塔里木早二叠世大火成岩省岩浆动力学及含矿性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔里木早二叠世大火成岩省位于中国西北边陲新疆维吾尔自治区南部,是我国继峨眉山大火成岩省之后又一个被认为与地慢柱活动有关的大火成岩省。它蕴含着丰富的地球动力学信息和良好的油气及矿产资源勘查开发前景,具有十分重要的科学意义。本论文通过对塔里木大火成岩省不同的岩石类型和塔里木大陆溢流玄武岩中早二叠世岩浆锆石系统的Hf同位素地球化学研究、塔里木大火成岩省不同地区玄武岩系统的铂族元素(PGE)地球化学研究和巴楚瓦吉里塔格含钒钛磁铁矿杂岩体的成岩成矿机制研究,在塔里木大火成岩省岩浆动力学与成矿方面取得了如下一些重要的新认识。
     1.根据野外地质特征和岩石地球化学特征差异等研究,将出露的塔里木大火成岩省主要岩石单元划分为五个,其岩石类型包括三类玄武岩和两类侵入岩。从早期的玄武岩到晚期的侵入岩类,其Sr-Nd-Hf同位素成分特征总体呈现出从富集地慢组分(87Sr/86Sri>0.705,εNd(t)<1,εHf(t)<2.5)向亏损地幔组分(87Sr/86Sri<0.705, εNd(t)>1,εHf(t)>2.5)演化的趋势,表明塔里木大火成岩省的岩浆源区性质发生了明显的变化。结合对塔里木玄武岩中早二叠世岩浆锆石的Hf同位素地球化学研究,认为这一演化趋势很可能与柱地幔和岩石圈地慢之间的持续相互作用有着十分密切的关系,并提出了一个上涌的地慢柱不断向位于岩石圈地慢底部的塔里木大火成岩省岩浆源区注入亏损地幔物质、持续改变其同位素地球化学特征并最终形成塔里木大火成岩省各主要岩石类型的岩浆演化新模型。另外,根据塔里木玄武岩中早二叠世岩浆锆石的εHf(t)值(-6.8~-1.1)总体低于其寄主玄武岩(-2.3~2.1)和塔里木大火成岩省中其他已知的各类主要岩石(0.5~8.8),推测这些锆石可能来自于比玄武岩形成略早的隐伏岩体,是被玄武岩母岩浆所捕获的捕虏晶。
     2.塔里木大火成岩省不同地区的玄武岩普遍极度亏损铂族元素(∑PGEs<1ppb, Cu/Pd>105),表明塔里木玄武岩的母岩浆在最终喷发出地表之前曾经发生硫过饱和。综合分析对比各种可能因素后提出地幔源区低程度(约5%左右)部分熔融是造成塔里木玄武岩母岩浆硫过饱和的最主要原因,并认为地幔源区的部分熔融程度在塔里木大火成岩省的岩浆硫化物矿床成矿过程中扮演着十分重要的角色。虽然Th-Nb和Nb-La等微量元素的地球化学特征指示塔里木不同地区玄武岩遭受了塔里木地块基底岩石不同程度的地壳同化混染作用影响,但是地壳混染并没有触发玄武岩母岩浆的硫过饱和,这可能是由于塔里木地块基底岩石中没有足够的含硫物质。研究还发现柯坪地区玄武岩母岩浆喷发过程中的岩浆补给和混合作用有可能导致玄武质岩浆在地壳中再次硫饱和并使PGE等亲硫元素在岩浆流动通道中的特定部位富集,因此认为仍有必要进一步加强对塔里木大火成岩省不同地区的岩浆硫化物矿床找矿勘查和研究工作。
     3.通过对巴楚瓦吉里塔格含钒钛磁铁矿基性—超基性层状侵入岩体和金伯利质隐爆角砾岩的地质及岩石地球化学研究,认为它们很可能皆来自位于塔里木地块岩石圈地幔根部与软流圈地幔顶部之间交界部位的亏损型地幔源区。其中含钒钛磁铁矿基性—超基性层状侵入岩体是地慢源区较低程度(<10%)部分熔融所产生的富铁富钛原始岩浆上涌至地壳后在一个冷却速率较低的岩浆系统中经过缓慢的原地分离结晶作用而形成的。而金伯利质隐爆角砾岩具有高度富集稀土(∑REEs>960ppm)和Th、U等不相容元素以及富含角闪石、金云母等含水矿物的特点,指示其母岩浆在形成过程中可能受到了岩石圈地慢流体交代作用的影响。另外,巴楚地区较薄的岩石圈厚度可能是导致其金刚石含矿性较差的主要原因。
The Early Permian Tarim Large Igneous Province (TLIP), located in the southern part of Xinjiang Uygur Autonomous Region of the northwestern China, is another most important Large Igneous Province genetically linked with a mantle plume after the finding and study of the Emeishan Large Igneous Province in China by the geologists. It has an important scientific significance and a good support on the exploration of mineral resources and oil and gas. Systematic studies of Hf isotopes on various rock types of the TLIP and Early Permian magmatic zircons in the Tarim continental flood basalts (CFBs), platinum-group elements (PGE) on the Tarim CFBs in different areas of the TLIP, and geneses on the Wajilitag intrusive complex containing the Fe-Ti-V oxide ore deposit in the Bachu area have been carried out in this study; and the results can provide some good information to better understand the magma dynamics and ore potential of the TLIP.
     Through the study of geological, petrological and geochemical characteristics, the TLIP can be subdivided into five major igneous rock units (three earlier-formed basaltic units and two later-formed intrusive rock units). There is an evolutional trend of the Sr-Nd-Hf isotopes from enriched mantle components in the earlier basalts (87Sr/86Sri>0.705, εNd(t)<1, εHf(t)<2.5) towards depleted mantle components in the later intrusive rocks (87Sr/86Sri<0.705, εNd(t)>1, εHf(t)>2.5), indicating a remarkable change of the magma source materials. Combined with Hf isotope studies of the Early Permian magmatic zircons in the Tarim CFBs, it is considered that successive interactions between the plume and lithospheric mantle probably played an important role for the generation of the TLIP. A new and improved magmatic evolution model is proposed, which a rising mantle plume was continuously injecting depleted mantle components to the magma source region of the TLIP at the bottom of the sub-continental lithospheric mantle under the Tarim Block, changing its isotopic compositions and finally producing the various igneous rock units in the TLIP. Besides, the Early Permian magmatic zircons in the Tarim CFBs have lower εHf(t) values (-6.8~-1.1) than either their host basalts (-2.3~2.1) or other known igneous rocks (0.5~8.8) of the TLIP. These zircons were probably formed in the concealed pluton shortly prior to the extrusion of basalts, and were captured by the latter as xenocrysts.
     The Tarim CFBs in different areas of the Tarim Basin are extremely depieted in PGE (∑PGEs<1ppb, Cu/Pd>105), suggesting that their parental magmas were likely to have been S-saturated before the final eruption. Our studies denote that the S-saturation of the basaltic magmas was mainly attributed to the low-degree (ca.5%) partial melting in their mantle source; and the degree of partial melting played an important role on the forming of magmatic sulfide deposit in the TLIP. Although the trace elements geochemical proxies (Th-Nb and Nb-La) indicate that the Tarim CFBs in different areas have suffered variable degrees of crustal assimilation by the Tarim basement rocks, this process did not trigger S-saturation for the basaltic magmas. It is probably because that the Tarim basement rocks do not contain enough sulfur. However, the magma mixing by magma chamber replenishment during the basalt eruptions in the Keping area may induce secondary S-saturation for the basaltic magmas in the crust, causing PGE enrichment in some parts of the magma conduit. Therefore, it is necessary to further strengthen the exploration and research on the potential magmatic sulfide deposit in the TLIP.
     Through the study of geology, petrology and geochemistry on the Wajilitag Fe-Ti-V oxide ore-bearing layered mafic-ultramafic intrusion and kimberlitic brecciated rocks in the Bachu area. we argue that these rocks were probably derived from a common depleted mantle source at the boundary between the lithospheric and asthenospheric mantle. The Fe-Ti-V oxide ore-bearing layered mafic-ultramafic intrusion was produced by low-degree (<10%) partial melting from the mantle source and formed in a slowly cooling fractional crystallization process in the crust level. The kimberlitic brecciated rocks are highly enriched in rare earth elements (∑REEs>960ppm) and incompatible elements (e.g., Th and U), and contain lots of hornblendes and phlogopites. indicating that their parent magma may be affected by fluid metasomatism of lithospheric mantle. The relatively thin lithospheric thickness in the Bachu area is probably the main reason to explain poor potentiality for diamonds in the kimberlitic brecciated rocks.
引文
Alard, O., Griffin, W.L., Lorand, J.P., Jackson, S.E., O'Reilly, S.Y.,2000. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature,407:891-894
    Allegre, C.J.,2008. Isotope Geology. New York:Cambridge University Press.512 pp.
    Anderson, D.L.,2001. Top-Down Tectonics? Science,293 (5537):2016-2018
    Arndt, N.T., Czamanske, G.K., Wooden, J.L., Fedorenko, V.A.,1993. Mantle and crustal contributions to continental flood volcanism. Tectonophysics,223:39-52
    Ashwal, L.D.,1978. Petrogenesis of massif-type anorthosite:crystallization history and liquid line of descent of the Adirondack and Morin Complexes. PhD thesis, Princeton University,136 pp.
    Baker, J.A., Menzies, M.A., Thirlwall, M.F., MacPherson, C.G.,1997. Petrogenesis of Quaternary intraplate volcanism, Sana'a, Yemen:Implications for Plume-Lithosphere interaction and polybaric melt hybridization. Journal of Petrology,38 (10):1359-1390
    Barnes, S.-J., Naldrett, A.J., Gorton M.P.,1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology,53 (3-4):303-323
    Barnes, S.-J., Picard, C.P.,1993. The behaviour of platinum-group elements during partial melting, crystal fractionation, and sulphide segregation:An example from the Cape Smith Fold Belt, northern Quebec. Geochimica et Cosmochimica Acta,57 (1):79-87
    Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I.,2002. Igneous zircon:trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology,143 (5):602-622
    Belousova, E.A., Kostitsyn, Y.A., Griffin. W.L., Begg, G.C., O'Reilly, S.Y., Pearson, N.J.,2010. The growth of the continental crust:Constraints from zircon Hf-isotope data. Lithos,119 (3-4):457-466
    Bennett, V.C., Norman, M.D., Garcia, M.O.,2000. Rhenium and platinum group element abundances correlated with mantle source components in Hawaiian picrites:sulphides in the plume. Earth and Planetary Science Letters,183 (3-4):513-526
    Bouvier, A., Vervoort, J.D., Patchett, P.J.,2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters,273 (1-2):48-57
    Bowen, N.L.,1922. The reaction principle in petrogenesis. The Journal of Geology,30:177-198
    Brooks, C.K., Larsen, I.M., Nielsen, T.F.D.,1991. Importance of iron-rich tholeiitic magmas at divergent plate margins-a reappraisal. Geology,19:269-272
    Brugmann, G.E., Arndt, N.T., Hofmann, A.W., Tobschall, H.J.,1987. Noble metal abundances in komatiite suites from Alexo, Ontario, and Gorgona Island, Colombia. Geochimica et Cosmochimica Acta,51 (8): 2159-2169
    Brugmann, G.E., Naldrett, A.J., Asif, M., Lightfoot, P.C., Gorbachev, N.S., Fedorenko, V.A.,1993. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril'sk region, Russia. Geochimica et Cosmochimica Acta,57 (9):2001-2018
    Bryan, S.E., Ernst, R.E.,2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4):175-202
    Campbell, I.H.,2001. Identification of ancient mantle plumes. In:Ernst, R.E., Buchan, K.L. (Eds.), Mantle Plumes:Their Identification Through Time, Special Paper, vol.352. Geological Society of America, Boulder, CO, pp.5-21
    Campbell. I.H.,2005. Large Igneous Provinces and the Mantle Plume Hypothesis. Elements,5 (1):265-269
    Campbell, I.H., Barnes S.J.,1984. A model for the geochemistry of the platinum-group elements in magmatic sulfide deposits. Canadian Mineralogist,22 (1):151-160
    Campbell, I.H., Griffiths, R.W.,1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters,99 (1-2):79-93
    Cawthorn, R.G., Spies, L.,2003. Plagioclase content of cyclic units in the Bushveld Complex, South Africa. Contributions to Mineralogy and Petrology,145 (1):47-60
    Chai, F.-M., Zhang, Z.-C., Mao, J.-W., Dong, L.-H., Zhang, Z.-H., Wu, H.,2008. Geology, petrology and geochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China: Implications for tectonics and genesis of ores. Journal of Asian Earth Sciences,32 (2-4):218-235
    Charlier, B., Duchesne, J.C., Vander Auwera, J.,2006. Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe-Ti ores in massif-type anorthosites. Chemical Geology,234 (3-4):264-290
    Charlier, B., Namur, O., Malpas, S., de Marneffe, C., Duchesne, J.C., Auwera, J.V., Bolle, O.,2010. Origin of the giant Allard lake ilmenite ore deposit (Canada) by fractional crystallization, multiple magma pulses and mixing. Lithos,117:119-134
    Chauvel. C., Blichert-Toft, J.,2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters,190 (3-4):137-151
    Chazey III, W.J., Neal, C.R.,2005. Platinum-group element constraints on source composition and magma evolution of the Kerguelen Plateau using basalts from ODP Leg 183. Geochimica et Cosmochimica Acta, 69 (19):4685-4701
    Chu. N.-C., Taylor, R.N., Chavagnac. V., Nesbitt. R.W., Boella, R.M., Milton, J.A., German, C.R., Bayon, G., Burton, K.,2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry,17(12):1567-1574
    Chung, S.-L., Jahn. B.-M.,1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology,23 (10):889-892
    Coffin, M.F., Eldholm, O. (Eds.),1991. Large Igneous Provinces:JOI/USSAC workshop report. The University of Texas at Austin Institute for Geophysics Technical Report:p.114
    Coffin, M.F., Eldholm, O.,1992. Volcanism and continental break-up:a global compilation of large igneous provinces. In:Storey, B.C., Alabaster, T., Pankhurst, R.J. (Eds.), Magmatism and the Causes of Continental Break-up. Geological Society of London Special Publication, vol.68:pp.17-30
    Coffin, M.F., Eldholm, O.,1993a. Scratching the surface:estimating dimensions of large igneous provinces. Geology.21 (6):515-518
    Coffin, M.F., Eldholm, O.,1993b. Large igneous provinces. Scientific American,269:42-49
    Coffin, M.F., Eldholm, O.,1994. Large igneous provinces:Crustal structure, dimensions, and external consequences. Reviews of Geophysics,32 (1):1-36
    Coffin, M.F., Eldholm, O.,1997. Large Igneous Provinces:Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union,438 pp.
    Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P.,2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry,53 (1):469-500
    Courtillot. V.. Davaille, A., Besse, J., Stock, J.,2003. Three distinct types of hotspots in the Earth's mantle. Earth and Planetary Science Letters,205 (3-4):295-308
    Cox, K.G., MacDonald, R., Hornung, G.,1967. Geochemical and petrological provinces in the Karoo basalts of southern Africa. American Mineralogist,52:1451-1474
    Crocket, J.H., MacRae, W.E.,1986. Platinum-group element distribution in komatiitic and tholeiitic volcanic rocks from Munro Township, Ontario. Economic Geology,81:1242-1251
    Crocket, J.H., Paul, D.K.,2004. Platinum-group elements in Deccan mafic rocks:a comparison of suites differentiated by Ir content. Chemical Geology,208 (1-4):273-291
    Dale, C.W., Luguet, A., Macpherson, C.G., Pearson, D.G., Hickey-Vargas, R.,2008. Extreme platinum-group element fractionation and variable Os isotope compositions in Philippine Sea Plate basalts:Tracing mantle source heterogeneity. Chemical Geology,248 (3-4):218-238
    De Paolo, D.J.,1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters,53 (2):189-202
    Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., Zhmodik, S.M.,2010. A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits. Russian Geology and Geophysics,51 (9):903-924
    Duchesne, J.C.,1999. Fe-Ti deposits in Rogaland anorthosites (South Norway):geochemical characteristics and problems of interpretation. Mineralium Deposita,34:182-198
    Eccles, D.R., Haeman, L.M., Luth, R.W., Creaser, R.A.,2004. Petrogenesis of the Late Cretaceous northern Alberta kimberlite province. Lithos,76 (1-4):435-459
    Ellam, R.M., Carlson, R.W., Shirey, S.B.,1992. Evidence from Re-Os isotopes for plume-lithosphere mixing in Karoo flood basalt genesis. Nature,359 (6397):718-721
    Ellam, R.M., Cox, K.G.,1991. An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth and Planetary Science Letters,105:330-342
    Ernst, R.E.. Buchan, K.L., Campbell. I.H.,2005. Frontiers in large igneous province research. Lithos,79 (3-4): 271-297
    Fleet, M.E., Crocket, J.H., Liu, M.-H., Stone, W.E.,1999. Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits. Lithos,47 (1-2):127-142
    Fleet, M.E., Crocket J.H., Stone, W.E.,1996. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochimica et Cosmochimica Acta,60 (13):2397-2412
    Fleet, M.E., Tronnes, R.G., Stone, W.E.,1991. Partitioning of platinum group elements in the Fe-O-S system to 11 GPa and their fractionation in the mantle and meteorites. Journal of Geophysical Research,96 (B13): 21949-21958
    Fu, B., Mernagh, T.P., Kita, N.T., Kemp, A.I.S, Valley, J.W.,2009. Distinguishing magmatic zircon from hydrothermal zircon:A case study from the Gidginbung high-sulphidation Au-Ag-(Cu) deposit, SE Australia. Chemical Geology,259 (3-4):131-142
    Gao, J., Long, L.-l., Klemd, R., Qian, Q., Liu, D.-Y., Xiong, X.-M., Su, W., Liu, W., Wang, Y.-T., Yang, F.-Q., 2009. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China:geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences,98 (6):1221-1238
    Garuti, G., Fershtater, G., Bea, F., Montero, P., Pushkarev, E.V., Zaccarini, F.,1997. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals:preliminary results. Tectonophysics,276:181-194
    Gibson, S.A., Thompson, R.N., Dickin, A.P., Leonardos, O.H.,1995. High-Ti and low-Ti mafic potassic magmas:Key to plume-lithosphere interactions and continental flood-basalt genesis. Earth and Planetary Science Letters,136 (3-4):149-165
    Gibson, S.A., Thompson, R.N., Dickin, A.P., Leonardos, O.H.,1996. Erratum to "High-Ti and low-Ti mafic potassic magmas:Key to plume-lithosphere interactions and continental flood-basalt genesis" [Earth Planet. Sci. Lett.136 (1995) 149-165]. Earth and Planetary Science Letters,141 (1-4):325-341
    Gijbels, R.H., Millard, H.T., Desborough, G.A., Bartel, A.J.,1974. Osmium, ruthenium, iridium and uranium in silicates and chromite from the eastern Bushveld Complex. South Africa. Geochimica et Cosmochimica Acta,38 (2):319-337
    Goto, A., Tatsumi, Y.,1994. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer. The Rigaku Journal,11:40-59
    Griffin. W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta,64 (1):133-147
    Griffin, W.L., Belousova, E.A., Shee. S.R., Pearson, N.J., O'Reilly, S.Y.,2004. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research. 131 (3-4):231-282
    Griffiths, R.W., Campbell, I.H.,1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters.99 (1-2):66-78
    Guo. J.-F., O'Reilly, S.Y., Griffin, W.L.,1996. Zircon inclusions in corundum megacrysts:I. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts. Geochimica et Cosmochimica Acta,60 (13):2347-2363
    Guo, Z.-J., Yin, A., Robinson, A., Jia, C.-Z.,2005. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Basin. Journal of Asian Earth Sciences,25 (1):45-56
    Haggerty, S.E.,1986. Diamond genesis in a multiply-constrained model. Nature,320:34-38
    Hanski, E.J.,1992. Petrology of the Pechenga ferropicrites and cogenetic, Ni-bearing gabbro-wehrlite intrusions. Kola Peninsula. Russia. Geological Survey of Finland Bulletin,367:192 pp.
    Hardarson. B.S., Fitton, J.G.,1991. Increased mantle melting beneath Snaefellsjokull volcano during late Pleistocene glaciation. Nature,353:62-64
    Hofmann, A.W.,1997. Mantle geochemistry:the message from oceanic volcanism. Nature,385 (6613):219-229
    Hoskin. P.W.O., Black, L.P.,2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology,18 (4):423-439
    Hoskin, P.W.O.. Ireland, T.R.,2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology,28 (7):627-630
    Hoskin. P.W.O.. Schaltegger. U..2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry.53(1):27-62
    Hu. A.-Q., Jahn. B.-M., Zhang. G.-X., Chen. Y.-B., Zhang, Q.-F.,2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang:Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics,328 (1-2):15-51
    Hurai, V., Paquette. J.L.. Huraiova. M., Konecny, P.,2010. U-Th-Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-Carpathian back-arc basin. Journal of Volcanology and Geothermal Research,198 (3-4):275-287
    Hurai, V., Simon, K., Wiechert, U., Hoefs, J., Konecny, P., Huraiova, M., Pironon, J., Lipka, J.,1998. Immiscible separation of metalliferous Fe/Ti-oxide melts from fractionating alkali basalt:P-T-fO2 conditions and two-liquid elemental partitioning. Contributions to Mineralogy and Petrology,133 (1):12-29
    Huraiova, M., Dubessy, J., Koneeny, P., Simon, K., Kral", J., Zielinski, G., Lipka, J., Hurai, V.,2005. Glassy orthopyroxene granodiorites of the Pannonian Basin:tracers of ultrahigh temperature deep-crustal anatexis triggered by Tertiary basaltic volcanism. Contributions to Mineralogy and Petrology,148 (5): 615-633
    Iizuka, Y., Bellwood, P., Hung, H.-C., Dizon, E.Z.,2005. A non-destructive mineralogical study of nephritic artifacts from Itbayat Island, Batanes, northern Philippines. Journal of Austronesian Studies,1:80-105
    Irvine, T.N.,1975. Crystallization sequences in Muskox intrusion and other layered intrusions.2. Origin of chromitite layers and similar deposits of other magmatic ores. Geochimica et Cosmochimica Acta,39: 991-1020
    Irvine, T.N.,1977. Origin of chromitite layers in Muskox intrusion and other stratiform intrusionsnew interpretation. Geology,5:273-277
    Juster, T.C., Grove, T.L., Perfit, M.R.,1989. Experimental constraints on the generation of Fe-Ti basalts, andesites, and rhyodacites at the Galapagos Spreading Centre,85°W and 95°W. Journal of Geophysical Research,94:9251-9274
    Keays, R.R.,1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos,34 (1-3):1-18
    Keays, R.R., Lightfoot, P.C.,2007. Siderophile and chalcophile metal variations in Tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas. Mineralium Deposita,42:319-336
    Keays, R.R., Lightfoot, P.C.,2010. Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits: evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Mineralium Deposita, 45 (3):241-257
    Keays, R.R., Ross, J.R., Woolrich, P.,1981. Precious metals in volcanic peridotite-associated nickel sulfide deposits in Western Australia. Ⅱ:Distribution within the ores and host rocks at Kambalda. Economic Geology,76:1645-1674
    King, S.D., Anderson, D.L.,1998. Edge-driven convection. Earth and Planetary Science Letters,160 (3-4): 289-296
    Kinnaird, J.A., Kruger, F.J., Nex, P.A.M., Cawthorn, R.G.,2002. Chromitite formation-a key to understanding processes of platinum enrichment. Transactions of the Institution of Mining and Metallurgy, 111:23-35
    Kinny, P.D., Maas, R.,2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry,53 (1):327-341
    Kiselev, A.I., Ernst, R.E., Yarmolyuk, V.V., Egorov, K.N.,2012. Radiating rifts and dyke swarms of the middle Paleozoic Yakutsk plume of eastern Siberian craton. Journal of Asian Earth Sciences,45:1-16
    Lei, R.-X., Wu, C.-Z., Chi, G.-X., Chen, G., Gu, L.-X., Jiang, Y.-H.,2012. Petrogenesis of the Palaeoproterozoic Xishankou pluton, northern Tarim block, northwest China:implications for assembly of the supercontinent Columbia. International Geology Review,54 (15):1829-1842
    Lesher, C.M., Stone, W.E.,1996. Exploration geochemistry of komatiites. In:Wyman, D. (ed), Igneous trace elements geochemistry:Applications for massive sulphide exploration. Geological Society of Canada Short Course Notes:pp.153-204
    Li, C.-S., Maier, W.D., De Waal, S.A.,2001. The role of magma mixing in the genesis of PGE mineralization in the Bushveld Complex:Thermodynamic calculations and new interpretations. Economic Geology,96 (3):653-662
    Li, C.-S., Ripley, E.M.,2009. Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: Empirical equations and example applications. Economic Geology,104 (3):405-412
    Li, C.-S., Ripley, E.M., Naldrett, A.J.,2009, A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with the Siberian flood basalts. Economic Geology,104:291-301
    Li, X.-H., Li, Z.-X., Wingate. M.T.D., Chung, S.-L., Liu, Y., Lin, G.-C., Li. W.-X.,2006. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia:Part of a Neoproterozoic mantle superplume beneath Rodinia? Precambrian Research,146 (1-2):1-15
    Li, Y.-Q., Li, Z.-L., Sun, Y.-L., Santosh, M., Langmuir, C.H., Chen, H.-L., Yang, S.-F., Chen. Z.-X., Yu, X., 2012. Platinum-group elements and geochemical characteristics of the Permian continental flood basalts in the Tarim Basin, northwest China:Implications for the evolution of the Tarim Large Igneous Province. Chemical Geology,328:278-289
    Li, Z.-L., Chen, H.-L., Song, B., Li, Y.-Q., Yang, S.-F., Yu. X.,2011. Temporal evolution of the Permian large igneous province in Tarim Basin in northwestern China. Journal of Asian Earth Sciences,42 (5):917-927
    Li, Z.-X., Bogdanova, S.-V., Collins, A.-S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu. S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V.,2008. Assembly, configuration, and break-up history of Rodinia:A synthesis. Precambrian Research,160 (1-2):179-210
    Li, Z.-X., Evans, D.A.D., Zhang, S.,2004. A 90° spin on Rodinia:possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth and Planetary Science Letters,220 (3-4):409-421
    Lightfoot, P.C., Keays, R.R.,2005. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril'sk Region:Implications for the origin of the Ni-Cu-PGE sulfide ores. Economic Geology,100 (3):439-462
    Long, X.-P., Yuan, C., Sun, M., Kroner, A., Zhao, G.-C., Wilde, S., Hu, A.Q.,2011. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas:Evidence from Neoproterozoic granitoids in the Kuluketage area, NW China. Precambrian Research,187 (1-2):1-14
    Long, X.-P., Yuan, C., Sun, M., Zhao G.-C., Xiao, W.-J., Wang, Y.-J., Yang, Y.H., Hu, A.-Q.,2010. Archean crustal evolution of the northern Tarim craton, NW China:Zircon U-Pb and Hf isotopic constraints. Precambrian Research,180 (3-4):272-284
    Lorand, J.P., Luguet, A.. Alard, O.,2008. Platinum-group elements:A new set of key tracers for the earth's interior. Elements,4 (4):247-252
    Lu, S.-N., Li, H.-K., Zhang, C.-L., Niu, G.-H.,2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research, 160 (1-2):94-107
    Marsh, J.S., Ewart, A., Milner, S.C., Duncan, A.R., Miller, R.McG.,2001. The Etendeka igneous province: magma types and their stratigraphic distribution with implications for the evolution of the Parana-Etendeka flood basalt province. Bulletin of Volcanology,62 (6-7):464-486
    Maruyama, S.,1994. Plume tectonics. Journal of Geological Society of Japan,100:24-49
    McBirney, A.R.,2008. Comments on:'Liquid immiscibility and the evolution of basaltic magma' Journal of Petrology 48,2187-2210. Journal of Petrology,49:2169-2170
    McDonough, W.F., Sun, S.-S.,1995. The composition of the Earth. Chemical Geology,120 (3-4):223-253
    McKenzie, D., O'Nions, R.K.,1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology,32 (5):1021-1091
    Mitchell, R.H.,1986. Kimberlite:Mineralogy, Geochemistry and Petrology. Plenum Press, New York:442 pp.
    Mitchell, R.H.,1991. Kimberlites and lamproites:Primary sources of diamond. Geoscience Canada,18 (1):1-16
    Momme, P., Oskarsson, N., Keays, R.R.,2003. Platinum-group elements in the Icelandic rift system:melting processes and mantle sources beneath Iceland. Chemical Geology,196 (1-4):209-234
    Momme, P., Tegner, C., Brooks, C.K., Keays, R.R.,2002. The behaviour of platinum-group elements in basalts from the East Greenland rifted margin. Contributions to Mineralogy and Petrology,143 (2):133-153
    Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z.,2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology,255 (1-2):231-235
    Morgan, W.J.,1971. Convective plumes in the lower mantle. Nature,230 (5288):42-43
    Morgan, W.J.,1972. Deep mantle convection plume and plate motions. American Association of Petroleum Geology Bulletin,56 (2):203-312
    Naldrett, A.J.,1999. World-class Ni-Cu-PGE deposits:key factors in their genesis. Mineralium Deposita,34: 227-240
    Naldrett, A.J.,2004. Magmatic Sulfide Deposits:Geology, Geochemistry and Exploration. Springer, Berlin: 728 pp.
    Naldrett, A.J.,2010. Journal of South Africa From the mantle to the bank:The life of a Ni-Cu-(PGE) sulfide deposit. South African Journal of Geology,113 (1):1-32
    Naldrett, A.J., Lightfoot, P.C., Fedorenko, V.A., Doherty, W., Gorbachev, N.S.,1992. Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implications for the origin of the Ni-Cu ores. Economic Geology,87 (4):975-1004
    Naldrett, A.J., Lightfoot, P.C., Fedorenko, V.A., Gorbachev, N.S., Doherty, W.,1992. Geology and geochemistry of intrusions and flood basalts of the Noril'sk region USSR with implications for the origin of the Ni-Cu ores. Economic Geology,87:975-1004
    Nowell, G.M, Kempton, P.D., Noble, S.R., Fitton, J.G., Saunders, A.D., Mahoney, J.J., Taylor, R.N.,1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology,149 (3-4):211-233
    Nowicki, T., Crawford, B., Dyck, D., Carlson, J., McElroy, R., Oshust, P., Helmstaedt, H.,2004. The geology of kimberlite pipes of the Ekati property, Northwest Territories, Canada. Lithos,76:1-28
    Palme, H., O'Neill, H.St.C.,2003. Cosmochemical estimates of mantle composition. In:Carlson, R.W. (Ed.), Treatise on Geochemistry:The Mantle and Core vol.2. Elsevier:pp.1-38
    Pang, K..-N., Li, C.-S., Zhou, M.-F., Ripley, E.M.,2008. Abundant Fe-Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China:evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma. Contributions to Mineralogy and Petrology,156 (3):307-321
    Pang, K.-N., Li, C.-S., Zhou, M.-F., Ripley, E.M.,2009. Mineral compositional constraints on petrogenesis and oxide ore genesis of the Panzhihua layered gabbroic intrusion, SW China. Lithos,110 (1-4):199-214
    Peach, C.L., Mathez, E.A., Keays, R.R., Reeves, S.J.,1994. Experimentally determined sulfide melt-silicate melt partition coefficients for iridium and palladium. Chemical Geology,117 (1-4):361-377
    Pearce, J.A.,2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos,100 (1-4):14-48
    Peate, D.W.,1997. The Parana-Etendeka province. In:Mahoney, J.J., Coffin, M.F. (Eds.), Large Igneous Provinces:Continental, Oceanic, and Planetary Volcanism. Geophysical Monograph Series, vol.100. American Geophysical Union:pp.217-245.
    Philpotts. A.R.,1978. Textural evidence for liquid immiscibility in tholeiites. Mineralogical Magazine.42: 417-425.
    Pirajno. F.,2013. The Geology and Tectonic Settings of China's Mineral Deposits. Springer, Dordrecht:679 pp.
    Pirajno, F., Ernst, R.E., Borisenko, A.S., Fedoseev, G., Naumov, E.A.,2009. Intraplate magmatism in Central Asia and China and associated metallogeny. Ore Geology Reviews,35 (2):114-136
    Poldervaart, A.,1956. Zircon in rocks; 2, Igneous rocks. American Journal of Science,254 (9):521-554
    Puchtel, I.S., Humayun, M.,2001. Platinum group element fractionation in a komatiitic basalt lava lake. Geochimica et Cosmochimica Acta,65 (17):2979-2993
    Qi, L., Wang C.Y., Zhou, M.-F.,2008. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan, Sichuan Province. SW China. Lithos,106 (3-4):222-236
    Qi, L., Zhou. M.-F.,2008. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province. SW China. Chemical Geology,248 (1-2):83-103
    Qin, K.-Z., Su, B.-X., Sakyi, P.A., Tang, D.-M., Li, X.-H., Sun, H., Xiao, Q.-H., Liu, P.-P.,2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China):Constraints on a ca. 280 Ma mantle plume. American Journal of Sciences,311 (3):237-260
    Qiu. Z.-L., Wu. F.-Y., Yu, Q.-Y., Xie, L.-W., Yang, S.-F.,2005. Hf isotopes of zircon megacrysts from the Cenozoic basalts in eastern China. Chinese Science Bulletin,50 (22):2602-2611
    Rao, N.V.C., Lehmann, B.,2011. Kimberlites, flood basalts and mantle plumes:New insights from the Deccan Large Igneous Province. Earth-Science Reviews,107 (3-4):315-324
    Rehkamper, M., Halliday, A.N., Fitton, J.G., Lee, D.-C., Wieneke, M., Arndt, N.T.,1999. Ir, Ru, Pt and Pd in basalts and komatiites:New constraints for the geochemical behavior of the platinum-group elements in the mantle. Geochimica et Cosmochimica Acta,63 (22):3915-3934
    Reichow. M.K., Pringle. M.S., AI'Mukhamedov. A.I., Allen, M.B., Andreichev, V.L., Buslov. M.M., Davies, C.E., Fedoseev, G.S., Fitton, J.G., Inger, S., Medvedev, A.Ya.. Mitchell, C. Puchkov, V.N., Safonova. I.Yu., Scott, R.A., Saunders, A.D.,2009. The timing and extent of the eruption of the Siberian Traps large igneous province:Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters,277 (1-2):9-20
    Reynolds, I.M.,1985. The nature and origin of titaniferous magnetite-rich layers in the upper zone of the Bushveld complex:a review and synthesis. Economic Geology,80:1089-1108
    Ripley, E.M., Lightfoot. P.C., Li, C.-S., Elswick, E.R.,2003. Sulfur isotopic studies of continental flood basalts in the Noril'sk region:Implications for the association between lavas and ore-bearing intrusions. Geochimica et Cosmochimica Acta,67(15):2805-2817
    Roeder, P.L., Emslie, R.F.,1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology,29: 275-289
    Rollinson, H.R.,1993. Using geochemical data:evaluation, presentation, interpretation. Longman Scientific and Technical, Singapore:352 pp.
    Salters, V.J.M., White, W.M.,1998. Hf isotope constraints on mantle evolution. Chemical Geology,145 (3-4): 447-460
    Santosh, M., Maruyama, S., Sato, K.,2009. Anatomy of a Cambrian suture in Gondwana:Pacific-type orogeny in southern India? Gondwana Research,16 (2):321-341
    Saunders, A.D.,2005. Large Igneous Provinces:Origin and Environmental Consequences. Elements,5(1): 259-263
    Saunders, A.D., Jones, S.M., Morgan, L.A., Pierce, K.L., Widdowson, M., Xu, Y.-G.,2007. Regional uplift associated with continental large igneous provinces:The roles of mantle plumes and the lithosphere. Chemical Geology,241 (3-4):282-318
    Saunders, A.D., Storey, M., Kent, R.W., Norry, M.J.,1992, Consequences of plume-lithosphere interactions, in Storey, B.C., et al., (eds.):Magmatism and the causes of continental break-up. Geological Society of London Special Publication,68:pp.41-60
    Sheth, H.C.,1999. Flood basalts and large igneous provinces from deep mantle plumes:fact, fiction, and fallacy. Tectonophysics,311 (1-4):1-29
    Shu, L.-S., Deng, X.-L., Zhu, W.-B., Ma, D.-S., Xiao. W.-J.,2011. Precambrian tectonic evolution of the Tarim Block, NW China:New geochronological insights from the Quruqtagh domain. Journal of Asian Earth Sciences.42 (5):774-790
    Siebel, W., Schmitt, A.K., Danisik, M., Chen, F.-K., Meier, S., Weisz, S., Eroglu, S.,2009. Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Nature Geoscience.12 (2):886-890
    Simandl, G.J., Ferbey, T., Levson, V.M., Demchuk, T.E., Mallory, S., Smith, I.R., Kjarsgaard, I.,2004. Kimberlite indicator minerals in the Fort Nellson Area, Northeastern British Columbia. Geological Fieldwork, Paper 2004:325-343
    Soderlund, U., Patchett, J.P., Vervoort, J.D., Isachsen, C.E.,2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219 (3-4):311-324
    Song, B., Qiao, X.-F.,2008. Ages of zircons from basalt of Erdaogou Formation and diabase dyke swarms in northern Liaoning. Earth Science Frontiers,15 (3):250-262
    Song, X.-Y., Keays, R.R., Xiao, L., Qi, H.-W., Ihlenfeld, C.,2009. Platinum-group element geochemistry of the continental flood basalts in the central Emeishan Large Igneous Province, SW China. Chemical Geology,262 (3-4):246-261
    Song, X.-Y., Zhou, M.-F., Keays, R.R., Cao, Z.-M., Sun, M., Qi, L.,2006. Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China:implication for sulfide segregation. Contributions to Mineralogy and Petrology,152 (1):53-74
    Song, X.-Y., Zhou, M.-F., Tao, Y., Xiao, J.-F.,2008. Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province, SW China. Chemical Geology.253 (1-2):38-49
    Stern, R.J., Ali, K.A., Liegeois, J.P., Johnson, P.R., Kozdroj, W., Kattan, F.H.,2010. Distribution and significance of pre-Neoproterozoic zircons in juvenile Neoproterozoic igneous rocks of the Arabian-Nubian Shield. American Journal of Science,310 (9):791-811
    Su, B.-X., Qin, K.-Z., Sakyi, P.A., Li, X.-H., Yang, Y.-H., Sun, H., Tang, D.-M., Liu, P.-P., Xiao, Q.-H., Malaviarachchi, S.P.K.,2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt:Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research,20 (2-3):516-531
    Sun, S.-S., McDonough, W.F.,1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London Special Publication,42:313-345
    Sun, Y.-L., Chu, Z.-Y., Sun, M., Xia, X.-P..2009. An improved Fe-Ni sulfide fire assay method for determination of Re, Platinum group elements, and Os isotopic ratios by inductively coupled plasma-and negative thermal ionization-mass spectrometry. Applied Spectroscopy,63 (11):1232-1237
    Taylor. S.R., McLennan, S.M.,1985. The continental crust:Its composition and evolution. Blackwell. Oxford: 312 pp
    Thy, P., Lesher, C.E., Nielsen, T.F.D., Brooks, C.K.,2006. Experimental constraints on the Skaergaard liquid line of descent. Lithos,92:154-180
    Tian, W., Campbell, I.H., Allen, C.M., Guan, P., Pan W.-Q., Chen, M.-M., Yu, H.-J., Zhu, W.-P.,2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology. 160 (3):407-425
    Tietz. O., Buchner, J.,2007. Abundant in-situ zircon megacrysts in Cenozoic basaltic rocks in Saxony. Germany. Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften,158 (2):201-206
    Toplis. M.J., Carroll, M.R.,1995. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. Journal of Petrology,36: 1137-1170
    Veksler, I.V., Dorfman, A.M., Borisov, A.A., Wirth, R., Dingwell, D.B..2007. Liquid immiscibility and the evolution of basaltic magma. Journal of Petrology,48 (11):2187-2210
    Wager, L.R., Brown, G.M.,1968. Layered Igneous Rock. Edinburgh:Oliver & Boyd,588 pp.
    Wang, C.Y., Zhou, M.-F., Zhao, D.,2008. Fe-Ti-Cr oxides from the Permian Xinjie mafic-ultramafic layered intrusion in the Emeishan large igneous province, SW China:crystallization from Fe-and Ti-rich basaltic magmas. Lithos,102(1-2):198-217
    Wignall, P.B.,2001. Large igneous provinces and mass extinctions. Earth-Science Reviews,53 (1-2):1-33
    Wignall, P.B.,2007. The End-Permian mass extinction-how bad did it get? Geobiology,5 (4):303-309
    Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H., Xu, P.,2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology,234 (1-2):105-126
    Xia. L.-Q., Xu. X.-Y., Li, X.-M., Ma, Z.-P., Xia, Z.-C.,2012. Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas. Geoscience Frontiers,3 (4):445-471
    Xiao, L., Xu, Y.-G., Mei, H.-J., Zheng, Y.-F., He, B., Pirajno, F.,2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province. SW China:implications for plume-lithosphere interaction. Earth and Planetary Science Letters,228 (3-4):525-546
    Xu, B., Jian, P., Zheng, H.-F., Zou, H.-B., Zhang, L.-F., Liu. D.-Y., 2005. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China:implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Research,136 (2): 107-123
    Xu, B., Xiao, S.-H., Zou, H.-B., Chen, Y., Li, Z.-X., Song, B., Liu, D.-Y., Zhou, C.-M., Yuan, X.-L.,2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Research,168 (3-4):247-258
    Xu, Y.-G., Chung, S.-L., Jahn, B.-M., Wu, G.-Y.,2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos,58 (3-4):145-168
    Xu, Y.-G., He, B., Chung, S.-L., Menzies, M.-A., Frey, F.A.,2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology,32 (10):917-920
    Xu, Y.-G., He, B., Huang, X.-L., Luo Z.-Y., Chung, S.-L. Xiao, L., Zhu, D., Shao, H., Fan, W.-M., Xu, J.-F., Wang, Y.-J.,2007. Identification of mantle plumes in the Emeishan Large Igneous Province. Episodes,30 (1):32-42
    Yang, S.-F., Li, Z.-L., Chen, H.-L., Chen, W., Yu, X.,2006b.40Ar-39Ar dating of basalts from Tarim Basin, NW China and its implication to a Permian thermal tectonic event. Journal of Zhejiang University-Science A,7 (Suppl. II):320-324
    Yang, S.-F., Li, Z.-L., Chen, H.-L., Dong, C.-W., Yu, X., Jia, C.-Z., Wei, G.-Q.,2006a. Permian large volume basalts in Tarim basin. June 2006 LIP of the Month. http://www.largeigneousprovinces.org/06jun.
    Yang, S.-F., Li, Z.-L., Chen, H.-L., Santosh, M., Dong, C.-W., Yu, X.,2007. Permian bimodal dyke of Tarim Basin, NW China:Geochemical characteristics and tectonic implications. Gondwana Research,12 (1-2): 113-120
    Ye, H.-M., Li, Z.-X., Li, X.-H., Zhang, C.-L.,2008. Age and origin of the high Ba-Sr granitoids from northern Qinghai-Tibet Plateau:implications for the early Paleozoic tectonic evolution of the Western Kunlun orogenic belt. Gondwana Research,13:126-138
    Yu, J.-C., Mo, X.-X., Yu, X.-H., Dong, G.-C., Fu, Q., Xing, F.-C.,2012. Geochemical characteristics and petrogenesis of Permian basaltic rocks in Keping area, Western Tarim basin:A record of plume-lithosphere interaction. Journal of Earth Science,23 (4):442-454
    Yu, X., Yang, S.-F., Chen, H.-L., Chen, Z.-Q., Li, Z.-L., Batt, G.E., Li, Y.-Q.,2011. Permian flood basalts from the Tarim Basin, Northwest China:SHRIMP zircon U-Pb dating and geochemical characteristics. Gondwana Research,20 (2-3):485-497
    Yuan, C., Sun, M., Zhou, M.-F., Zhou, H., Xiao, W.-J., Li, J.-L.,2002. Tectonic Evolution of the West Kunlun: Geochronologic and Geochemical Constraints from Kudi Granitoids. International Geology Review 44 (7): 653-669
    Yuan, F., Zhou, T.-F., Zhang, D.-Y., Jowitt, S.M., Keays, R.R., Liu, S., Fan, Y.,2012. Siderophile and chalcophile metal variations in basalts:Implications for the sulfide saturation history and Ni-Cu-PGE mineralization potential of the Tarim continental flood basalt province, Xinjiang Province, China. Ore Geology Reviews,45:5-15
    Zhang, C.-L., Li. H.-K., Santosh, M., Li, Z.-X., Zou, H.-B., Wang, H.-Y., Ye, H.-M.,2012b. Precambrian evolution and cratonization of the Tarim Block, NW China:Petrology, geochemistry, Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt. Journal of Asian Earth Sciences,47:5-20
    Zhang. C.-L., Li, X.-H.. Li. Z.-X., Ye, H.-M., Li, C.-N.,2008. A Permian layered intrusive complex in the Western Tarim Block, Northwestern China:Product of a ca.275-Ma mantle plume? Journal of Geology, 116 (3):269-287
    Zhang, C.-L., Xu, Y.-G., Li. Z.-X., Wang, H.-Y., Ye, H.-M.,2010a. Diverse Permian magmatism in the Tarim Block, NW China:Genetically linked to the Permian Tarim mantle plume? Lithos,119 (3-4):537-552
    Zhang, C.-L., Yang, D.-S., Wang, H.-Y., Takahashi, Y., Ye, H.-M.,2011a. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China:Two phases of mafic igneous activity with different mantle sources. Gondwana Research,19 (1):177-190
    Zhang, C.-L., Zou, H.-B., Li, H.-K., Wang, H.-Y.,2013a. Tectonic framework and evolution of the Tarim Block in NW China. Gondwana Research,23 (4):1306-1315
    Zhang, C.-L., Zou, H.-B., Wang, H.-Y., Li, H.-K., Ye, H.-M.,2012c. Multiple phases of the Neoproterozoic igneous activity in Quruqtagh of the northeastern Tarim Block. NW China:Interaction between plate subduction and mantle plume? Precambrian Research,222-223:488-502
    Zhang, D.-Y., Zhang, Z.-C., Santosh, M., Cheng, Z.-G., Huang, H., Kang, J.-L.,2013b. Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume. Earth and Planetary Science Letters,361:238-248
    Zhang, D.-Y., Zhou. T.-F., Yuan, F., Jowitt, S.M., Fan, Y., Liu, S.,2012a. Source, evolution and emplacement of Permian Tarim Basalts:Evidence from U-Pb dating, Sr-Nd-Pb-Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China. Journal of Asian Earth Sciences.49:175-190
    Zhang, M.-J., Li, C.-S., Fu, P.-E., Hu, P.-Q., Ripley, E.M.,2011b. The Permian Huangshanxi Cu-Ni deposit in western China:intrusive-extrusive association, ore genesis, and exploration implications. Mineralium Deposita,46 (2):153-170
    Zhang, Y.-T., Liu, J.-Q., Guo, Z.-F., 2010b. Permian basaltic rocks in the Tarim basin, NW China: Implications for plume-lithosphere interaction. Gondwana Research,18 (4):596-610
    Zheng, Y.-F., Xiao, W.-J., Zhao, G.-C.,2013. Introduction to tectonics of China. Gondwana Research,23 (4): 1189-1206
    Zhou, M.-F., Arndts. N.T., Malpas, J., Wang, C.Y., Kennedy, A.K.,2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province. SW China. Lithos,103 (3-4):352-368
    Zhou, M.-F., Lesher, C.M., Yang, Z.-X., Li, J.-W., Sun, M.,2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China:implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology,209 (3-4):233-257
    Zhou. M.-F., Malpas. J., Song, X.-Y., Robinson, P.T., Sun. M., Kennedy, A.K., Lesher, C.M., Keays, R.R.. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters,196 (3-4):113-122
    Zhou, M.-F., Robinson, P.T., Lesher, C.M., Keays, R.R., Zhang, C.-J., Malpas, J.,2005. Geochemistry, petrogenesis, and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of Petrology,46 (11):2253-2280
    Zhou, M.-F.. Zhao, J.-H., Jiang. C.-Y., Gao, J.-F., Wang, W., Yang, S.-H.,2009. OIB-like. heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China:Implications for a possible Permian large igneous province. Lithos,113 (3-4):583-594
    Zhu, W.-B., Zheng, B.-H., Shu, L.-S., Ma, D.-S., Wu, H.-L., Li, Y.-X., Huang, W.-T., Yu, J.-J.,2011. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: Insights from LA-ICP-MS zircon U-Pb ages and geochemical data. Precambrian Research,185 (3-4): 215-230
    Zindler, A., Hart, S.,1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences,14 (1): 493-571
    安美建,石耀霖.2006.中国大陆岩石圈厚度分布图.地学前缘,13(3):23-30
    鲍佩声,苏犁,翟庆国,肖序常.2009.新疆巴楚地区金伯利质角砾橄榄岩物质组成及合矿性研究.地质学报,83(9):1276-1301
    柴凤梅,张招崇,毛景文,董连慧,叶会寿,吴华,莫新华.2006.新疆哈密白石泉含铜镍镁铁—超镁铁质岩体铂族元素特征.地球学报,27(2):123-128
    常丽华,曹林,高福红.2009.火成岩鉴定手册.北京:地质出版社.114-121
    陈道公,支霞臣,杨海涛.2009.地球化学(第二版).合肥:中国科学技术大学出版社.464页
    陈汉林,杨树锋,董传万,贾承造,魏国齐,汪振国.1997a.塔里木盆地二叠纪基性岩带的确定及大地构造意义.地球化学,26(6):77-87
    陈汉林,杨树锋,董传万,竺国强,贾承造,魏国齐,汪振国.1997b.塔里木盆地地质热事件研究.科学通报,42(10):1096-1099
    陈汉林,杨树锋,贾承造,董传万,魏国齐.1998.塔里木盆地北部二叠纪中酸性火成岩带的厘定及其对塔北构造演化的新认识.矿物学报,18(3):370-376
    陈汉林,杨树锋,王清华,罗俊成,贾承造,魏国齐,厉子龙,何光玉,胡安平.2006.塔里木板块早—中二叠世玄武质岩浆作用的沉积响应.中国地质,33(3):545-552
    陈汉林,杨树锋,厉子龙,余星,罗俊成,何光玉,林秀斌,王清华.2009.塔里术盆地二叠纪大火成岩省发育的时空特点.新疆石油地质,30(2):179-182
    陈咪咪,田伟,张自力,潘文庆,宋宇.2010.塔里木二叠纪基性—中性—酸性岩浆岩的年代学及其地质意义.岩石学报,26(2):559-572
    成都理工学院,1996.新疆塔里木盆地演化及地球动力学研究.地矿部“八·五”重要基础项目研究报告
    董海刚,汪云华,范兴祥,李柏榆.2012.近年全球铂族金属资源及铂、钯、铑供需状况浅析.资源与产业,2:138-142
    高洪林,穆治国,靳新娣,朱和平.2001.新疆吐哈盆地南北缘石炭纪火山岩铂族元素配分及其指示意义.北京大学学报(自然科学版),37(3):385-393
    高玉山.2007.瓦吉里塔格钒钛磁铁矿地质特征及找矿建议.新疆钢铁,102:8-9
    国土资源部信息中心.2007.世界矿产资源年年评(2005-2006).北京:地质出版社.237-247
    侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10):2595-2604
    胡霭琴,张国新,陈义兵等.2006.中国新疆地壳演化主要地质事件年代学和地球化学.北京:地质出版社.427页
    贾承造.1997.中国塔里木盆地构造特征与油气.北京:石油工业出版社.438页
    姜常义,贾承造,李良辰,张蓬勃,卢登荣,白开寅.2004a.新疆麻扎尔塔格地区铁富集型高镁岩浆的源区.地质学报,78(6):770-780
    姜常义,张蓬勃,卢登蓉,白开寅,王瑶培,唐索寒,王进辉,杨淳.2004b.柯坪玄武岩的岩石学、地球化学、Nd、Sr、Pb同位素组成与岩石成因.地质论评,50(5):492-500
    姜常义,张蓬勃,卢登荣,白开寅.2004c.新疆塔里木板块西部瓦吉里塔格地区二叠纪超镁铁岩的岩 石成因与岩浆源区.岩石学报,20(6):1433-1444
    李惠民,陆松年,郑健康,海峰,赵风清,李怀坤,左义成.2001.阿尔金山东端花岗片麻岩中3.6 Ga锆石的地质意义.矿物岩石地球化学通报,4:259-262
    李献华,梁细荣,韦刚健,刘颖.2003.锆石Hf同位素组成的LAM-MC-ICPMS精确测定.地球化学,32(1):86-90
    李献华,祁昌实,刘颖,梁细荣,涂湘林,谢烈文,杨岳衡.2005.岩石样品快速H盼离与MC-ICPMS同位素分析:一个改进的单柱提取色谱方法.地球化学,34(2):109-114
    李勇,苏文,孔屏,钱一雄,张克银,张明利,陈跃,蔡习尧,尤东华.2007.塔里木盆地塔中—巴楚地区早二叠世岩浆岩的LA-ICP-MS锆石U-Pb年龄.岩石学报,23(5):1097-1107
    李长民.2009.锆石成因矿物学与锆石微区定年综述.地质调查与研究,33(3):161-174
    李昌年,路凤香,陈美华.2001.巴楚瓦吉里塔格火成杂岩体岩石学研究.新疆地质,19(1):38-42
    厉子龙,杨树锋,陈汉林,Langmuir C.H.,余星,林秀彬,励音骐.2008.塔西南玄武岩年代学和地球化学特征及其对二叠纪地幔柱岩浆演化的制约.岩石学报,24(5):959-970
    路凤香,李昌年,陈美华.2000.塔里木盆地北缘碱性岩带及稀土、宝玉石、金刚石成矿条件研究.国家305项目办公室“九·五”国家科技攻关项目研究报告.81页
    路凤香,桑龙康.2001.岩石学.北京:地质出版社.399页
    路凤香.2008.金伯利岩与金刚石.自然杂志,30(2):63-66
    罗照华,莫宣学,万渝生,李莉,魏阳.2006.青藏高原最年轻碱性玄武岩SHRIMP年龄的地质意义.岩石学报,22(3):578-584
    潘家伟,李海兵,孙知明,司家亮,裴军令,张丽军.2011.塔里木盆地古董山火山岩地球化学特征及可能的时代.中国地质,38(4):829-837
    齐秋菊,张招崇,董书云,张东阳,黄河,张舒,马乐天.2011.西南天山阿克苏地区中元古代变质岩的地球化学特征及其构造背景.岩石矿物学杂志,30(2):172-184
    邱瑞照,李延栋,周肃,邓晋福,肖庆辉,耿树方.2006.中国大陆岩石圈物质组成及演化.北京:地质出版社.288页
    上官时迈,田伟,李献华,关平,潘懋,陈咪咪,潘文庆.2011.塔北哈拉哈塘流纹岩的离子探针锆石U-Pb年代学:对塔里术溢流玄武岩主期喷发时代的约束.北京大学学报(自然科学版),47(3):561-564
    上官时迈,田伟,徐义刚,关平,潘路.2012.塔里术溢流玄武岩的喷发特征.岩石学报,28(4)1261-1272
    宋谢炎.2007.地幔柱成矿体系的基本特点——以峨眉大火成岩省为例.矿物学报,27(z1):71-73
    苏犁.1991.新疆巴楚瓦吉里塔格金伯利岩矿物中岩浆包裹体研究.中国地质科学院西安地质矿产研究所所刊,32:15-33
    孙亚莉.2007.有效实用的锍试金富集等离子体质谱测定铂族元素方法研究.矿物学报,27(z1):233-235
    唐冬梅.2009.东天山后碰撞镁铁—超镁铁岩镍铜硫化物矿床PGE地球化学与富集规律研究[博士学位论文].中国科学院研究生院,北京.193页
    王登红.1998.地幔柱及其成矿作用.北京:地震出版社.160页
    王淑玲.2001.铂族金属资源的现状及对策研究.中国地质,28(8):23-27
    王廷印,刘金坤,贾润胥.1991.塔里木成盆期及裂谷作用初探.见:贾润胥(主编),中国塔里木盆地北部油气地质研究(第二辑).北京:中国地质大学出版社.233-235
    王毅民,王晓红,高玉淑,樊兴涛.2010.中国与世界铂族元素地球化学标准物质评介.地质论评,56 (2):261-268
    王懿圣,苏犁.1990.新疆巴楚瓦吉尔塔格金伯利岩中金云母成分特征及形成条件讨论.中国地质科学院西安地质矿产研究所所刊,82:47-55
    位荀,徐义刚.2011.塔里木巴楚小海子正长岩杂岩体的岩石成因探讨.岩石学报,27(10):2984-3004
    吴福元,李献华,郑永飞,高山.2007Lu-Hf同位素体系及其岩石学应用.岩石学报,23(2):185-220
    肖序常,何国琦,徐新,李锦轶,郝杰,成守德,邓振球,李永安.2010.中国新疆地壳结构与地质演化.北京:地质出版社.317页
    新疆地质矿产局第二地质大队.1983.新疆巴楚县瓦吉里塔格矿区负磁异常查证工作报告.内部资料
    徐夕生,邱检生.2010.火成岩岩石学.北京:科学出版社.346页
    杨树锋,陈汉林,董传万,贾承造,汪振国.1996.塔里木盆地二叠纪正长岩的发现及其地球动力学意义.地球化学,25(2):121-128
    杨树锋,陈汉林,厉子龙,董传万,余星,林秀斌.2005a.塔里木盆地二叠纪火山岩特征、形成机理及其与油气关系.国家“十五”重点科技攻关课题(2004BA616A02-04-02-07)报告(内部资料).162页
    杨树锋,陈汉林,冀登武,厉子龙,董传万,贾承造,魏国齐.2005b.塔里木盆地早—中二叠世岩浆作用过程及地球动力学意义.高校地质学报,11(4):504-511
    杨树锋,厉子龙,陈汉林,肖文交,余星,林秀斌,施锡桂.2006.塔里木二叠纪石英正长斑岩岩墙的发现及其构造意义.岩石学报,22(5):1405-1412
    杨树锋,余星,陈汉林,厉子龙,王清华,罗俊成.2007.塔里木盆地巴楚小海子二叠纪超基性脉岩的地球化学特征及其成因探讨.岩石学报,23(5):1087-1096
    于峻川,莫宣学,董国臣,喻学惠,邢凤存,李勇,黄行凯.2011.塔里术北部二叠纪长英质火山岩年代学及地球化学特征.岩石学报,27(7):2184-2194
    余星.2009.塔里木早二叠世大火成岩省的岩浆演化与深部地质作用[博士学位论文].浙江大学,杭州.130页
    余星,陈汉林,杨树锋,厉子龙,王清华,林秀斌,徐岩,罗俊成.2009.塔里木盆地二叠纪玄武岩的地球化学特征及其与峨眉山大火成岩省的对比.岩石学报,25(6):1492-1498
    余星,陈汉林,杨树锋,厉子龙,王清华,李兆恒.2010.新疆柯坪二叠纪层状玄武岩的发育特征及其地质意义.地层学杂志,34(2):127-134
    张达玉,周涛发,袁峰,范裕,刘帅,杜红星.2010.塔里木柯坪地区库普库兹曼组玄武岩锆石LA-ICPMS年代学、Hf同位素特征及其意义.岩石学报,26(3):963-974
    张师本,倪寓楠,龚福华,卢辉楠,黄智斌,林焕令等.2003.塔里木盆地周缘地层考察指南.北京:石油工业出版社.280页
    赵振华.1997.微量元素地球化学原理.北京:科学出版社.238页
    郑永飞(主编).1999.化学地球动力学.北京:科学出版社.392页
    朱毅秀,金之钧,林畅松,吕修祥,解启来.2005.塔里木盆地塔中地区早二叠世岩浆岩及油气成藏关系.石油实验地质,27(1):50-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700