贵州省威宁县狮子洞铜矿床地质特征及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
峨眉山玄武岩广泛分布于川、滇、黔三省境内,而在滇黔交界地区,二叠世玄武岩组中广泛发育自然铜矿化现象。本次研究对象位于滇黔交界地区,通过野外观察,室内的岩石学、岩相学、岩石地球化学,同位素地球化学以及流体包裹体的研究探讨本矿区自然铜矿床的矿床特征、矿床成因问题。通过本次研究主要获得了一下几点认识:
     (1)本区玄武岩主要出露第二段到第四段,玄武岩中Cu含量较高,平均为287ug/g;铜矿化主要为自然铜与孔雀石矿化,热液蚀变发育,矿化主要产出在二叠世玄武岩组第三段上部与第四段中上部及与宣威组交界处,呈鸡窝状、团块状产出。
     (2)主量元素研究表明本区玄武岩为亚碱性-碱性的石英拉斑玄武岩,岩石中活动元素Rb强烈负异常,表明玄武岩形成后遭到了热液蚀变作用影响。
     (3)玄武岩铜矿石中铅同位素为:~(206)Pb/~(204)Pb为17.9652~18.885,~(207)Pb/~(204)Pb为15.497~15.658208,~(208)Pb/~(204)Pb为38.321~39.18;玄武岩中铅同位素为:~(206)Pb/~(204)Pb为18.228~19.0915,~(207)Pb/~(204)Pb为15.528~15.672,~(208)Pb/~(204)Pb为38.457~39.4112,两者铅同位素组成相似,成矿物质可能来自热液对玄武岩的淋滤。
     (4)研究玄武岩铜矿中的有机质以及矿石矿物和脉石矿物中的碳氧同位素
     13表明,矿石中的δ~(13)C_(PDB)与自然界δ~(13)C储库中生物成因的碳同位素组成相符,表明其为有机成因。进一步研究表明其可能是生物沉积后脱羟基形成,且不同矿床的碳同位素组成一致,暗示该区碳为同一来源。
     (5)研究矿石中石英和方解石中的流体包裹体特征及其氢氧同位素特征表明:该区成矿流体可能分为两个期次,第一期次主要为岩浆水混合少量大气降水,温度较高,平均为325.1℃,该期热液可能为有机质的形成提供了热源;第二期次主要为大气降水或盆地热卤水混合少量建造水,温度较低,平均为126.6℃。热液流体通过淬取玄武岩中的Cu并在构造有利部位沉淀成矿,有机质的还原作用及吸附作用对成矿流体的卸载成矿与成矿物质的运移均起到了积极的作用。
Emeishan basalt is widely distributed in Sichuan, Yunnan and Guizhou provinces,and the one located in the Yunnan-Guizhou border area of the Permian basalt group iswidely developed in the native copper. The research object is located in theYunnan-Guizhou border region, through the outside observations, the indoor petrology,petrography, geochemistry, isotope geochemistry and fluid inclusion studies we canexplore the characteristics of natural deposits of copper deposits in this mining area.Through this study we can get a few achievements like these:
     (1) Explore the relationship between the Emeishan basalt and coppermineralization in this area. The Emeishan basalt in this area just outcrop the second tothe fourth paragraph, and with a higher Cu content, the average of the Cu contentcomes to287ug/g; the ore mineralization is mainly native copper and malachitemineralization, and widely development hydrothermal alteration, the mineralizationmajorly outputs in the upper part of the fourth paragraph and the third paragraph ofthe Permian basalt group, the ore shape likes a chicken coop or a massive.
     (2) Through the major elements study we can find that the basalt in this area aremainly the sub-alkaline—alkaline quartz tholeiite, the active elements Rb in the rockshow strongly negative anomalies, this indicates that the basalts was intense affectedby the hydrothermal alteration.
     (3) The lead isotope of the ore shows like this:~(206)Pb/~(204)Pb swings in the range of17.9652~18.885,~(207)Pb/~(204)Pb swings in the range of15.497~15.658,~(208)Pb/~(204)Pbswings in the range of38.321~39.18;and the lead isotope of the basalt shows like this:~(206)Pb/~(204)Pb swings in the range of18.228~19.0915,~(207)Pb/~(204)Pb swings in the range of15.528~15.672,~(208)Pb/~(204)Pb swings in the range of38.457~39.4112. Both lead isotopiccomposition is very similar to each other, this phenomenon shows that themetallogenic material probably come from leaching that hydrothermal leaching doingto the basalt.
     (4) By studying the organic matter’s carbon and oxygen isotopes that in thebasalt copper ore minerals and the ore minerals and gangue minerals’ carbon andoxygen isotopes of the ore, we found that the constitute of13
     δCPDBin ore are similarwith the constitute of biogenic13C in the nature, this conclusion shows that the carbonin the ore is organic causes. By further studies, it shows that it maybe come from thedehydroxylation of biological deposition, and different deposits’ carbon isotopic havethe similar composition, which suggest that the carbon of this area have the same source.
     (5) By the studying of the hydrogen and oxygen isotopes in the quartz andcalcite’s fluid inclusions in the ore, we can see that there is two stages to theore-forming fluids. To the first phase, the ore-forming fluids maybe consist ofmagmatic water and few amount of atmospheric precipitation water, which with ahigher temperature and to the second phase, the ore-forming fluids maybe consist ofhot brine mixing a small amount of the construction of water, which with a lowertemperature, and this phase there should have the organic fluid join in the ore-formingfluids, too. The hydrothermal fluids dissolved Cu from the basalt and deposited the Cuelement in the right position. In this progress, the organic matter can give a restoreenvironment to the ore-forming fluids and its adsorption can give a important hand tothe deposited of the Cu element.
引文
Butler B S, Burbank W S. The copper deposits of Michigan[R]. U. S. Geological SurveyProfessional Paper,1929,144:1~238.
    Cannon W F, Green A G, Hutchinson D R, et al. The North American Midcontinent rift beneathLake Superior from GLIMPCE seismic reflection profiling[J]. Tectonics,1989,8:305~332.
    Davis D W, Green J C. Geochronology of the North American Midcontinent Rift in western LakeSuperior and implications for itsgeodynamic evolution[J]. Can. J our. Earth Science,1997,34:476~488.
    D.R. Hutchinson, R.S. white, W.F.Cannon, et al.Hot Spot:Geophysical Evidence for a1.1GaMantle Plume Beneath the Midcontinent Rift System[J]. Journal of Geophysical Research,1990,95(B7):10869~10884.
    Fong K L. Field evidences of supergene enrichment of the copper deposits of Szechuan, Sikangand Yunnan[J]. Bulletin of the Geological Society of China,1947,27:347~358.
    Guo F, Fan W M, Wang Y J, et al. When did the Emeishan mantleplume activitystart?Geochronological and geochemical evidencefrom ultramafic~mafic dykes insouthwestern China[J]. Int’l GeolRev,2004,46:226~234.
    He B, Xu Y G, Chung S L, et al. Sedimentary evidence for a rapid, kilometer scale crustal domingprior to the eruption of the Emershan flood basalts[J]. Earth Planet Sci. Lett.2003,213:391~405.
    Ho E S, Meyers P A, Mauk J L. Organic geochemical study of mineralization in the KeweenawNonesuch Formation at White Pine, Michigan[J]. Org. Geochem.,1990,16:229~234.
    HoaE S, Maukb J L. Relationship between organic matter and copper mineralization in theProterozoic Nonesuch Formation, northern Michigan[J]. Ore Geology Reviews,1996,11:71~87.
    Hutchinson D R, White W S, Cannon W F, et al. Keweenaw hot spot: Geophysical evidence for a1.1Ga mantle plume beneath the Midcontinent Rift System [J]. J. Geop h y s. Res.,1990,95:10869~10884.
    K.N. Huang, N.D. Opdyke. Magnetostratigraphic investigations on an Emeishan basalt section inwestern Guizhou province, China[J]. Earth Planet. Sci. Lett.1998,163:1~14.
    Lo C H, Chung S L, Lee T Y, et al. Age of the Emeishan flood magmatism and relations toPermian~Triassic boundary events[J]. Earth Planet. Sci. Lett.2002,198:449~458.
    Paces J B, Miller Jr J D. Precise U-Pb ages of Duluth Complex and related mafic intrusions,northeastern Minnesota: Geochrono-logical insights to physical, petrogenetic, paleomagnetic,and tectomagmatic processes associated with the1.1Ga Midcontinent Rift System[J]. J.Geophys. Res,1993,98:13997~14013.
    Theodore J. Bornhorst, James B. Paces, et al. Age of Native Copper Mineralization, KeweenawPeninsula, Michigan[J]. Economic Geology.1988,83,619~625.
    Wilband J T. The Copper resources of northern Michigan[R]. Final report under U. S. Bureau ofMines contract,1978, J0366067:1~61.
    贵州省地质矿产局.贵州省地质志[M].北京:地质出版社,1987.
    侯蜀光,徐章宝,包钢,等.云南滇东北与玄武岩有关的铜矿床含矿岩系组成与划分[J].矿床地质,2006,25(增刊):75~78.
    李厚民,毛景文,张长青,等.滇东北峨眉山玄武岩铜矿研究[M].北京:地质出版社,2009,10.
    李厚民,毛景文,张长青.滇黔交界地区玄武岩铜矿流体包裹体地球化学特征[J].地球科学与环境学报,2011,33(1):14~24.
    李厚民,毛景文,张长青,等.滇黔交界地区玄武岩铜矿有机质的组成、结构及成因[J].地球学报,2004a,78(4):519~526.
    李厚民,毛景文,张长青,等.滇黔交界地区玄武岩铜矿中有机质的生物标志物特征及其地质意义[J].地质论评,2005,51(5):539~549.
    李厚民,毛景文,张长青,等.滇黔交界地区玄武岩铜矿同位素地球化学特征[J].矿床地质,2004b,23(2):23~240.
    李厚民,毛景文,徐章宝,等.滇黔交界地区峨眉山玄武岩铜矿化蚀变特征[J].地球学报,2004c,25(5):495~502.
    李厚民,毛景文,王登红,等.滇黔交界地区峨眉山玄武岩铜矿的PGE及微量元素特征[J].矿床地质,2005a,24(3):285~291.
    李厚民,毛景文,张冠,等.滇黔交界地区玄武岩铜矿蚀变分带和有机包裹体特征及其地质意义[J].地质学报,2006,80(7):1026~1033.
    李红阳,卢记仁,侯增谦,等.峨眉地馒柱与超大型矿床[J].矿床地质,2002,21(增刊):148~151.
    李昌年.四川攀西裂谷带峨眉玄武岩的岩石学及成因研究[J].地球科学,1986,11(6):577~584.
    刘远辉,李进,邓克勇.贵州盘县地区峨眉山玄武岩铜矿的成矿地质条件[J].地质通报,2003,22(9):713~717.
    刘德汉,孙永革,徐世平,等.滇—黔地球化学边界似基维诺(Keweenaw)型铜矿中有机质与成矿条件研究[J].地质论评,2006,52(4):477~485.
    林建英.中国西南三省二叠纪玄武岩的时空分布及其地质特征[J].科学通报,1985,12:929~932.
    林建英.峨眉山玄武岩的岩石组合及其地质特征[J].中国地质科学院成都地质矿产研究所所刊.北京:地质出版社,1987,第8号.
    卢记仁.峨眉地慢柱的动力学特征[J].地球学报,1996,17(4):424~438.
    毛景文,王志良,李厚民,等.云南鲁甸地区二叠纪玄武岩中铜矿床的碳氧同位素对成矿过程的指示[J].地质论评,2003,49(6):610~615.
    钱壮志,徐翠玲,章正军,等.滇东北地区峨眉山玄武岩铜矿成矿物质来源[J].矿物岩石,2007,27(1):78~82.
    任纪舜.论中国南部的大地构造[J].地质学报,1990,64:275~288.
    宋谢炎,王玉兰,曹志敏,等.峨眉山玄武岩、峨眉地裂运动与地慢柱[J].地质地球化学,1998,l:47~52.
    宋谢炎,侯增谦,曹志敏,等.峨眉山大火成岩省的岩石地球化学特征及时限[J].地质学报,2001,75(4):498~506.
    宋谢炎,侯增谦,汪云亮,等.峨眉山玄武岩的地慢热柱成因[J].矿物岩石,2002,22(4):27~32.
    宋谢炎,侯增谦,汪云亮,等.晚古生代一早中生代扬子板块西缘的构造岩浆活动[J].地质论评,1999,45(增刊):868~871.
    王登红.地慢柱的概念、分类、演化与大规模成矿一对中国西南部的探讨[J].地学前缘,2001,8(3):67~72.
    王登红.地慢柱及其成矿作用[M].北京:地震出版社,1998.
    王登红,林文蔚,杨建民,等.试论地慢柱对于我国两大金矿集中区的控制意义[J].地球学报1999,20(2):157~162.
    王砚耕,王尚彦.峨眉山大火成岩省与玄武岩铜矿[J].贵州地质,2003,20(1):5~10.
    汪云亮,侯增谦,修淑芝,等.峨眉火成岩省地慢柱热异常初探[J].地质论评,1999,45(增刊):876~579.
    汪云亮,李巨初,周蓉生,等.岩浆岩微量元素地球化学原理及其应用—兼论峨眉山玄武岩的成因[J].成都:科技大学出版社,1993.
    汪云亮,李巨初,王旺章.微量元素丰度模式与峨眉山玄武岩的成因[J].矿物岩石,1989,4:100~105.
    许连忠.滇黔相邻地区峨眉山玄武岩地球化学特征及其成自然铜矿作用[硕士毕业论文].中国科学院研究生院,2006.
    袁锋,周涛发,张达玉,等.东天山自然铜矿化带矿石的有机质特征及其意义[J].岩石学报,2008,24(12):2701~2712.
    云南省地质矿产局.云南省区域地质志[M].北京:地质出版社,1990:1~728
    朱炳泉.大陆溢流玄武岩成矿体系与基维诺(Keweenaw)型铜矿床[J].地质地球化学,2003,31(2):1~7.
    朱炳泉,常向阳,胡耀国,等.滇—黔边境鲁甸沿河铜矿床的发现与峨眉山大火成岩省找矿新思路[J].地球科学进展,2002c,27(6):912~917.
    朱炳泉,胡耀国,张正伟,等.滇黔地球化学边界似基维诺(Keweenaw)型铜矿床的发现[J].中国科学(D辑,2002b,32(增刊)):153~917.40
    朱炳泉,戴檀漠,胡耀国,等.滇东北峨眉山玄武岩中两阶段自然铜矿化的Ar/39Ar与U~Th~Pb年龄证据[J].地球化学,2005,34(3):235~247.
    朱炳泉,张正伟,胡姐国.滇东北发现具工业价值的火山凝灰角砾岩层控型铜矿床[J].地质通报,2002a,21(7):450.
    朱炳泉,常向阳.地球化学省与地球化学边界[J].地球科学进展,2001,16(2):153~162.
    张正伟,朱炳泉,常向阳,等.黔西上二叠统玄武岩组上部发现黄铜矿化[J].矿物学报,2003,23(2):102.
    张正伟,程占东,朱炳泉,等.峨眉山玄武岩组铜矿化与层位关系研究[J].地球学报,2004,25(5):503~508.
    张正伟,朱炳泉,张乾,等.峨眉山大火山岩省成矿的阶段性[J].地球科学进展,2006(待刊).
    张景廉,朱炳泉,张平中,等.塔里木盆地北部沥青、干酪根Pb~Sr~Nd同位素体系及成因演化[J].地质科学,1998,33(3):310~317.
    张招祟,王福生,范蔚茗,等.峨眉山玄武岩研究中的一些问题的讨论[J].岩石矿物学杂志.200l,20(3):239~246.
    张招祟,王褐生,郝艳丽,等.峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束[J].地质学报,2004,78(2):171~180.
    张招崇,王福牛,郝艳丽.峨眉山大火山岩省中的苦橄岩:地俊柱活动证据[J].矿物岩石地球化学通报,2005,24(1):17~22.
    张旗,钱青,王焰,等.扬子地块西南缘晚古生代基性岩浆岩的性质与古特提斯洋的演化[J].岩石学报,1999,15(4):576~583.
    张乾,王大鹏,范良伍,等.滇—黔相邻地区峨眉山玄武岩型自然铜—辉铜矿矿床的成矿规律及成矿前景分析[J].地质与勘探,2008,44(2):8~13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700