高应力高突区域煤巷快速掘进灾害防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首山一矿首采面处于高应力高突区域,因其具有采深大、地应力高、瓦斯含量高、煤与瓦斯突出危险性大等特点,导致煤巷掘进速度极其缓慢,严重影响矿井采掘正常接替和安全生产,探索一种适用于该区域煤巷快速掘进灾害防治的有效工艺技术迫在眉睫。本课题采用理论分析、数值模拟、实验室实验以及现场工业性试验相结合的方法,对高应力高突区域煤巷快速掘进灾害防治技术进行了全面深入地研究。
     本课题主要研究内容如下:
     1.基于岩石物理力学性质试验研究,采用Hoek-Brown强度准则及W. Dershowits经验方法,对回采巷道岩体力学性质进行了研究;基于地质力学理论,对回采巷道围岩变形特征进行了分析。
     2.以锚杆支护围岩强度强化理论、锚杆锚索强力支护理论为指导,根据围岩变形特征,建立了高应力高突区域回采巷道支护技术体系;采用离散元程序UDEC,对不同支护参数与支护形式对高应力巷道围岩变形的影响进行了数值模拟研究,确定了最优支护方案。
     3.以瓦斯地质理论为指导,分析了高应力高突区域地质构造形态及其对瓦斯赋存的影响;以矿井瓦斯防治理论为指导,建立了以穿层深孔预裂爆破技术为核心的高应力高突区域综合防突技术体系。
     4.进行了现场工业性试验,工程实践表明,灾害防治技术可有效防止顶板事故及突出事故的发生,煤巷掘进速度大幅提高,实现了高应力高突区域煤巷安全快速掘进。
     本课题主要创新点如下:
     1.根据首山一矿首采面回采巷道围岩变形特征,建立了高预应力高强锚杆、锚索协调支护、预留断面的支护技术体系,该体系的成功应用使巷道两帮移近量降低41.9%,顶板下沉量降低52.4%,高应力高突区域巷道围岩变形得到有效控制。
     2.针对工作面回风巷与其高位巷掘进相互影响、揭露顶板极其破碎、支护异常困难的现状,采用显式有限差分程序FLAC,对两巷围岩应力变化规律进行了研究。研究表明,回风巷与高位巷水平距离为10m时,围岩应力叠加严重,致使两巷相互影响。及时调整巷道布署,两巷距离扩为15 m后,支护条件相对简单,顶板完整性变好。
     3.建立了以穿层深孔预裂爆破技术为主,前探地质深孔、超前排放钻孔、高位巷穿层钻孔预抽、瓦斯自动监测系统为辅的综合防突技术体系。工程实践表明,该体系可有效防治高应力高突区域煤巷突出,确保煤巷安全快速掘进。
     4.课题研究成果实施效果显著,煤巷月平均掘进速度大幅提高,回风巷提高91.5%,运输巷提高59.5%,创平顶山矿区高应力高突区域煤巷掘进最高纪录。
The first coal face in Shoushan No.l mine locates in high stress and high outburst area. Coal drift in this area has the characteristics of large mining depth, high ground stress, high gas content and high outburst danger, so its driving speed is most slow, and the work of excavation replacement and safety production has been affected seriously by it, it is necessary to explore an effective technology suitable for preventing and controlling disaster during the driving process of coal drift in high stress and high outburst area. Therefore, disaster prevention and control technology for speedy drivage of coal drift in high stress and high outburst area is studied roundly by means of theoretic analysis, numerical simulation, laboratory experiment and industrial test in this paper.
     The main research contents of this paper are as follows:
     1. Based on test results of physical-mechanical properties of rock, surrounding rock mass mechanics properties of gateway are researched by adopting Hoek-Brown strength failure criterion and W. Dershowits empirical method; Based on geomechanics theory, surrounding rock control features of gateway are analyzed.
     2. Under the guidance of the bolting surrounding strength reforcement theory and bolt & anchor intensive support theory, support system of gateway in high stress and high outburst area is founded according to surrounding rock control features; then numerical simulation study of effect on surrounding rock deformation of high stress coal drift by different support parameters and form is carried out by discrete element code UDEC, and the first-rank coordination support system of bolt and cable is founded ultimately.
     3. Based on gas geology theory, geological structure form and its influence on gas existence are analyzed; Based on gas prevention and control theory, the general outburst prevention system is founded, whose core is presplitting blasting technology using borehole through layer of high level suction roadway.
     4. Type approval test is carried out in Shoushan No.l mine, test results indicate that disaster prevention and control technology can prevent roof accident and outburst accident effectively, and drive speed of coal drift increases greatly, safety and speedy drivage of coal drift in high stress and high outburst area is able to realize.
     The main innovations of this paper are as follows:
     1. According to surrounding rock control features of gateway, support system is founded which includes coordination support technology using bolt & cable which has high prestress and high intensity, and section set in advance. The system is applied successfully, displacement of roadway's sides reduces 41.9%, sinking displacement of roof reduces 52.4%, and surrounding rock deformation in high stress and high outburst area is controlled efficiently.
     2. Aim at the situation that return airway and its high level suction roadway influence each other, uncovered roof is most fragmentized, and support conditions are very difficult, study on the change law of surrounding rock stress between above-mentioned roadway is carried out by using explicit finite difference program FLAC. Research results indicate that surrounding rock stress superposes badly when horizontal range of the two roadway is 10 m. Therefore, roadway layout is changed, support conditions and roof integrality become well when horizontal range of the two roadway is 15 m.
     3. The general outburst prevention system is founded, whose core is presplitting blasting technology using borehole through layer of high level suction roadway, beyond that, geological borehole for advanced detection, advancing hole used for gas exhaust, borehole through layer of high level suction roadway for forepumping, and gas automatic monitoring system are included. Experiment results indicate that the system can prevent and control coal and gas outburst in high stress and high outburst area.
     4.-Research findings of this paper is applied successfully, monthly mean drive speed of return airway improves 91.5% than previous speed, and haulage roadway improves 59.5%. drive speed record of coal drift in high stress and high outburst area in Pingdingshan mining area is set up.
引文
[1]于不凡.煤矿瓦斯灾害防治及利用技术手册(修订版)[M].北京:煤炭工业出版社,2005.
    [2]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [3]国家安全生产监督管理总局.AQ 1024-2006.煤与瓦斯突出矿井鉴定规范[S].北京:煤炭工业出版社,2006-11-02.
    [4]康红普.我国煤巷锚杆支护技术新进展[J].岩石力学与工程学报,2002,21(增):1986-1990.
    [5]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石力学与工程学报,2010,29(4):649-664.
    [6]王金华.我国煤巷锚杆支护技术的新发展[J].煤炭学报,2007,32(2):113-118.
    [7]康红普.高强度锚杆支护技术的发展与应用[J].煤炭科学技术,2000,28(2):1-4.
    [8]Pellet F, Egger P. Analytical model for the mechanical behavior of bolted rock joints subjected to shearing [J]. Rock Mech Rock Eng,1996,29 (2):7379.
    [9]Bhawani Singh, M. N. Viladkar, N. K. Samadhlya and Sandeep. A Semi-empirical Method for the Design of Support Systems in Underground Openings [J]. Tunnelling and Underground Space Technology,1995,10 (3):375-383.
    [10]B. Benchekchou & R. G. White. Stresses around fasteners in composite structures in flexure and effects on fatigue damage initiation part 1:cheese-head bolts [J]. Composite Structures, 1995,33 (2):95-108.
    [11]P. P. ORESTE, D. PEILA. Radial Passive Rockbolting in Tunnelling Design with a New Convergence-confinement Model [J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,1996, 33 (5):443-454.
    [12]Song Guo, Stankus J. Control mechanism of a tensioned bolt system in the laminated roof with a large horizontal stress [A].16th Int Conf on Ground Control in Mining [C]. Morgantown:West Virginia,1997.
    [13]Tomas Ireman. Three-dimensional stress analysis of bolted single-lap composite joints [J]. Composite Structures,1998,43 (3):195-216.
    [14]Villaescusa E, Schubert C J. Monitoring the performance of rock reinforcement [J]. Geotechnical and Geological Engineering,1999,17 (3):321333.
    [15]R. Truemana, M. Pierce, R. Wattimena. Quantifying stresses and support requirements in the undercut and production level drifts of block and panel caving mines [J]. International Journal of Rock Mechanics & Mining Sciences,2002,39 (5):617-632.
    [16]Kristin H. Holmoya, Bent Aagaard. Spiling bolts and reinforced ribs of sprayed concrete replace concrete lining [J]. Tunnelling and Underground Space Technology,2002,17 (4): 403-413.
    [17]C. Chunlin Li. Rock support design based on the concept of pressure arch [J]. International Journal of Rock Mechanics & Mining Sciences,2006,43 (7):1083-1090.
    [18]H.Y. Liu a, J.C. Small, J.P. Carter. Full 3D modelling for effects of tunnelling on existing support systems in the Sydney region [J]. Tunnelling and Underground Space Technology, 2008,23 (4):399-420.
    [19]T. Funatsu a, T. Hoshino, H. Sawae, N. Shimizu. Numerical analysis to better understand the mechanism of the effects of ground supports and reinforcements on the stability of tunnels using the distinct element method [J]. Tunnelling and Underground Space Technology,2008, 23 (5):561-573.
    [20]L. St-Pierre, F.P.Hassani, P.H.Radziszewski, J.Ouellet. Development of a dynamic model for a cone bolt [J]. International Journal of Rock Mechanics & Mining Sciences,2009,46 (1): 107-114.
    [21]C.O. Aksoy, T. Onargan. The role of umbrella arch and face bolt as deformation preventing support system in preventing building damages [J]. Tunnelling and Underground Space Technology,2010,25 (5):553-559.
    [22]Charlie Chunlin Li. A new energy-absorbing bolt for rock support in high stress rock masses [J]. International Journal of Rock Mechanics & Mining Sciences,2010,47 ():396-404.
    [23]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [24]康红普,林健.煤巷锚杆支护成套技术在潞安矿区的应用[J].煤炭学报,2001,26(增):106-110.
    [25]袁亮.淮南矿区煤巷稳定性分类及工程对策[J].岩石力学与工程学报,2004,23(增2):4790-4794.
    [26]沈荣喜,刘长友.锚网索联合支护在深井综放沿空巷道中的应用[J].煤炭科学技术,2004,32(10):4-6.
    [27]万志军,李学华,刘长友,等.深井复杂条件下回采巷道高强度锚杆支护技术[J].煤炭科学技术,2004,32(6):15-17.
    [28]何有巨.深井高地压巷道锚杆支护技术研究[D].淮南:安徽理工大学,2006.
    [29]李国峰,蔡健,郭志飚.深部软岩巷道锚注支护技术研究与应用[J].煤炭科学技术,2007,35(4):44-46.
    [30]王其胜,李夕兵,李地元.深井软岩巷道围岩变形特征及支护参数的确定[J].煤炭学报,2008,33(4):364-367.
    [31]周宝炉.深部复杂软岩巷道锚网索支护及数值模拟研究[D].淮南:安徽理工大学,2009.
    [32]Liu Gang, Long Jing-kui, Cai Hong-du, et al. Design method of synergetic support for coal roadway [J]. Procedia Earth and Planetary Science,2009,1 (1):524-529.
    [33]GUO Zhi-biao, GUO Ping-ye, HUANG Mao-hong, et al. Stability control of gate groups in deep wells [J]. Mining Science and Technology,2009,19 (2):155-160.
    [34]SUN Xiao-ming, CAI Feng, YANG Jun, et al. Numerical simulation of the effect of coupling support of bolt-mesh-anchor in deep tunnel [J]. Mining Science and Technology,2009,19 (3):352-357.
    [35]LI Ying-ming, MA Nian-jie, YANG Ke, SHI Jian-jun. Research on FRP bolt-end failure mechanism [J]. Mining Science and Technology,2009,19 (4):522-525.
    [36]张农,王保贵,郑西贵,等.千米深井软岩巷道二次支护中的注浆加固效果分析[J].煤炭科学技术,2010,38(5):34-46.
    [37]孙广义,林井祥.深部巷道支护技术研究与实践[J].煤矿开采,2010,15(1):54-57.
    [38]GUO Zhibiao, SHI Jianjun, WANG Jiong, et al. Double-directional control bolt support technology and engineering application at large span Y-type intersections in deep coal mines [J]. Mining Science and Technology,2010,20 (2):254-259.
    [39]LIU Hongtao, MA Nianjie, ZHAO Feihu, et al. New bolting structure of fractured roof based on the Bossinesq equations [J]. Mining Science and Technology,2010,20 (2):260-265.
    [40]LU Yan, LIU Changyou. Similarity simulation of bolt support in a coal roadway in a tectonic stress field [J]. Mining Science and Technology,2010,20 (5):718-722.
    [41]康红普,姜铁明,高富强.预应力在锚杆支护中的作用[J].煤炭学报,2007,32(7):680-685.
    [42]康红普,王金华,林健.高预应力强力支护系统及其在深部巷道中的应用[J].煤炭学报,2007,32(12):1233-1238.
    [43]康红普,林健,吴拥政.高应力巷道强力锚杆支护技术及应用[C].中国岩石力学与工程学会地下工程分会编.第十届全国岩石力学与工程学术大会论文集.北京:中国电力出版社,2008:71-78.
    [44]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [45]靖洪文,宋宏伟,郭志宏.软岩巷道围岩松动圈变形机制及控制技术研究[J].中国矿业大学学报,1999,28(6):560-564.
    [46]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机制研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [47]张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报,2004,33(5):524-527.
    [48]康红普.煤矿深部巷道锚杆支护理论与技术研究新进展[J].煤矿支护,2007(2):1-8.
    [49]王凯,俞启香.煤与瓦斯突出的非线性特征及预测模型[M].徐州:中国矿业大学出版社,2005.
    [50]R.D. Lama, J. Bodziony. Management of outburst in underground coal mines [J]. International Journal of Coal Geology,1998,35 (1-4):83-115.
    [51]B. Basil Beamish, Peter J. Crosdale. Instantaneous outbursts in underground coal mines:An overview and association with coal type [J]. International Journal of Coal Geology,1998, 35 (1-4):27-55.
    [52]Li H Y, Ogawa Y. Pore structure of sheared coals and related coal bed methane [J], Environ Geol,2002,40:1455-1461.
    [53]郑哲敏.从数量级和量纲分析看煤和瓦斯突出的机理.中国力学学会第二届理事会扩大会议论文汇编[C].北京:北京大学出版社,1982:128-137.
    [54]Paterson L. A model for outbursts in coal [J]. Int J Rock Mech Min Sci,1986 (23):327-332.
    [55]丁晓良,俞善炳,丁雁生,等.煤在瓦斯渗流作用下持续破坏的机制[J].中国科学,1989(6):600-607.
    [56]俞善炳,谈庆明,丁雁生,等.含气多孔介质卸压层裂的间隔特征—突出的前兆[J].力学学报,1998,30(2):145-150.
    [57]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].煤矿安全,1991(10):1-7.
    [58]梁冰,章梦涛,潘一山,等.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [59]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995(2):17-25.
    [60]郭德勇,韩德馨.煤与瓦斯突出粘滑机理研究[J].煤炭学报,2003,28(6):598-602.
    [61]Yunxing Cao, Dingdong He, David C. Glick. Coal and gas outbursts in footwalls of reverse faults [J]. International Journal of Coal Geology,2001,48 (1):47-63.
    [62]Li Huoyin. Major and minor structural features of a bedding shear zone along a coal seam and related gas outbursts, Pingdingshan coalfield, northern China [J]. International Journal of Coal Geology,2002,47 (2):101-113.
    [63]S D Butt. Development of an apparatus to study the gas permeability and acoustic emission characteristics of an outburst-prone sandstone as a function of stress [J]. International Journal of Rock Mechanics and Mining Science,2001,36(8):1079-1085.
    [64]Klaus Noack. Control of gas emissions in underground coal mines [J]. International Journal of Coal Geology,2002,35 (1-4):57-82.
    [65]M.B. Wold, L.D. Connell, S.K. Choi. The role of spatial variability in coal seam parameters on gas outburst behaviour during coal mining [J]. International Journal of Coal Geology, 2008,75(1):1-14.
    [66]Wu Shi-yue, Guo Yong-yi, Li Yuan-xing, et al. Research on the mechanism of coal and gas outburst and the screening of prediction indices [J]. Procedia Earth and Planetary Science, 20091 (1):173-179.
    [67]HUANG Wei, CHEN Zhanqing, YUE Jianhua, et al. Failure modes of coal containing gas and mechanism of gas outbursts [J]. Mining Science and Technology,2010,20 (4) 504-509.
    [68]LEI Dongji, LI Chengwu, ZHANG Zimin, et al. Coal and gas outburst mechanism of the "Three Soft" coal seam in western Henan [J]. Mining Science and Technology,2010,20 (5):712-717.
    [69]李希建,林柏泉.煤与瓦斯突出机理研究现状及分析[J].煤田地质与勘探,2010,38(1):7-13.
    [70]V. Frid. Electromagnetic radiation method for rock and gas outburst forecast [J]. Journal of Applied Geophysics,1997,38 (2):97-104.
    [71]Klaus Noack. Control of gas emissions in underground coal mines[J]. International Journal of Coal Geology,1998,35 (1-4):57-82.
    [72]Maria B. Diaz Aguado, C. Gonzalez Nicieza. Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain [J]. International Journal of Coal Geology,2007, 69 (4):253-266.
    [73]于不凡.澳大利亚煤和瓦斯突出情况及研究动态[J].川煤科技,1981(2):36--40.
    [74]小田仁平次.张生荣译.日本1971~1982年问关于煤与瓦斯突出的研究概况[J].煤矿安全技术,1984(4):77-81.
    [75]Y.Hiramatsu, T.Saito谭学术、鲜学福译.日本煤矿中煤与瓦斯突出机理的研究[J].陕西煤炭,1986(1):59-63.
    [76]福岛笃.孙重旭译.日本煤矿瓦斯突出的预测与防治措施[J].煤炭工程师,1991(1):46-54.
    [77]久尔柯·伊什特万,马洛特·伊什特万(匈牙利).赵鸿猷译.用电子显微镜分析煤的结构以鉴别瓦斯突出危险煤层[J].煤矿安全技术,1982(4):78-82.
    [78]西代什,劳尤什(匈牙利).赵鸿猷译.采掘工作对瓦斯突出的影响[J].煤矿安全技术,1982(2):63-67.
    [79]科兹罗斯基(波兰).李占智译.有煤和瓦斯突出煤层的揭开[J].煤炭工程师,1986(6):62-63.
    [80]氏平增之.刘冠玉译.瓦斯突出危险区域的爆破[J].煤炭工程师,1989(5):46-53.
    [81]于不凡.苏联防治煤和瓦斯突出技术近况[J].煤炭工程师,1987(4):49-54.
    [82]B.H.普济廖夫,徐建春.苏联东部地区各矿煤与瓦斯突出的防治现状和前景[J].煤炭工程师,1990(6):53-58.
    [83]马文诚.苏联顿巴斯矿区采掘过程中煤与瓦斯突出的防治[J].煤炭科学技术,1990(2):55-57.
    [84]瞿涛宝.试论超前钻孔防止突出的有效性[J].煤矿安全,1993(5):29-34.
    [85]佟敬勋,孙学会,刘军,等.“两掘一钻”超前排放钻孔防治煤与瓦斯突出[J].煤矿安全,1999(7):38-39.
    [86]邹山旺,魏风清.超前钻孔的防突机理及工艺参数的确定[J].矿业安全与环保,2003,30(5):17-18.
    [87]郭立稳,孙忠强,刘承宇,等.利用小直径超前钻孔排放瓦斯防突研究[J].煤炭工程,2006(12):56-58.
    [88]张连成,张建民.超前钻释放瓦斯防治严重突出危险煤层煤与瓦斯突出[J].煤矿安全,2007(6):58-60.
    [89]方伟.优化超前钻孔布置实现突出煤层快速掘进的探讨[J].煤矿安全,2007(7):62-64.
    [90]瞿涛宝.试论深孔松动爆破防止突出的效果[J].煤矿安全,1986(11):42-47.
    [91]林柏泉.深孔控制卸压爆破及其防突作用机理的实验研究[J].阜新矿业学院学报(自然科学版),1995,14(3):16-21.
    [92]石必明,俞启香.低透气性煤层深孔预裂控制松动爆破防突作用分析[J].建井技术,2002,23(5):24-30.
    [93]张飞燕.爆破技术在矿井瓦斯突出防治中的应用[J].煤矿爆破,2006(1):16-19.
    [94]罗勇,沈兆武.深孔控制卸压爆破机理和防突试验研究[J].力学季刊,2006,27(3):469-475.
    [95]蔡峰,刘泽功,张朝举,等.高瓦斯低透气性煤层深孔预裂爆破增透数值模拟[J].煤炭学报,2007,32(5):499-503.
    [96]刘健,刘泽功,石必明,等.突出煤层快速掘进深孔预裂爆破预抽瓦斯技术[J].煤炭科学技术,2008,36(8):45-48.
    [97]马中飞,李本涛.煤层中深孔注水的试验[J].煤炭科技,2000(4):44-45.
    [98]胡殿明,惠功领,张建国.深孔注水技术在掘进工作面防突中的应用[J].焦作工学院学报(自然科学版),2004,23(6):427-429.
    [99]俞启香.煤巷掘进预防煤及瓦斯突出的技术—超前水力冲孔[J].北京矿业学院学报,1959(4):52-57.
    [100]刘明举,孔留安,郝富昌,等.水力冲孔技术在严重突出煤层中的应用[J].煤炭学报,2005,30(4):451-454.
    [101]刘明举,赵文武,刘彦伟,等.水力冲孔快速消突技术的研究与应用[J].煤炭科学技术,2010,38(3):58-61.
    [102]王兆丰,李志强.水力挤出措施消突机理研究[J].煤矿安全,2004,35(12):1-4.
    [103]王兆丰,田坤云,武桂平.突出煤层快速掘进技术在鹤壁六矿的应用[J].煤,2006,15(5):1-2.
    [104]刘建新,李志强,李三好.煤巷掘进工作面水力挤出措施防突机理[J].煤炭学报,2006,31(2):183-186.
    [105]刘明举,潘辉,李拥军,等.煤巷水力挤出防突措施的研究与应用[J].煤炭学报,2007,32(2):168-171.
    [106]王兆丰,方前程.水力挤出在突出煤层巷道掘进中的应用[J].煤矿开采,2007,12(2):73-75.
    [107]鹤壁矿务局,鹤壁矿务局四矿,辽宁省煤炭研究所.提高本煤层瓦斯抽放率的新途径—钻孔水力割缝法[J].煤矿安全,1978(2):5-15.
    [108]瞿涛宝,赵新根.高压水力割缝的参数确定和效果分析[J].煤矿安全,1982(7):1-10.
    [109]煤炭科学研究院抚顺所,鹤壁矿务局二矿.水力割缝新工艺的研究[J].煤矿安全,1982(9):1-15.
    [110]林柏泉,吕有厂,李宝玉.高压磨料射流割缝技术及其在防突工程中的应用[J].煤炭学报,2007,32(9):959-963.
    [111]陆海龙,林柏泉,吴海进.高压磨料射流煤岩钻割设备研制及切割性能研究[J].流体机械,2008,36(8):1-4.
    [112]刘健,刘泽功,石必明.低透气性突出煤层巷道快速掘进的试验研究[J].煤炭学报,2007,32(8):827-831.
    [113]温百根.高突出危险煤层煤巷安全快速掘进综合防突技术[J].中国煤炭,2009,35(7):85-87.
    [114]刘明举,潘辉,张文勇,等.突出煤层煤巷快速掘进综合防突技术[J].煤炭科学技术,2006,34(4):1-3.
    [115]中华人民共和国煤炭工业部.煤与岩石物理力学性质测定方法.北京:中国标准出版社,1988.
    [116]沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006.
    [117]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [118]E. HOEK, E. T. BROWN. Practical Estimates of Rock Mass Strength [J]. International Journal of Rock Mechanics and Mining Sciences.1997,34 (8):1165-1186.
    [119]E. Hoek, E. T. Brown. Underground Excavations in Rock [M]. Hertford, England:Austin & Sons Ltd,1980.215-259.
    [120]E. Hoek, M. S. Diederichs. Empirical estimation of rock mass modulus [J]. International Journal of Rock Mechanics & Mining Sciences,2006 (43):203-215.
    [121]李文平,王继成,王凯平,等.复杂峒室群软弱破碎岩体孤立岩墙加固研究[J].岩石力学与工程学报,2004,23(1):79-85.
    [122]E. Hoek, P. G. Marinos, V. P. Marinos. Characterisation andengineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses [J]. International Journal of Rock Mechanics & Mining Sciences,2005 (42):277-285.
    [123]Hoek E., Brown E.T. Hoek-Brown failure criterion-a 1988 update [J]. Proc 15th Canadian Rock Mechanics Symposium, Rock Engineering for Underground Excavations,1988 (10):31-38.
    [124]中华人民共和国煤炭工业部.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1995.
    [125]刘福.井底煤仓破坏机理及治理技术研究[D].重庆:重庆大学,2008.
    [126]ITASCA. Introduction of UDEC[EB/OL]. http://www.itasca.cn/ruanjian.jsp?sclassid=98& classid=16.2010-03-10.
    [127]张吉雄.矸石直接充填综采岩层移动控制及其应用研究[D].徐州:中国矿业大学,2008.
    [128]陈晓祥,谢文兵.岩层移动模拟研究中模型下边界位置的确定[J].西安科技大学学报,2007,27(1):20-24.
    [129]陈晓祥,谢文兵.采矿过程数值模拟模型左右边界的确定研究[J].煤炭科学技术,2006,24(6):73-76.
    [130]李树彬,勾攀峰.高强锚杆支护技术在预破碎煤层中的应用[J].能源技术与管理,2009(4):49-51.
    [131]张飞燕,梁开水,勾攀峰,等.高应力高突区域煤巷快速掘进综合防突技术[J].煤炭科学技术,2010,38(9):57-59.
    [132]韩颖,张飞燕,勾攀峰.穿层深孔预裂爆破防治高应力高突区域煤巷突出的试验研究[J].煤炭工程,2009(6):87-90.
    [133]龚纪文,崔建军,席先武,等FLAC数值模拟软件及其在地学中的应用[J].大地构与成矿学,2002,26(3):321-325.
    [134]张飞燕,梁开水,勾攀峰,等.高位巷与工作面回风巷围岩应力变化规律研究[J].河南理工大学学报(自然科学版),2010(5):66-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700