.
    [10] Liu G Q, Yan M. The preparation of expanded graphite using fine flaky graphite[J]. New Carbon Materials, 2002, 17(2): 173-181.
    [11]张洪艳,王海泉,陈国华.新型导电填料—纳米石墨微片[J].塑料, 2006, 35(4):42-45.
    [12] Chen G H, Weng W G, Wu D J et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J]. Carbon, 2004, 42:753-759.
    [13] Inagaki M, Suwa T. Pore structure analysis of exfoliated graphite using image processing of scanning electron micro-graphs[J], Carbon, 2001, 39 :915-920
    [14]田金星,丁荣芝.石墨层间化合物的开发与应用前景[J].国外金属矿选矿, 1994, (1): 20-26.
    [15] Clarke R, Uher C. High pressure properties of graphite and its intercalation compounds[J]. Adv Phys, 1984, 33(5):469-566.
    [16] Hawrylak P, Subbaswamy K R. Kinetic model of stage transformation and intercalation in graphite[J]. Phys Rev Lett, 1984, 53(22): 2098-2101.
    [17]卢锦花,李贺军.石墨层间化合物的制备、结构与应用[J].炭素技术, 2003, 1(12): 21-24.
    [18] Mysyk R D, Whyman G E, Sanvoskin M V, et al. Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds[J]. Journal ofThermal and Calorimetry, 2005, 79: 515-519.
    [19]张达威.新型无卤石墨层间化合物的制备及其阻燃材料的开发[D].哈尔滨理工大学, 2007.
    [20]刘成宝,膨胀石墨的制备及其对含油污水的吸附应用研究[D].江苏大学, 2007.
    [21]蒋丽娜,李庆,王玲等. HNO3、H2SO4共同插入法制备低温石墨层间化合物研究[J].非金属矿, 2008, 31(3): 35-36.
    [22]王慎敏,乔英杰,周群.高锰酸钾与浓硫酸混合氧化法制备低硫石墨层间化合物[J].哈尔滨理工大学学报, 1999, 4(5): 24-27.
    [23]吴泽,张达威,黄荣华等.石墨层间化合物的制备及影响因素[J].哈尔滨理工大学学报, 2007, 12(2): 128-130.
    [24]涂文惫,曾宪滨.混合氧化法生产石墨层间化合物[J].中国非金属矿工业导刊, 2000, (5): 62-63.
    [25]杨东兴,康飞宇,郑永平.用H2O2-H2SO4合成低硫GIC的研究[J].炭素技术, 2000, (2): 7-10.
    [26]任崇桂,刘丽娟.低碳含量石墨制备石墨层间化合物研究[J].非金属矿, 2007, 30(6): 35-37.
    [27]金秋云.过二硫酸铵氧化制备柔性石墨[J].哈尔滨理工大学学报, 2001, 6(3): 105-109.
    [28]陈小伟,牟春博,张慧.一种制备石墨层间化合物的新方法[J].中国非金属矿工业导刊, 2009, (1): 40-41.
    [29]王太津,陈灵晶,王力等.用CrO3作氧化剂制备无硫石墨层间化合物[J].广州化工, 2010, 38(2): 103-105.
    [30]赖奇,李玉峰.三元系混酸插层制备细鳞片膨胀石墨[J].非金属矿, 2008, 31(4): 32-33.
    [31] Wei X H, Liu L, Zhang J X, et al. HClO4–graphite intercalation compound and its thermally exfoliated graphite[J]. Materials Letters, 2009, 63: 1618-1620.
    [32]林雪梅,潘功配. HClO4/H2SO4混酸体系制备低硫石墨层间化合物的研究[J].精细石油化工, 2005, (6): 48-51.
    [33]盛晓颖,刘婷,张学俊.膨胀石墨的制备及性能[J].非金属矿, 2010, 33(1): 49-51.
    [34] Avdeev V V, Martynov L U, Nikolskaya L V, et al. Investigation of the graphite-H2SO4-gaseous oxidizer (Cl2, O3, SO3) system[J]. Journal of Physic and Chemistry of Solids, 1996, 57: 837-840.
    [35] Kang F, Zheng Y P, Wang H N, et al. Effect of preparation conditions on the characteristics of exfoliated graphite[J]. Carbon, 2002, 40: 1575-1581.
    [36]薛美玲,于永良,任志华等.电化学法制造膨胀石墨的再改进[J].精细化工, 2003, 19(10): 567-570.
    [37] Dunaev A V, Sorokina N E, Maksimova N V, et al. Electrochemical behavior of graphite in nonaqueous FeCl3 solutions[J]. Inorganic Materials, 2005, 41(2): 127-132.
    [38]时虎,胡源.石墨层间化合物的合成和应用[J].炭素技术, 2002, (2): 29-32.
    [39]张俊红.膨胀石墨的制备方法及在环境工程中的应用现状[J].太原城市职业技术学院学报, 2004, (54): 151-152.
    [40] Liu C B, Chen Z G, Cheng X L. Preparation and structure analysis of expanded graphite-based composites made by phosphoric acid activation[J]. Journal of Porous Materials, 2009, 17: 425-428.
    [41]张东,田胜力,肖德炎.微波法制备纳米多孔石墨[J].非金属矿, 2004, 27(6): 22-24.
    [42] Tryba B, Morawski A W, Inagaki M. Preparation of exfoliated graphite by microwaveirradiation[J]. Carbon, 2005, 43: 2397-2429.
    [43] Kuga Y, Oyama T, Wakabayashi T, et al. Laser-assisted exfoliation of potassium-ammonia-graphite intercalation compounds[J]. Carbon, 1993, 31(1): 201-204.
    [44]乔小晶,张同来,任慧等.爆炸法制备膨胀石墨及其干扰性能[J].火炸药学报, 2003, 26: 70-73.
    [45] Song K M, Dun H J. On lower-nitrogen expandable graphite[J]. Materials Research Bulletin, 2000, 35: 425-430.
    [46]宋克敏,李国山.混酸法制备低硫石墨层间化合物[J].无机材料学报, 1996, 11 (4): 749-752.
    [47]宋克敏,敦惠娟.制备无硫低氮膨胀石墨的新工艺研究[J].功能材料, 2000, 31 (4): 433-435.
    [48] Li J H, Liu Q, Da H F. Preparation of sulfur-free exfoliated graphite at a low exfoliation temperature[J]. Materials Letters, 2007, 61: 1832-1834.
    [49] Ying Z R, Lin X M, Qi Y, et al. Preparation and characterization of low-temperature expandable graphite[J]. Materials Research Bulletin, 2008, 43: 2677-2686.
    [50]肖敏,刘静静,李赟等.三元型钾-四氢呋喃-GIC的制备及稳定性研究[J].新型炭材料, 2003, 18 (1):53-59.
    [51]马烽,程立媛,杨晓勇.石墨层间化合物的合成及微波膨胀工艺研究[J].山东轻工业学院学报, 2009, 23 (3):13-16.
    [52]李侃社,兰英. LDPE?石墨复合材料的制备和性能[J].西安科技学院学报, 2003, 23 (2): 191-194.
    [53]全成子,沈经纬.聚丙烯?石墨导电纳米复合材料的制备与性能[J].高分子学报, 2003, (6): 831-836.
    [54] Sorokina N E, Redchitz A V, Ionov S G, et al. Different exfoliated graphite as a base ofsealing materials[J]. Journal of Physics and Chemistry of Solids, 2006, 67: 1202-1204.
    [55] Wang Z Y, Han E H, Ke W. Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings[J]. Corrosion Science, 2007, 49: 2237-2253.
    [56] Li W, Han C, Liu W, et al. Expanded graphite applied in the catalytic process as a catalyst support[J]. Catalysis Today, 2007, 125: 278-281.
    [57] Celzard A, Mcrae E, Mareche J F, et al. Composites based on micron-sized exfoliated graphite particles: Electrical conduction, critical exponents and anisotropy[J]. Phys Chem Solids, 1996, 57: 715-718.
    [58] Weng W G, Chen G H, Wu D J. Transport properties of electrically conducting nylon 6/foliated graphite nanocomposites[J]. Polymer, 2005, 46(16): 6250-6257.
    [59] Weng W G, Chen G H, Wu D J. Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites[J]. Polymer, 2003, 44(26): 8119-8132.
    [60] Weng W G, Chen G H, Wu D J, et al. Fabrication and characterization of nylon 6/ foliated graphite electrically conducting nanocomposite[J]. J Polym Sci Part B: Polym Phys, 2004, 42 (15): 2844-2856.
    [61] Chen G H, Wu D J, Weng W G, et al. Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization [J]. J Appl Polym Sci, 2001, 82: 2506-2513.
    [62] Srivastava N K, Mehra R M. Study of structural, electrical, and dielectric properties of polystyrene/foliated graphite nanocomposite developed via in situ polymerization [J]. J Appl Polym Sci, 2008, 109(6): 3991-3999.
    [63] Srivastava N K, Mehra R M. Study of the electrical properties of polystyrene–foliated graphite composite[J]. Materials Science-Poland, 2009, 27: 109-122.
    [64] Kalaitzidou K, Fukushima H, Drzal L T. Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(7): 1675-1682.
    [65] Kalaitzidou K, Fukushima H, Drzal L T. A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold[J]. Composites Science and Technology, 2007, 67(10): 2045-2051.
    [66] Wang W P, Liu Y, Li X X, et al. Synthesis and characteristics of poly(methyl methacrylate)/ expanded graphite nanocomposites[J]. J Appl Polym Sci, 2006, 100: 1427-1431.
    [67] Chen C H, Yen W H, Kuan H C, et al. Preparation, characterization, and thermal stability of novel PMMA/expandable graphite halogen-free flame retardant composites[J]. Polymer Composites, 2010, 31: 18-24.
    [68] Barsukov V Z, Khomenko V G, Katashinskii A S, et al. New concept for the metal-air batteries using composites: conducting polymers / expanded graphite as catalysts[J]. Chemistry and Materials Science, 2006, 229(2): 89-104.
    [69] Xiang C, Li L C, Jin S Y, et al. Expanded graphite/polyaniline electrical conducting composites: Synthesis, conductive and dielectric properties[J]. Materials Letters, 2010, 64(11): 1313-1315.
    [70]左胜武,沈经纬,侯静.聚乙烯?石墨纳米复合材料的制备、结构和导电性[J].复合材料学报, 2005, 22 (1): 15-21.
    [71]李大军,严长浩,鲁萍等.膨胀石墨?聚酯导电复合材料的制备与导电行为[J].复合材料学报, 2008, 25 (1): 35-39.
    [72]李冀辉,冯莉莉,贾志欣.以膨胀石墨为填料的防静电涂料的研究[J].上海涂料, 2005, 43(12): 1-3.
    [73] Broadbent S R , Hammersley J M. Percolation processes I: Crystals and mazes[J]. Proc Camb Philos Soc, 1957, 53: 629-641.
    [74] Stauffer D, Aharnoy A. Introduction to percolation theory, London: Taylor & Francis, 1991
    [75] Zheng W G, Wong S C, Sue H J. Transport behavior of PMMA/ expanded graphite nanocomposites[J]. Polymer, 2002, 43 (25): 6767-6773.
    [76] Chen G H, Weng W G, Wu D J, et al. PMMA/ graphite nanosheets composite and its conducting properties[J]. Eur Polym J, 2003, 39 (10): 2329-2335.
    [77]陈翔峰,陈国华,吴大军等.聚合物?石墨纳米复合材料研究进展[J].高分子通报, 2004, (4): 39-47.
    [78]汪桃生.纳米石墨基导电复合涂料的制备及其电磁屏蔽性能的研究[D].华侨大学, 2006.
    [79]闫爱华,韩志东,吴泽等.不同氧化剂制备石墨层间化合物的研究[J].化学工程师, 2006, (4): 6-8.
    [80]黄昊.干扰毫米波用石墨层间化合物的制备及其性能表征[D].南京理工大学, 2006.
    [81] Medalia A I. Electrical conducting in carbon black composites[J]. Rub Chem Technol, 1986, 59 (3): 432-454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700