城市化影响下岩溶地下水水文地球化学与同位素特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重庆的岩溶地区蕴藏着丰富的地下水资源,岩溶地下河水资源量达47.77亿m3/a。由于岩溶地区特殊的水文地质结构造成了其固有的环境脆弱性,土层薄,地表污染物质很容易通过落水洞等岩溶形态进入岩溶含水层或者地下河系统,导致严重污染。特别是随着人类活动对自然干扰的增加,居民生活、生产过程产生的废水增加,在未经处理的情况下排入河道。本研究以重庆南山老龙洞流域为例,利用水化学和C、S、Sr同位素探讨自然与人为因素对地下河系统水化学组成的影响。
     老龙洞地下河系统对外界环境变化反应敏感,主要补给为大气降水来源,其水文变化过程反映了岩溶管道系统的特征,即补给、排泄迅速,动态变化强烈。流域的大气降水主要集中于4-9月,为地下水的丰水期,在这期间,水化学离子(如Ca2+、Sr2+、SO42-、PO43-)浓度高于旱季。
     流域内大气降水的水化学类型为Ca-SO4-HCO3型,桂花湾和赵家院子表层岩溶泉的水化学类型分别为Ca-HCO3-SO4、Ca-Mg-HCO3-SO4型,而地下河水化学类型为Ca-HCO3-SO4型,反映了下三叠统嘉陵江组和中三叠统雷口坡组碳酸盐岩地层对地下水水化学特征的控制。地下河水水化学介于表层岩溶泉、雨水和污水的水化学之间,反映了各种补给来源的影响。表层岩溶泉与地下河水的污染来源存在明显区别,表层岩溶泉的NO3-离子明显高丁地下河和地表污水,而其它离子浓度一般是地下河水和污水高于表层岩溶泉。岩溶地下水化学特征的形成受到地质作用、大气降水和士地利用方式等的综合影响。污水的水化学类型为Ca-Na-HCO3型,反映了人类活动影响下地表水的水化学特征。
     通过对一场降雨的监测,提取了对水质累积贡献大于86%的4个主成分,分别代表地质岩性背景、城市污水、水土流失和硝化作用。第一主成分主要包括是Ec、Ca2+、Mg2+、HCO3-,反映了碳酸盐岩(灰岩、白云岩)溶蚀对地下河水质的贡献,这与研究区中下三叠系地层中的碳酸盐岩地层中灰岩、白云岩含量较高有关。第二主成分与K+和PO43-密切相关,反映城市污水排放的贡献。第三主成分与全Fe、全Mn、Al3-和流量正相关,反映了降雨造成的地下河流域内地表的水土流失状况。第四主成分与NO3-显著正相关,归结为硝化作用的影响。
     降雨条件下,重庆南山老龙洞流域岩溶地下水中DIC浓度平均值低于旱季。平均DIC浓度:污水(467.8mg/L)>赵家院子岩溶泉(346.6mg/L)>地下河水(306.5mg/L)>桂花湾表层岩溶泉(292.5mg/L)。碳同位素最高值出现在春夏季,与其它地区观测到的夏季旺盛的生物活动影响下的同位素值偏轻的现象相反。岩溶地下水中δ13CDIC与DIC浓度没有明显关系,表明其来源复杂并受到多种因素控制。
     水化学计量关系证明硝酸和硫酸参与了溶蚀碳酸盐岩,并且使得地下水中δ13CDIC偏正。桂花湾泉和赵家院子泉的δ13CDIC均值分别为-12.2‰和-12.4‰。地下河C同位素的变化范围为-13.3‰~4.8‰,均值为-9.8‰。污水的δ13CDIC值最高,平均值为-9.6%。老龙洞的δ13CDIC值月变化特征与S1基本一致。由于其DIC来源不同,两个表层岩溶泉的碳同位素值明显低下地下河和污水。
     地下河中Sr2+浓度和87Sr/86Sr比值分析表明地下河中Sr2+主要来自于碳酸盐岩溶蚀,而人类活动产生的Sr同位素比值跟碳酸盐岩溶蚀的Sr同位素比值也接近。通过对87Sr/86Sr和PO43-相互关系的进行分析,发现人类活动,特别是城市污水排放和农业化肥的施用会使得87Sr/86Sr升高。但是具体的机理还有有待进一步研究。
     δ34S特征表明岩溶地下水中的SO42-具有多种来源。大气降水属于硫酸型酸雨,SO42-含量较高。地下河中SO42-明显受到降水和人类活动的影响。
Karst region abounds in groundwater, providing a large amount of4.77billion m3/a water resources for local people. Due to the fragile hydrogeologic structure of karst, it leads to intrinsic vulnerability of environment with a lack of protective soil which can prevent contaminants derived from surface activities entering the karst aquifers and subterranean stream. Especially, in a case of urbanization, the increasing waste gas and waste water discharged from the residential areas are pouring into the groundwater system to contaminate the system. In this study, a case from the Laolongdong Subterranean stream system in Chonging, China, was chose, targeting the effects of groundwater from natural and anthropogenic factors based on hydrochemistry and C、S、Sr isotopes in the process of urbanization.
     The Laolongdong subterranean system responds quickly to outside environmental changes. The variations of hydrological processes showed characteristics of karst conduits that both the recharge and discharge were strongly dynamic. Precipitation is the main recharge of karst groundwater. The rainfall in study area always appears in April to September. In this period of time, the discharge of groundwater is much larger than the opposing seasons and concentrations of Ca2+、Sr2+, SO42-、PO43-also showed the similar trends to the discharge.
     The hydrochemistry of precipitation is Ca-SO4-HCO3, two springs showed a type of Ca-HCO3-SO4and Ca-Mg-HCO3-SO4respectively, whereas the subterranean stream presented a type of Ca-HCO3-SO4, which reflects the dominance of carbonate rocks. The hydrochemistry of Laolongdong subterranean stream stays in the midst of three end-members, namely, epikarst springs, rainwater and sewage water, which suggest contributions of multiple recharges. Thus, the formation of karst groundwater is affected by geological processes, precipitation and changes of land use. Domestic water showed a type of Ca-Na-HCO3.
     Four principal components which amount to86%of accumulated contribution were extracted to represent geological or lithologic backgrounds, domestic sewage water, soil erosion and nitrification, separately. The first component, related to Ec, Ca2+, Mg2+, HCO3-, illustrates contributions from the dissolution of carbonate rocks. The second component, related to K+and PO43-, showed contributions from discharge of domestic sewage water. The third component is highly connected to total Fe, total Mn, Al3+and discharge, which demonstrates the soil erosion attacked by precipitation. The fourth one was only correlated to NO3-, showing contribution from nitrification process.
     Attributed to the dilution processes of raining, DIC concentrations of groundwater were lower in high-flow season than in low-flow season, specificly, domestic sewage water (467.8mg/L)> Zhaojiayuanzi Spring (346.6mg/L)> Laolongdong subterranean stream (306.5mg/L)> Guihuawan Spring (292.5mg/L). The highest carbon isotopes took place in the spring and summer, which was different from previous reports that carbon isotopes tend to be light in summers because of the influence of the active biological processes in soils. There was no significant relationship between δ13CDiC and DIC, indicating they were originated from multiple sources and controlled by different factors.
     It was proved that nitric acid and sulfuric acid took part in dissolving carbonate rocks, which leads to heavy carbon isotopes. The range of carbon isotopes in subterraneam stream was from-13.3‰to-4.8‰with an average value of-9.8‰. While in the two springs, the average values of carbon isotopes were-12.2‰and-12.4‰, respectively, much lighter than the subterranean stream.
     Sr is mainly originated from the dissolution of carbonate rocks based on analysis of Sr2+concentration and87Sr/86Sr ratios. However, anthropogenic-originated Sr had similar rang of87Sr/86Sr ratios, which may elevate87Sr/86Sr ratios in groundwater. Even though we observed that elevated87Sr/86Sr ratios could be attributed to some anthropogenic activities, some further evidences should be introduced to support this.
     Features of δ34S showed that there were many sources to contribute to concentrations of SO42-Especially, local precipitation was acid with high concentration of SO42-and a sulphur-bearing seam of coal as well as anthropogenic activities, such as fertilizing, could make contributions to SO42-of karst groundwater.
引文
[1]芮孝芳.水文学原理[M].北京:中国水利水电出版社,2004.
    [2]Ford, D.C., Williams, P.W. Karst Hydrogeology and Geomorphology[M]. Chichester:John Wiley & Sons,2007.
    [3]袁道先.岩溶作用对环境变化的敏感性及其记录[J].科学通报,1995(13):1210-1213.
    [4]杨立铮.中国南方地下河分布特征[J].中国岩溶,1985,1(1):92-100.
    [5]袁道先.对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见[J].中国岩溶,2000(02):2-7.
    [6]朱永琴,彭先孚.重庆市岩溶地下水的开发与利用[J].中国岩溶,2000(02):46-50.
    [7]蒲俊兵.重庆市地下河发育、分布的控制机制及水文地球化学区域特征研究[D].重庆:西南大学,2011,p.2.
    [8]袁道先.论岩溶环境系统[J].中国岩溶,1988(03):9-16.
    [9]袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988,p.112-132.
    [10]Sasowsky, I.D., Wicks, C.M. Groundwater flow and contaminant transport in carbonate aquifers[M]:A. A. Balkema,2000.
    [11]袁道先.论岩溶水的不均匀性[A].in岩溶地区水文地质及工程地质工作经验汇编[C].地质出版社,1978,p.1-19.
    [12]Green, R., Painter, S., Sun, A., et al. Groundwater contamination in karst terranes[J]. Water, Air, & Soil Pollution:Focus,2006,6(1):157-170.
    [13]Jiang, Y., Yan, J. Effects of land use on hydrochemistry and contamination of karst groundwater from Nandong Underground River System, China[J]. Water, Air, & Soil Pollution,2010,210(1): 123-141.
    [14]Klimas, A.A., Impacts of urbanisation and Protection Of Water Resources In The Vilnius District, Lithuania, in Hydrogeology Journal Springer Berlin/Heidelberg.1995,24-35.
    [15]Kazemi, G.A. Impacts of urbanization on the groundwater resources in Shahrood, northeastern Iran:comparison with other Iranian and Asian cities[J]. Physics and Chemistry of the Earth, Parts A/B/C,2011,36(5-6):150-159.
    [16]杨士弘,廖重斌.城市生态环境学(第二版)[M].北京:地质出版社,2003,p.21.
    [17]肖桂义.城市环境地球化学研究现状、问题和对策[D].吉林大学,2005,p.15.
    [18]Kirchner, J.W., Feng, X., Neal, C. Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations[J]. Journal of Hydrology,2001,254(1-4): 82-101.
    [19]玛·斯维婷,包浩生.从世界展望中国喀斯特研究[J].中国岩溶,1990(04):57-67.
    [20]中国地下水科学战略研究小组.中国地下水科学的机遇与挑战[M].北京:科学出版社,2009,p.64-65.
    [21]Berkowitz, B., Cortis, A., Dentz, M., et al. Modeling non-Fickian transport in geological formations as a continuous time random walk[J]. Reviews of Geophysics,2006,44(2):1-49.
    [22]陈余道,朱学愚,朱学顺等.岩溶裂隙含水层中石油类污染物的迁移与水力截获[J].环境科学学报,2000(04):406-409.
    [23]Goldscheider, N., Meiman, J., Pronk, M., et al. Tracer tests in karst hydrogeology and speleology[J]. International Journal of speleology,2008,37(1):27-40.
    [24]袁道先,朱德浩,翁金桃.中国岩溶学[M].北京:地质出版社,1994,p.207.
    [25]袁道先,章程.岩溶动力学的理论探索与实践[J].地球学报,2008(03):355-365.
    [26]蒋忠诚.岩溶动力系统中的元素迁移[J].地理学报,1999(05):438-444.
    [27]White, W.B. Geomorphology and hydrology of karst terrains[M]:Oxford University Press, 1988.
    [28]White, W.B. Karst hydrology:recent developments and open questions[J]. Engineering Geology, 2002,65(2-3):85-105.
    [29]刘再华,GROVES, C.,袁道先等.水-岩-气相互作用引起的水化学动态变化研究——以桂林岩溶试验场为例[J].水文地质工程地质,2003(04):13-18.
    [30]章程,曹建华.不同植被条件下表层岩溶泉动态变化特征对比研究——以广西马山县弄拉兰电堂泉和东旺泉为例[J].中国岩溶,2003(01):1-5.
    [31]李林立,况明生,张远瞩等.典型表层岩溶泉水短时间尺度动态变化规律[J].水科学进展,2006(02):222-226.
    [32]贾亚男,刁承泰,袁道先.土地利用对埋藏型岩溶区岩溶水质的影响——以涪陵丛林岩溶槽谷区为例[J].自然资源学报,2004(04):455-461.
    [33]郭芳,姜光辉,夏青等.土地利用影响下的岩溶地下水水化学变化特征[J].中国岩溶,2007(03):212-218.
    [34]Gutierrez, M., Neill, H., Grand, R.V. Metals in sediments of springs and cave streams as environmental indicators in karst areas[J]. Environmental Geology,2004,46(8):1079-1085.
    [35]扈志勇,杨平恒,杨梅等.川东槽谷区岩溶泉水物理化学动态特征及其环境效应研究——以重庆青木关岩溶槽谷姜家泉为例[J].现代地质,2009(06):1167-1173.
    [36]姚长宏,杨桂芳,蒋忠诚等.贵州水城盆地人类活动及其地质环境效应[J].城市环境与城市生态,2002(05):1-3.
    [37]Calo, F., Parise, M. Waste management and problems of groundwater pollution in karst environments in the context of a post-conflict scenario:The case of Mostar (Bosnia Herzegovina)[J]. Habitat International,2009,33(1):63-72.
    [38]Reed, T.M., Todd McFarland, J., Fryar, A.E., et al. Sediment discharges during storm flow from proximal urban and rural karst springs, central Kentucky, USA[J]. Journal of Hydrology,2010, 383(3-4):280-290.
    [39]王焰新,高旭波.人类活动影响下娘子关岩溶水系统地球化学演化[J].中国岩溶,2009(02):103-112.
    [40]袁道先.岩溶与全球变化研究[J].地球科学进展,1995(05):471-474.
    [41]Dogramaci, S.S., Herczeg, A.L., Schiff, S.L., et al. Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes[J]. Applied Geochemistry,2001,16(4):475-488.
    [42]Einsiedl, F., Maloszewski, P., Stichler, W. Multiple isotope approach to the determination of the natural attenuation potential of a high-alpine karst system[J]. Journal of Hydrology,2009, 365(1-2):113-121.
    [43]Liu, C., Lang, Y., Satake, H. Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of guiyang, SW China:combined 37C1 and 34S approach[J]. Environmental Science&Technology,2008,42(15):5421-5427.
    [44]Jiang, Y. Strontium isotope geochemistry of groundwater affected by human activities in Nandong underground river system, China[J]. Applied Geochemistry,2011,26(3):371-379.
    [45]Vitoria, L., Soler, A., Canals, A. Environmentalisotopes (N、S、C、O、D) to determine natural attenuation processes in nitrate contaminated waters:example of Osona (NE Spain)[J]. Applied Geochemistry,2008,23:3597-3611.
    [46]Widory, D., Kloppmann, W., Chery, L., et al. Nitrate in groundwater:an isotopic multi-tracer approach[J]. Journal of Contaminant Hydrology,2004,72(1-4):165-188.
    [47]Soler, A., Canals, A., Goldstein, S.L., et al. Sulfur and Strontium Isotope Composition of the Llobregat River (Ne Spain):Tracers of Natural and Anthropogenic Chemicals in Stream Waters[J]. Water, Air, & Soil Pollution,2002,136(1):207-224.
    [48]Vengosh, A., Gill, J., Lee Davisson, M., et al. A multi-isotope (B, Sr, O, H, and C) and age dating (3H,3He and 14C) study of groundwater from Salinas Valley, California:Hydrochemistry, dynamics, and contamination processes[J]. Water Resources Research,2002,38(1):1008.
    [49]Hosono, T., Delinom, R., Nakano, T., et al. Evolution model of δ34S and δ18O in dissolved sulfate in volcanic fan aquifers from recharge to coastal zone and through the Jakarta urban area, Indonesia[J]. Science of The Total Environment,2011,409(13):2541-2554.
    [50]Hosono, T., Ikawa, R., Shimada, J., et al. Human impacts on groundwater flow and contamination deduced by multiple isotopes in Seoul City, South Korea[J]. Science of the Total Environent,2009,407(9):3189-3197.
    [51]Hosono, T., Siringan, F., Yamanaka, T., et al. Application of multi-isotope ratios to study the source and quality of urban groundwater in Metro Manila, Philippines[J]. Applied Geochemistry,2010,25(6):900-909.
    [52]Li, X.D., Liu, C.Q., Harue, M., et al. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality:A case study of the Shuicheng Basin, SW China[J]. Applied Geochemistry,2010,25(12): 1924-1936.
    [53]Bretzler, A., Osenbruck, K., Gloaguen, R., et al. Groundwater origin and flow dynamics in active rift systems-A multi-isotope approach in the Main Ethiopian Rift[J]. Journal of Hydrology,2011,402(3-4):274-289.
    [54]Fritz, P., Fontes, J.C., Frape, S.K., et al. The isotope geochemistry of carbon in groundwater at Stripa[J]. Geochimica et Cosmochimica Acta,1989,53(8):1765-1775.
    [55]Fang, J., Barcelona, M.J., Krishnamurthy, R.V., et al. Stable carbon isotope biogeochemistry of a shallow sand aquifer contaminated with fuel hydrocarbons [J]. Applied Geochemistry,2000, 15(2):157-169.
    [56]Lee, E.S., Krothe, N.C. A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers[J]. Chemical Geology,2001,179(1-4):129-143.
    [57]Li, S.-L., Liu, C.-Q., Lang, Y.-C, et al. Stable Carbon Isotope Biogeochemistry and Anthropogenic Impacts on Karst Ground Water, Zunyi, Southwest China[J]. Aquatic Geochemistry,2008,14(3):211-221.
    [58]Carles, A.G., Kossert, K. Measurement of the shape-factor functions of the long-lived radionuclides 87Rb,40K and 10Be[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2007,572(2): 760-767.
    [59]Gunn, J., Bottrell, S.H., Lowe, D.J., et al. Deep groundwater flow and geochemical processes in limestone aquifers:evidence from thermal waters in Derbyshire, England, UK[J]. Hydrogeology Journal,2006,14(6):868-881.
    [60]Brenot, A., Baran, N., Petelet-Giraud, E., et al. Interaction between different water bodies in a small catchment in the Paris basin (Brevilles, France):Tracing of multiple Sr sources through Sr isotopes coupled with Mg/Sr and Ca/Sr ratios[J]. Applied Geochemistry,2008,23(1):58-75.
    [61]Bullen, T.D., Krabbenhoft, D.P., Kendall, C. Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA[J]. Geochimica et Cosmochimica Acta,1996,60(10):1807-1821.
    [62]Vilomet, J.D., Angeletti, B., Moustier, S., et al. Application of Strontium Isotopes for Tracing Landfill Leachate Plumes in Groundwater[J]. Environmental Science & Technology,2001, 35(23):4675-4679.
    [63]Petelet-Giraud, E., Klaver, G., Negrel, P. Natural versus anthropogenic sources in the surface-and groundwater dissolved load of the Dommel river (Meuse basin):Constraints by boron and strontium isotopes and gadolinium anomaly[J]. Journal of Hydrology,2009,369(3-4):336-349.
    [64]王恒纯.同位素水文地质学[M].北京:地质出版社,1991,p.191.
    [65]Szynkiewicz, A., Witcher, J.C., Modelska, M., et al. Anthropogenic sulfate loads in the Rio Grande, New Mexico (USA)[J]. Chemical Geology,2011,283(3-4):194-209.
    [66]Querol, X., Alastuey, A., Chaves, A., et al. Sources of natural and anthropogenic sulphur around the Teruel power station, NE Spain. Inferences from sulphur isotope geochemistry[J]. Atmospheric Environment,2000,34(2):333-345.
    [67]Ingri, J., Torssander, P., Andersson, P.S., et al. Hydrogeochemistry of sulfur isotopes in the Kalix River catchment, northern Sweden[J]. Applied Geochemistry,1997,12(4):483-496.
    [68]Das, A., Pawar, N.J., Veizer, J. Sources of sulfur in Deccan Trap rivers:A reconnaissance isotope study[J]. Applied Geochemistry,2011,26(3):301-307.
    [69]Cortecci, G., Dinelli, E., Bencini, A., et al. Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy:a chemical and isotopic reconnaissance[J]. Applied Geochemistry 2002,17(2):79-92.
    [70]郎赞超,刘丛强,H.,S.等.贵阳地表水—地下水的硫和氯同位素组成特征及其污染物示踪意义[J].地球科学进展,2008(02):151-159.
    [71]杨梅,扈志勇,蒲俊兵等.重庆典型岩溶区地下河水体PAEs分布特征研究[J].中国环境监测,2009(06):62-66.
    [72]杨梅,张俊鹏,蒲俊兵等.重庆典型岩溶区地下河水体有机氯农药污染初步研究[J].中国岩溶,2009(02):144-148.
    [73]赵玉国.基于GIS的岩溶地区地下水脆弱性评价[D].西南大学,2011,p.20.
    [74]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [75]李坡.喀斯特地区的土地资源特性[J].贵州师范大学学报(自然科学版),1990(02):35-37.
    [76]蒋忠诚,王瑞江,裴建国等.我国南方表层岩溶带及其对岩溶水的调蓄功能[J].中国岩溶,2001(02):24-28.
    [77]袁道先,戴爱德,蔡五田.中国南方裸露型岩溶峰丛山区岩溶水系统及其数学模型研究[M].广西:广西师范大学出版社,1996,p.88-118.
    [78]杨平恒.重庆青木关地下河系统的水文地球化学特征及悬浮颗粒物运移规律[D].西南大学,2010,p.29.
    [79]邹成杰.岩溶地区地下水位动态分析[J].中国岩溶,1995(03):261-269.
    [80]沈照理,朱宛华.水文地球化学基础[M].北京:地质出版社,1999,p.189.
    [81]巴金,汤洁,王淑凤等.重庆地区近10年酸雨时空分布和季节变化特征分析[J].气象,2008(09):81-88.
    [82]张兴波,蒋勇军,邱述兰等.农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例[J].地球科学进展,2012,27(4):93-102.
    [83]刘再华,李强,汪进良等.桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解译[J].中国岩溶,2004(03):3-10.
    [84]Brown, V.A., McDonnell, J J., Burns, D.A., et al. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow[J]. Journal of Hydrology,1999,217(3-4): 171-190.
    [85]Jalali, M. Major ion chemistry of groundwaters in the Bahar area, Hamadan, western Iran[J]. Environmental Geology,2005(6).
    [86]邢光熹,曹亚澄,施书莲等.太湖地区水体氮的污染源和反硝化[J].中国科学(B辑化学),2001(02):130-137.
    [87]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997(02):61-69.
    [88]Vesper, D.J., White, W.B. Metal transport to karst springs during storm flow:an example from Fort Campbell, Kentucky/Tennessee, USA[J]. Journal of Hydrology,2003,276(1-4):20-36.
    [89]Pronk, M., Goldscheider, N., Zopfi, J. Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system[J]. Hydrogeology Journal,2006,14(4):473-484.
    [90]杨平恒,袁道先,袁文昊等.以PCA揭示降雨期间岩溶地下水文地球化学的形成[J].科学通报,2010(09):788-797.
    [91]Mahler, B.J., Valdes, D., Musgrove, M., et al. Nutrient dynamics as indicators of karst processes: Comparison of the Chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, U.S.A.)[J]. Journal of Contaminant Hydrology,2008,98(1-2):36-49.
    [92]袁道先.地球系统的碳循环和资源环境效应[J].第四纪研究,2001(03):223-232.
    [93]Macpherson, G., Roberts, J., Blair, J., et al. Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA[J]. Geochimica et Cosmochimica Acta,2008,72(23): 5581-5599.
    [94]袁道先.现代岩溶学和全球变化研究[J].地学前缘,1997(Z1):21-29.
    [95]Liu, Z., Dreybrodt, W., Wang, H. A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews,2010, 99(3-4):162-172.
    [96]Aucour, A.-M., Sheppard, S.M.F., Guyomar, O., et al. Use of 13C to trace origin and cycling of inorganic carbon in the Rhone river system[J]. Chemical Geology,1999,159:87-105.
    [97]Stumm, W., Morgan, J.J. Aquatic Chemistry:Chemical Equilibria and Rates in Natural Waters[M]. Environmental Science and Technology, ed. e.3rd:Wiley,1995.
    [98]Clark, I.D., Fritz, P. Environmental Isotopes in Hydrogeology[M]:CRC Press/Lewis Publishers, 1997.
    [99]Palmer, S., Hope, D., Billett, M., et al. Sources of organic and inorganic carbon in a headwater stream:Evidence from carbon isotope studies[J]. Biogeochemistry,2001,52(3):321-338.
    [100]Cerling, T.E., Solomon, D.K., Quade, J., et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta,1991,55(11):3403-3405.
    [101]Zhang, J., Quay, P.D., Wilbur, D.O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta,1995,59(1):107-114.
    [102]Deines, P., Langmuir, D., Harmon, R.S. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters[J]. Geochimica et Cosmochimica Acta,1974, 38(7):1147-1164.
    [103]汪智军.青木关岩溶流域水—土系统碳氮同位素特征研究[D].西南大学,2011,p.54.
    [104]Li, S.-L., Liu, C.-Q., Li, J., et al. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China:Isotopic and chemical constraints[J]. Chemical Geology,2010,277(3-4):301-309.
    [105]Semhi, K., Amiotte Suchet, P., Clauer, N., et al. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin[J]. Applied Geochemistry,2000,15(6):865-878.
    [106]Perrin, A., Probst, A., Probst, J. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments:Implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et CosmochimicaActa,2008,72(13):3105-3123.
    [107]Barnes, R.T., Raymond, P.A. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds[J]. Chemical Geology,2009,266(3-4):318-327.
    [108]Spence, J., Telmer, K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions,δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera[J]. Geochimica et Cosmochimica Acta,2005,69(23):5441-5458.
    [109]Karim, A., Veizer, J. Weathering processes in the Indus River Basin:implications from riverine carbon, sulfur, oxygen, and strontium isotopes[J]. Chemical Geology,2000,170(1-4):153-177.
    [110]Cartwright, I. The origins and behaviour of carbon in a major semi-arid river, the Murray River, Australia, as constrained by carbon isotopes and hydrochemistry[J]. Applied Geochemistry, 2010,25(11):1734-1745.
    [111]Yuan, F., Mayer, B. Chemical and isotopic evaluation of sulfur sources and cycling in the Pecos River, New Mexico, USA[J]. Chemical Geology,2012,291:13-22.
    [112]Bottrell, S., Tellam, J., Bartlett, R., et al. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK[J]. Applied Geochemistry,2008,23(8):2382-2394.
    [113]林耀庭.四川盆地三叠纪海相沉积石膏和卤水的硫同位素研究[J].盐湖研究,2003,11(2):7.
    [114]蒋颖魁,刘丛强,陶发祥.贵州乌江水系枯水期河水硫同位素组成研究[J].地球化学,2006,35(6):6.
    [115]洪业汤,张鸿斌,朱泳煊等.中国煤的硫同位素组成特征及燃煤过程硫同位素分馏[J].中国科学(B辑化学生命科学地学),1992(08):868-873.
    [116]洪业汤,张鸿斌,朱泳煊等.中国大气降水的硫同位素组成特征[J].自然科学进展,1994(06):103-107.
    [117]Vitoria, L., Otero, N., Soler, A., et al. Fertilizer Characterization:Isotopic Data (N, S, O, C, and Sr)[J]. Environmental Science & Technology,2004,38(12):3254-3262.
    [118]Li, X.D., Masuda, H., Kusakabe, M., et al. Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan Basin.pdf[J]. Geochemical Journal,2006,40:309-332.
    [119]Katz, B.G., Bullen, T.D. The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst[J]. Geochimica et CosmochimicaActa,1996,60(24):5075-5087.
    [120]Singleton, M.J., Maher, K., DePaolo, D.J., et al. Dissolution rates and vadose zone drainage from strontium isotope measurements of groundwater in the Pasco Basin, WA unconfined aquifer[J]. Journal of Hydrology,2006,321(1-4):39-58.
    [121]Siegel, D.I., Bickford, M.E., Orrell, S.E. The use of strontium and lead isotopes to identify sources of water beneath the Fresh Kills landfill, Staten Island, New York, USA[J]. Applied Geochemistry,2000,15(4):493-500.
    [122]Shand, P., Darbyshire, D.P.F., Love, A.J., et al. Sr isotopes in natural waters:Applications to source characterisation and water-rock interaction in contrasting landscapes[J]. Applied Geochemistry,2009,24(4):574-586.
    [123]Hu, Z.W., S.J, H., Qing, H.R., et al. Evolution and global correlation for strontium isotopic composition of marine Triassic from Huaying Mountains, eastern Sichuan, China[J]. Sci. China Ser. D:Earth Sci.,2008,51:540-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700