桂林盘龙洞岩溶区土壤CO_2迁移、变化规律及岩溶效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,大气CO2浓度不断升高,温室效应加剧,使得碳循环研究成为全球关注的热点问题。其中,土壤碳库在全球碳循环中起着至关重要的作用,其变化直接影响全球的碳平衡。而占全球陆地面积12%、占中国国土面积1/3的碳酸盐岩分布区,是地球表层系统的重要组成部分。所以对岩溶区土壤CO2的迁移、变化进行研究有助于弄清岩溶地区的碳循环模式,尤其对岩溶动力系统有重要作用;另外,土壤碳通过土壤呼吸释放CO2到大气中,对大气CO2的源汇效应具有重要调节作用,这使得土壤CO2为该系统中主要的碳流通途径。因此,在揭示岩溶生态系统土壤碳循环规律和机理研究中,对典型岩溶区土壤CO2迁移、变化规律及岩溶效应的研究意义重大。
     自2009年12月至2010年12月以桂林盘龙洞岩溶实验场为例,选择岩溶洼地里的坡地灌木丛和洼地灌木丛2个样地,通过长期定时(半个月一次,连续-年多)监测土壤CO2浓度的空间分布规律和季节变化,以及土壤CO2释放速率的空间变化和日动态变化,分析表层带岩溶系统中碳的迁移、变化规律,从而揭示土壤CO2对表层岩溶作用的动力机制以及岩溶土壤CO2对大气CO2的源、汇效应。通过长期定时监测研究,研究结果如下:
     (1)无论是坡地还是洼地,春季和夏季时土壤CO2释放速率表层土大于深层土,秋季和冬季时深层土大于表层土,且坡地大于洼地;土壤CO2的释放速率具有明显的季节性变化特征,夏秋季(6-9月)土壤CO2释放速率是其它时期的1-3倍,并显示与土温、土壤含水率和生物活动密切相关。
     (2)土壤CO2的浓度具有明显的季节性变化特征,夏季最高,冬季最低,夏季(6-8月)土壤CO2的浓度是其它季节的2-3倍,并显示与气温、降水和生物活动密切相关;且深层土大于表层土,洼地高于坡地,尤其夏季时洼地比坡地高出近1000 mg/m2。
     (3)在垂直的土壤剖面上,大多数的情况下土壤CO2浓度随土壤深度的递增而升高,但在雨季时坡地(-50 cm与-80 cm处)和洼地(-80 cm与-100 cm处)的土壤CO2浓度又随深度的增加而降低,即双向变化。
     (4)石灰岩试片的溶蚀量与土壤CO2浓度呈密切正相关关系,也具有明显的季节性变化特征,春夏季溶蚀量大,秋冬季溶蚀量小;溶蚀强度随不同深度的土壤CO2浓度的变化基本是一致的,总体上CO2浓度的升高,溶蚀率增大,说明土壤CO2和土壤水的滞留时间是驱动岩溶作用的两个关键因子。
     (5)土壤总有机碳的613C值具有明显的季节性变化特征,但坡地灌木丛、洼地灌木丛和洼地灌草地三者的变化规律不一致;自地表向下,土壤613C值随土层深度的增加而逐渐偏正,且深层土的δ13C值较为稳定;优势种黄荆和檵木其各部位有机质平均δ13C值范围为-25.15O‰~-28.23‰;而土壤中有机碳的δ13C值范围为-19.00‰~-22.32‰,表明土壤的有机碳的δ13C值明显高于当地植物的有机碳的613C值。
At present, with the situation of atmospheric CO2 concentration elevating and the greenhouse effect intensifying, carbon cycle has been one of hot topics in the world. One of the soil carbon pool is an important component of the global carbon cycle, and it has directly effects on the global carbon balance. And that karst area is occupied 12% the area of all lands in the world and 1/3 land of China, karst area is an important part of the earth surface system. Therefore, studying the migration and chang regularity of the soil CO2, and karst effects in karst region can contribute to find out the carbon cycle model, and it was helpful to karst dynamic system. In addition, soil released CO2 to the atmosphere through soil respiration, and it plays an important role in of atmospheric CO2 source and absorb effect, so soil respiration was the main way in carbon flow ways. So, in order to reveal the soil carbon cycle in karst ecological system and the mechanism research, study the migration and chang regularity of the soil CO2, and karst effects in typical karst region was significant on the research of soil carbon cycle.
     Since December 2009 to December 2010, using the karst experimental site Panlong Cave in Guilin as the example and chosing two plots in the scrub brush of slope and depression in karst areas, this research had tested the spatial distribution and seasonal variation of CO2 concentration, and slao the daily variation and the changes by different spaces of soil CO2 emission had been monitored in a long time (half a month time, more than a year). Analyzing the migration and change rule of soil CO2 in Epikarst, so as to reveals the karst dynamic mechanism of soil CO2 with Epikarst karstification, and the source, absorbing effect of karst-soil CO2 with atmospheric CO2. The results showed that:
     (1) In the two plots, the soil CO2 emission rate is greater in the deep soil than that in the top soil in spring and summer, and it's opponent in autumn and winter and also the emission rate is greater in hillside than that in the karst depression; the soil CO2 emission rate had related with the soil temperature and soil water content; The soil CO2 emission rate had seasonal variation obviously, in summer(June to September), the soil CO2 concentration is one or three times than that in the other periods, and it showed a close relation with the temperature, soil moisture content and biological activities.
     (2) The soil CO2 concentration had seasonal variation obviously with a trend of highest in summer and lowest in winter, in summer (May to August), the soil CO2 concentration is two or three times than that in the other periods, and it showed a close relation with the temperature, precipitation and biological activities. And it was higher in the deep soil than that in the surface and the depressions than the slope, especially in summer the soil CO2 concentration of the depression had high nearly 1000 mg/m2 than slope.
     (3) In the vertical soil profile, the soil CO2 concentration was increasing with soil depth increases in most cases, but the CO2 concentration of slope (-50 cm and 80 cm) and depression (-80 cm and -100 cm) all were reducing with soil depth increases during the rainy season, so named it two-way change.
     (4) The rate of limestone dissolution was positively correlated with the soil CO2 concentration, and also had seasonal variation obviously for spring and summer the erosion was huge and small in autumn and winter; the trend of dissolution intensity had the soil CO2 concentration was almost uniform in different soil depths, overall when CO2 concentration increased, the dissolution rate increased, it indicated that the soil CO2 concentration and time of soil water residence was the two key factors that the driving the karstification.
     (5) Theδ13C value of soil organic carbon has obvious change in different seasons, but the change rule of slope, depression and grassland has inconsistent; From surface to downward, the soilδ13C value has more positive with the increase of soil depth, and theδ13C value of depth soil has stable; the two kind of advantage plant,both Vitex negundo and Loropetalum chinense their average 813C value of every parts have range for -25.15‰~-28.23‰; And Theδ13C value of soil organic carbon has soil organic carbon range for -19.00‰~-22.32‰, indicated that the 813C value of soil the organic carbon has obviously higher than theδ13C value of local plants.
引文
[1]Houghton J T, Meira F L G, Callander B A,et al. Climate Change 1995 [M]:The IPCC Scientific Assessment. New York:Cambridge University,1996.
    [2]袁道先,章程.岩溶动力学的理论探索与实践[J].地球学报,2008,29(3):355-365.
    [3]袁道先.中国岩溶动力系统[M].北京:地质出版社,2002:113.
    [4]袁道先,刘再华,林玉石.中国岩溶动力系统[M].北京:地质出版社,2002:275.
    [5]曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44.
    [6]Mackenzie F T, Mackenzie J A. Our Changing Planet, An Introductiong to Earth System Science and Global Environmental Change[J]. New Jersey:Prentice Hall,1995.123
    [7]高峰,孙成权,曲建升.全球变化研究的新认识-——IPCC第三次气候评价报告第一工作组概要[J].地球科学进展,2001,16(3):442-445.
    [8]刘慧,成升魁,张雷.人类经济活动影响碳排放的国际研究动态.地理科学进展[J].2002,21(5):420-429.
    [9]叶笃正,陈泮勤.中国的全球变化预研究[M].北京:地震出版社,1992.
    [10]李绚丽,谈哲敏.大气圈碳循环的模拟研究进展[J].气象科学,2000,20(3):400-412.
    [11]王绍强,陈育峰.陆地表层碳循环模型研究及其趋势[J].地理科学进展,1998,17(4):64-72.
    [12]Lal R. World soils and greenhouse effect[J]. IGBP Globle Change Newsletter, 1999,37:4-5.
    [13]William H, Schlesinger. Evidence from chronoseqnence studies for a low carbon -storage potential of soils[J]. Nature,1990,348:232-234.
    [14]Cynthia Rosenzweig, Daniel Hillel, Soils and global climate change: Challenges and opportunities[J].2000, Soil Science,165(1):47-56.
    [15]Raich J1W, Potter C1S1 Global patterns of carbon dioxide emission from soils[J]. Global Biogeochemical Cycles,1995,9(1):23-26.
    [16]袁道先.地球系统的碳循环和资源环境效应[J].第四纪研究2001,(03):225-226.
    [17]王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学D辑,1999,29(5):441-442.
    [18]李大通,罗雁.中国碳酸盐岩分布面积测量[J].中国岩溶,1983,2(2):147-150.
    [19]Yuan Daoxian. The carbon cycle in karst[J]. Zeitschrift fur Geomorphologie Neue Folge,1997,108(Suppl-Bd).
    [20]叶笃正,陈泮勤.中国的全球变化预研究[M].北京:地震出版社,1992.
    [21]Plass GN.The influence of the 15-micron carbon dioxide band on the atmospheric infrared cooling rate[J]. Quart.J.Roy.Meter.Soc.,1956,82:310-324.
    [22]李绚丽,谈哲敏.大气圈碳循环的模拟研究进展[J].气象科学,2000,20(3).400-411.
    [23]徐永福,浦一芬,赵亮.海洋碳循环模式的研究进展[J].地球科学进展,2005,20(10):1106-1115.
    [24]袁道先.岩溶动力系统和全球变化——为《水文地质工程地质》创刊40年而作[J].水文地质工程地质,1997,(04):15-16.
    [25]郑乐平,欧阳自远,张晓岚,等.黔中岩溶地区草地土壤C02的稳定碳同位素组成[J].环境科学,2000,(05):38-41.
    [26]黄耀,周广胜,吴金水.中国陆地生态系统碳收支模型[M].北京:科学出版社,2008.03.
    [27]韩士杰,董云社,蔡祖聪,等.中国陆地生态系统碳循环的生物地球化学过程[M].北京:科学出版社,2008.03.
    [28]齐玉春,董云社,耿元波,等.我国草地生态系统碳循环研究进展[J].地理科学进展,2003,(04):342-352.
    [29]张慧东,周梅,赵鹏武,等.寒温带兴安落叶松林土壤呼吸特征[J].林业科学,2008,(09):142-145.
    [30]刘再华.表层岩溶带的水温特征及其与下部包气带的对比——以桂林岩溶水文地质试验场为例[J].中国岩溶,1991,(04)
    [31]中国南方裸露型岩溶峰丛山区岩溶水系统及其数学模型的研究——以桂林丫吉村为例[M].桂林:广西师范大学出版社,1996.05.
    [32]刘再华,袁道先,何师意,等.不同岩溶动力系统的碳稳定同位素和地球化学特征及其意义——以我国几个典型岩溶地区为例[J],地质学报,1997,71(3),281.
    [33]潘根兴,曹建华,何师意,等.土壤碳作为湿润亚热带表层岩溶作用的动力机制:系统碳库及碳转移特征[J].南京农业大学学报,1999,(03)
    [34]潘根兴,曹建华,何师意,等.岩溶土壤系统对空气CO2的吸收及其对陆地系统碳汇的意义——以桂林丫吉村岩溶试验场的野外观测和模拟实验为 例[J].地学前缘,2000,(04):580-586.
    [35]潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义[J].第四纪研究,2000,(04):326-334.
    [36]郑乐平,欧阳自远,张晓岚,等.黔中岩溶地区草地土壤CO2的稳定碳同位素组成[J].环境科学,2000,(05):38.
    [37]何师意,徐胜友,张美良.岩溶土壤中CO2浓度、水化学观测及其与岩溶作用关系[J].中国岩溶,1997,16(4):319-324.
    [38]刘启明,朴河春,郭景恒,等.应用δ13C值探讨土壤中有机碳的迁移规律[J].地质地球化学,2001,(01):32.
    [39]周运超.土壤碳转移动力学及其环境意义[J].贵州科学2003,21(1-2):135-141.
    [40]T D E.Rechimiquessurla Vegetation[M].Paris:Guthier-Villar,1804.
    [41]Zak D R,Pregitzer R S,Curtis P S,et al.Elevated atmosphere CO2 and feedback between carbon and nitrogen cycles[J].Plant Soil,1993,151:105-117.
    [42]William H.schlesinger, Jeffrey A. Andrews. Soil respiration and the global carbon cycle. Biogeochemistry.2000,7-20
    [43]James W.raich, Aydin Tufekcioglu. Vegetation and soil respiration:Correlation and controls[J].Biogeochemistry.2000,71-90
    [44]H.Tian.J.M.Melillo. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems [J]. Global Ecology & Biogeography.2000.9 (4):315.
    [45]Lundegardh H.Carbon dioxide evolution and crop growth[J].Soil Science,1927,23:417-453.
    [46]李玉宁,王关玉,李伟.土壤呼吸与全球碳循环[J].地学前缘.2002.9(2):350-356.
    [47]曾艳.亚热带岩溶山区夏季土壤CO2浓度的分布状况与变化规律——以重庆金佛山自然保护区为例[D].重庆:西南师范大学,2003.
    [48]Beyer,L.Intersite characterization and variability of soil respiration in different arable and forest soils.Biology and Fertility of Soils,1991.12:122-126.
    [49]Bremer,D J.,J M.Ham,C E.Owensby,and A K.Knapp.Responses of soil respiration to clipping and grazing in a tallgrass prairie.Journal of Environmental Quality,1998.27:1539-1548.
    [50]Buyanovsky.G A,and G G. Wagner Annual cycles of carbon dioxide level in soil air.Soil Sci.Soc Am J 1983 47:1139-1145.
    [51]Carlyle J C, and U B A.Than A biotic controls of soil respiration between an eighteen-year-old Pirrrr.o rediata stand in south-eastern Australia.The Journal of Ecology,1988.76:654-662.
    [52]Collins,H P, E T.Elliott,and K.Paustian,et al.Soil carbon pools and fluxes in long-termcorn belt agro-ecosystems.Soil Biol.Biochem.2000.32:157-168.
    [53]刘强,刘家麟,刘东生.北京斋堂黄土剖面主要温室气体组分初步分析[J].地质地球化学.2000,28(2):82-86.
    [54]Conant,R T.J M.Klopates,R C.Malin,and C C.Klopatek.Carbon pools and fluxes alongan environmental gradient in northern Arizona.Biogeochemistry. 1998.43:43-61.
    [55]Coxson,D S, and D Parkinson.Winter respiratory activity in aspe woodland forest floor litter and soils Soil Biol.Biochem.1987.19:49-59.
    [56]Yamaguchi.M.W J.Flocker.and F D Howard Soil atmosphere as influenced by temperature and moisture Soil Sci Soc Am P 1967,31:164-167.
    [57]Akinremi moisture, S NI.McGinn,and H D J.McLean. Effects of soil t emperature and on soil respiration in barley and fallow plots.Can.J.Soil Sci.1999,79:5-13.
    158] Bajracharya R M, R Lai,and J M Kimble.soil as related to erosion phases in centralOhioDiurnal and seasonal CO2-C flux from Soil Sci.Soc Am.J 2000 64:286-293.
    [59]Blanke,M M Soil respiration in an apple orchard.Environmental and Experimental Botany,1996 36:339-348.
    [60]Cropper,W P,Jr-K C.Ewel,and J W.Raich.The measurement of soil CO2 evolution Insitu.Pedobiologia.1985.28:35-40
    [61]Ellert,B H, and H H.Janzen.Short term influence of tillage on CO2 fluxes from a semiaridsoil on the Canadian prairies.Soil till.Res.1999.50:21-32.
    [62]Fang,C, J.B.Alomcrie,Gholz,and K L.Clark Soil CO2 efflux and its spatial variation in a Florida slash pme pl,mtation.Plant and Soil,1998205:135-146.
    [63]Grahammer,K M D.Jawson and J.Skopp.Day and night soil respiration from a grassland SoilBiol Biochem.1999.23:77-81.
    [64]Anderson D W Decomposition of organic matter and carbon emissions from soils.p165-175.In R.Lal et al.(ed)Soil management and greenhou,a effect Advances in Soil Science CRC Press.Boca Raton FL.1995.
    [65]刘再华,袁道先,何师意,等.不同岩溶动力系统的碳稳定同位素和地球化学特征及其意义—以我国几个典型岩溶地区为例[J],地质学报,997,71(3):281.
    [66]郑乐平,欧阳白远,张晓岚,等.黔中岩溶地区草地土壤C02的稳定碳同位素组成[J].环境科学,2000,(05):38.
    [67]张美良,朱晓燕,林玉石,等.桂林盘龙洞滴水的物理化学指标变化研究及其意义[J].地球与环境,2009,37(1):2.
    [68]Anderson J P E. Soil respiration[A]. American Society of Agronoym, Crop Science Society of America and SoilScience Society of America,USA,1982:536-551.
    [69]王跃思,王迎红,等著.中国陆地和淡水湖泊与大气间碳交换观测[M].北京:科学出版社,2008.03:19.
    [70]何师意,徐胜友,张美良.岩溶土壤中CO2浓度、水化学观测及其与岩溶作用关系[J].中国岩溶,1997,16(4),320.
    [71]袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆科学技术出版社,1988.62.
    [72]张永祥,董英,陈鸿汗,等.北方半干旱区不同岩溶系统的碳循环研究[J].中国岩溶,1997,(4),296-303.
    [73]Drobnik.,Soil Respiration and the Environment [M].San Diego California,USA, Academic Press is an imprint of Elsebier,1962.
    [74]陶于祥,潘根兴,刘德辉,等.岩溶系统土壤吸释C02作用及其环境意义——以桂林丫吉村岩溶试验场为例[J].火山地质与矿产,1998.19(3):237
    [75]潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义[J],第四纪研究,2000,20(4):329.
    [76]刁一伟,郑循华,王跃思,等.开放式空气C02浓度增高条件下旱地土壤气体C02浓度廓线测定[J].应用生态学报,2002,13(10):1249-1252.
    [77]李林立,况明生,张远瞩,等.重庆金佛山岩溶区不同植被条件下土壤——植被系统C02浓度日变化[J].四川师范大学学报(自然科学版),农村生态环境,2005,21(3):67-70.
    [78]夏发生,王益权,刘军,等.娄土剖面C02释放通量的变异特征[J].2010,28(1):120.
    [79]邓艳,覃星铭,蒋忠诚,等.表层岩溶动力系统中土壤水分及岩溶效应[J].应用生态学报,2009,20(7):1586-1590.
    [80]李艳花,赵景波.西安南郊不同深度土壤CO2浓度变化研究[J].干旱区资源与环境,2006,20(2):124-128.
    [81]王静,宋林华,向昌国,等.不同植被类型覆盖下土壤CO2浓度对洞穴景观的影响[J],地理研究,2004,23(1):73.
    [82]Fritz, P M ozeto A A and Reardon E. J. Practical consideration on carbon isotope studies on soil carbon dioxide[J].Chemical Geology,1985,58:89-95.
    [83]俞锦标,李春华,赵培道,等.贵州普定县岩溶地区土壤空气中CO2含量分布及溶蚀作用的研究[J].中国岩溶,1985,4(4):325-331.
    [84]杨玉盛,董彬,谢锦升.森林土壤呼吸及其对全球变化的响应[J].生态学报,2004,24(3):583-591.
    [85]Liu Ying, Han Shi jie, LI Xuefeng. The contribution of root respirat ion of Pinuskoraiensis seedlings total soil respirat ion under elevated CO2 concentrations [J]. Journal of Forest Research,2004,15(3):187-191.
    [86]Kelting D L, Burger J A, Edwards GS. Estimating root respiration microbial respiration in the rhizosphere, and root-free soil respiration in forest soils Soil Biology&Biochemistry,1998,30(7):961-968.
    [87]李艳花,赵景波.西安南郊不同深度土壤C02浓度变化研究[J].干旱区资源与环境,2006,20(2):124-128.
    [88]何师意,徐胜友,张美良.岩溶土壤中C02浓度、水化学观测及其与岩溶作用关系[J].中国岩溶,1997,16(4):319-324.
    [89]宋焕荣,黄尚瑜.喀斯特发育过程中的化学溶解和物理破坏作用[A].喀斯特地貌与洞穴研究[C].科学出版社,1990:172-181.
    [90]Stephen Trudgill. Limestone Geomorphology[M]. Longman,1985.
    [91]潘根兴,曹建华,何师意,等.岩溶土壤系统对空气C02的吸收及其对陆地系统碳汇的意义——以桂林丫吉村岩溶实验场的野外观测和室内模拟实验为例[J].地学前缘,2000,7(4):580-587.
    [92]刘再华.桂林岩溶水文地质试验场岩溶水文地球化学的研究[J].中国岩溶,1992,11(3):209-217.
    [93]刘再华,何师意,袁道先.土壤中的C02对岩溶作用得驱动作用[J].水文地质与工程地质,1998,4:42-45.
    [94]徐胜友.碳酸岩土壤C02的动态特征及对溶蚀作用的驱动作用[J].中国岩溶,1996,15(1-2):50-56.
    [95]袁道先,章程.岩溶动力学的理论探索与实践[J].地球学报,2008,29(3):355-365.
    [96]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):469-476.
    [97]L. Zamble &D.C. Ford Limestone dissolution processes in Beke doline Aggtelek National Park, Hungary [J]. Earth surface processes and landforms. 1997,22:531-543.
    [98]Wildung R E, Garland T R,Buschbom R L. The interde-pedent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soil[J]. Soil Biol. Biochem.,1975,7:373-378.
    [99]Buyanovsky G A,W agner G H. Annual cycles of carbon dioxide level in soil air[J]. Soil Sci. Soc. Am.,1983,47:1139-1145.
    [100]陈庆强,沈承德,孙彦敏,等.鼎湖山土壤有机质深度分布的剖面演化机制[J].土壤学报,2005,42(1):1—8.
    [101]YangW ang,Amundson R, Trumbore S. A model for soil 14CO2 and its implications for using 14C to date pedogenic carbonate[J]. Geochim. Cosmochim. Acta.1994,58:393-399.
    [102]Warrick R, Gifford R, ParryM. CO2:Climate change and agriculture, in The Greenhouse Effect, Climate Change and Ecosystems, SCOPE 29, edited by B Bolin et al. New York:John Wiley,1986,393-473.
    [103]Denies F. The isotopic composition of reduced organic carbon.Handbook of Environment Isotope Geochemistry. The Terrestrial Environment, FritzA P and J ChFonteseds. Am sterdam:Elsevier,1980,329-406.
    [104]Cerling T E. The stabal isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planet Sci. Lett.,1984,71:229-240.
    [105]Marrison G M, Introne D S, Kvan Cleve. The stable iso-tope geochemistry of CaCO3 on the Tanana River flood2p lain of interion Alaska, U. S. A. Composition and mechanisms of formation[J]. Chemical Geology,1991,86: 97-110.
    [106]周莉.岩溶环境下土壤活性有机碳和土壤呼吸动态变化及影响因子[D].广西桂林:广西师范大学,2008,35-36.
    [107]Yang Wang.Ronald Amundson,and Susan Trumbore.A model for soil 14CO2 and its implications for using 14C to date pedogenic carbonate,Geochemica and Cosmochemica Acta,1994,Vol,58:393-399.
    [108]潘根兴,何师意,曹建华,等.桂林丫吉村表层带岩溶土壤系统中δ13C值得变异[J].科学通报.2001,46(22):1919-1923.
    [109]Campbell C. A., Paul E. A. and Rennic D. A. et al. Applicability of the carbon dating method of analysis to soil humus studies[J]. Soil Science,1967, 104:217-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700