基于矩阵半张量积方法的模糊系统分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统控制技术相比,模糊控制技术具有两大不可比拟的优点:(1)在许多实际应用中可以有效且方便地实现人的控制策略和知识经验;(2)可以不依赖于被控对象的数学模型,便可达到良好的控制效果.近几十年来,广大学者对模糊逻辑和模糊逻辑系统进行了广泛深入的研究,并取得了丰硕的成果,推动了模糊系统理论与应用的极大发展.对于非线性系统,甚至非解析系统来说,模糊逻辑控制已被证明是一种有效的控制方法.
     工业生产过程中的多数系统都具有多个输入输出变量,对于多变量模糊系统来说,控制规则的条数随着输入变量的增加呈指数递增.为解决这类问题,产生了很多处理方法,但多数方法不可避免地产生推理误差,降低了模糊推理的精度.随机性和模糊性是两种不同性质的不确定性,它们常常共存于现实世界中的许多物理过程和系统中,例如机器人控制系统、电力系统和信号处理过程等.所以研究带有随机性的模糊逻辑系统是一件很有价值和意义的工作.近年来,程代展教授提出了一种新的矩阵理论-矩阵半张量积理论.迄今为止,半张量积理论已在很多领域取得了丰富的成果.注意到,模糊逻辑其实是扩展的混合值逻辑.因此,半张量积理论也可以用于模糊控制器的研究.基于半张量积方法,复杂的模糊推理过程可以转换为一系列代数方程的求解问题,大大简化了模糊逻辑推理.我们希望通过本论文的研究为模糊系统的研究开辟一些新的途径,以进一步丰富模糊控制系统的理论和应用.
     本论文针对多变量模糊系统、分层模糊系统、随机模糊系统的分析和控制设计等问题进行了研究,主要包括以下内容:
     第一部分基于半张量积理论研究了多变量模糊系统的分析和控制器设计.通过用逻辑向量表示输入输出语言变量,得到了控制规则新的表示形式.基于该表示形式,通过构建结构矩阵,复杂的模糊推理转换成了代数等式的形式.利用半张量积理论建立了多变量模糊逻辑控制器的研究框架.仿真例子验证了本章提出的方法是有效的.通过对模糊逻辑控制器结构矩阵的分析,得到了最小入度模糊控制.而且,当控制器的控制规则不完备时,给出了计算最小入度模糊控制的算法.当控制规则不符合一致性时,给出了得到一致性控制规则的几条原则.最后,将此方法用到了并行混合电动汽车(PHEV)的能量管理和控制策略的模糊控制器设计上.
     第二部分提出了混合值逻辑函数的半张量积分解方法,实现了混合值逻辑函数的串联分解、并联不相交分解和并联相交分解.给出了混合值逻辑函数可以进行半张量积分解的充分必要条件.如果已知其中一个分解函数,给出了另外一个分解函数的求解方法与其所有可能的取值.本方法同样适用于k值逻辑与布尔逻辑.利用多变量模糊控制系统的半张量积设计方法以及混合值逻辑函数的半张量积分解,建立了实现多输入单输出(MISO)模糊系统的串联分层、并联分层以及混合分层建模的新方法.利用这种方法可以很方便的得到中间层的结构矩阵与模糊规则.本方法得到的分层模糊系统与原来的多变量模糊系统相比较,分层前后模糊系统系统的输入输出模型是等价的,而且大大减少了控制规则的条数.
     第三部分研究了随机模糊逻辑和随机模糊控制器设计.介绍了随机模糊逻辑的概念和相关性质,利用矩阵半张量积理论给出了随机模糊控制规则的向量表示形式.基于随机模糊规则的新的表示形式,构造了随机模糊控制器的结构矩阵和概率转移矩阵,得到了随机模糊推理的代数表达式.最后给出例子验证了所得结果的有效性.
     本论文的主要创新点是:
     ·基于矩阵半张量积理论,得到了多变量模糊系统模糊推理的代数形式,当模糊规则不完备时,给出了最小入度模糊控制算法.当模糊控制规则不一致时给出了相应的处理方法.
     ·提出了混合值逻辑函数的半张量积分解方法,实现了混合值逻辑函数的串联分解、并联不相交分解和并联相交分解.基于混合值逻辑函数的半张量积分解,建立了实现多变量模糊系统的串联分层、并联分层和混合分层建模的新方法.
     ·利用矩阵半张量积理论研究了随机模糊逻辑和随机模糊系统的控制器设计.基于随机模糊规则的向量表示形式,构造了随机模糊控制器的结构矩阵和概率转移矩阵,得到了随机模糊推理的代数表达式.
Compared with conventional control systems, fuzzy control systems have the fol-lowing two unmatched advantages. First, it can realize easily and effectively human control strategies and experience in many real applications. Second, it can achieve bet-ter control performance independent of the mathematic model of the controlled system. During the past few decades, increasing attention has been devoted to fuzzy logic and fuzzy logic systems, and many nice results have been proposed for the analysis and synthesis of fuzzy control systems promoting the development of fuzzy system theory and its application. The fuzzy logic control has been proved to be a successful control approach to many complex nonlinear systems or even nonanalytic systems.
     Many of industrial processes and systems have multiple input and output variables. Whereas, in a multi-variables fuzzy systems, the number of rules increases exponen-tially with the number of variable involved. To deal with the rule-explosion problem, a lot of processing methods have been generated. But inference error of many of these methods is inevitable. Moreover, there are two different kinds of uncertainty-the ran-domness and fuzziness often coexist in many physical processes and systems in the real-world, such as robot control systems, power systems and signal processing, etc. As probabilistic methods and fuzzy techniques are effective approaches to deal with the randomness and fuzziness respectively, it is a worthwhile and meaningful job to bridge the gap between fuzziness and probability. Recently, the semi-tensor product (STP) of matrices was proposed, and up to now, it has been widely applied in many fields and lots of fundamental results have been presented. It is noted that fuzzy logic can be consid-ered as an extended mix-valued logic, and by the STP method, the complex reasoning process can be converted into a problem of solving a set of algebraic equations, which greatly simplifies the process of logical reasoning. We hope that this thesis can provide some new ways to study fuzzy systems and further enrich the theory and application of fuzzy systems.
     In this paper, we investigate the analysis and control design for multi-variable fuzzy systems, hierarchical fuzzy systems and stochastic fuzzy system. The main con-tents of this thesis are composed of the following parts:
     The first part investigate the fuzzy logic controller(FLC) analysis and design for multi-input multi-output fuzzy systems based on the semi-tensor product of matrices. Firstly, we give a new expression for the fuzzy control rules via expressing the input and output variables with the sector form. Based on this form, we convert the fuzzy reasoning into an algebraic form by constructing structural matrices of the FLC. Then a new framework is established to study multi-variable FLC. According to the proposed approach, a simulation example is given to demonstrate its effectiveness. A set of rea-sonable least in-degree controls are obtained through the analysis of structural matrices. when the control rules are incomplete, the algorithm of least in-degree controls is given. Moreover, the consistency of fuzzy control rules is introduced, and some principles are proposed for dealing with the inconsistency of fuzzy controls. Finally, the proposed ap-proach is applied to design of fuzzy controllers for the energy management and control strategy of parallel hybrid vehicles (PHV).
     The second part studies the semi-tensor product decomposition of mixed-valued logical functions and the modeling of hierarchical fuzzy systems. Firstly, the approach to the semi-tensor product decomposition of mixed-valued logical functions is pro-posed, and the serial decomposition, parallel disjoint and parallel non-disjoint decom-position have been realized. Then the sufficient and necessary condition is given for the semi-tensor product decomposition of mixed-valued logical functions, and the al-gorithm of the other decomposition function and all its possible solutions are devel-oped when one decomposition function is known. This method is also applicable to the decomposition of k-valued logic function and Boolean logic function. Based on the semi-tensor product decomposition of mixed-valued logical functions, a new kind of scheme is proposed to get the structural matrices of the hierarchical fuzzy systems including serial hierarchical structure, parallel hierarchical structure and hybrid hierar-chical structure. The algorithm of this scheme is developed such that one can easily design the involved structural matrices and fuzzy rules in the muddle layers of the hi-erarchical structure. It is well worth pointing out that, using this method, the same input-output model can be get as the conventional layer fuzzy logic system, and the total number of the rules can be greatly reduced.
     The third part considers the stochastic fuzzy logic and stochastic fuzzy systems based on one new method, that is, the semi-tensor product of matrices, and obtain some new results about stochastic fuzzy systems. Firstly, some concepts and properties on stochastic fuzzy logic are given. Then, the design of stochastic fuzzy controller is studied based on the semi-tensor product, and the algebraic equation of fuzzy reasoning is obtained. Moreover, the structural matrix and the probability transition matrix are obtained. Finally, a numerical example is provided to demonstrate our new results.
     Innovations of the thesis mainly include the following aspects:
     ●The algebraic form of fuzzy reasoning of multi-variable fuzzy systems is ob-tained based on semi-tensor product of matrices. when the control rules are incomplete, the algorithm of least in-degree controls has been given. Some principles are proposed for dealing with the inconsistency of fuzzy controls.
     ●The semi-tensor product decomposition of mixed-valued logical functions is pro-posed, and the serial decomposition, parallel disjoint and parallel non-disjoint decom-position have been realized. Based on the semi-tensor product decomposition of mixed-valued logical functions, a new kind of scheme is proposed to get the structural matrices of the hierarchical fuzzy systems including serial hierarchical structure, parallel hierar-chical structure and hybrid hierarchical structure. It is noted that the results obtained in this paper not only are simple, but also have more advantages than the existing ones in some cases.
     ●The stochastic fuzzy logic and stochastic fuzzy systems are discussed based on the semi-tensor product of matrices. By vector representation of stochastic fuzzy rules, the structural matrix and the probability transition matrix are constructed. Then, the algebraic equation of stochastic fuzzy reasoning is obtained.
引文
[1]Zadeh L. A.,1965. Fuzzy sets. Information and Control,8(3):338-353.
    [2]曾光奇,胡均安,王东,刘春玲.(2006).模糊控制理论与工程应用.武汉,华中科技大学出版社.
    [3]巩长忠,王伟.(2003).基于T—S模糊模型的控制方法及稳定性分析[博士学位论文].大连理工大学.
    [4]Zadeh L. A.,1968. Fuzzy algorithm. Inform. Control,12:94-102.
    [5]Bellman R. E., Zadeh L. A.,1970. Decision making in a fuzzy environment. Manage. Sci,17: 141-164.
    [6]Zadeh L. A.,1971. Similarity relations and fuzzy orderings. Inform. Sci.,3:177-200.
    [7]Zadeh L. A.,1973. Outline of a new approach to the analysis of complex sysems and decision processes. IEEE Transaction on Systems, Man and Cybernetics,3(1):28-44.
    [8]Mamdani E. H., Assilian S.,1974. Applications of fuzzy algorithms for control of simple dynamic plant, Proc. Inst. Elect. Eng.,121:1585-1588.
    [9]Mamdani E. H., Assilian S.,1975. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J.ManMach. Stud.,7:1-13.
    [10]吕红丽,贾磊,蔡文剑.(2007)Mamdani模糊控制系统的结构分析理论研究及其在暖通空调中的应用[博士学位论文].山东大学.
    [11]Babuska R.,1998. Fuzzy Modeling for Control. Boston, MA:Kluwer.
    [12]Bellman R. E., Zadeh L. A.,1970. Decision making in a fuzzy environment. Manage.Sci,17: 141-164.
    [13]Bezdek J.C., Keller J. M., Krishnapuram R., Pal N. R.,1999. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Boston, MA:Kluwer.
    [14]Bonissone P. P., Badami V., Chiang K. H., Khedkar P. S., Marcelle K. W., Schutten M. J., 1995. Industrial applications of fuzzy logic at General Electric. Proc. IEEE,83(3):450-465.
    [15]Dutta S.,1993. Fuzzy logic applications:Technological and strategic issues. IEEE Trans. Eng. Manage.,40(3):237-254.
    [16]Koska B.,1992. Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:Prentice-Hall.
    [17]Lee C. C.,1990. Fuzzy logic in control systems:Fuzzy logic controller-Part Ⅰ. IEEE Trans. Syst., Man, Cybern.,20(2):404-418.
    [18]Lee C. C.,1990. Fuzzy logic in control systems:Fuzzy logic controller-Part Ⅱ. IEEE Trans. Syst., Man, Cybern.,20(2):419-435.
    [19]Mendel J. M.,1995. Fuzzy logic systems for engineering:A tutorial. Proc. IEEE,83(3): 345-377.
    [20]Pedrycs W.,1993. Fuzzy Control and Fuzzy Systems. Somerset, U. K.:Research Studies Press, Ltd..
    [21]Seker H., Odetayo M. O., Petrovic D., Naguib R. N. G.,2003. A fuzzy logic based-method for prog- nostic decision making in breast and prostate cancers. IEEE Trans. Inform. Technol. Biomed.,7(2):114-122.
    [22]Sugeno M.,1985. Industrial Applications of Fuzzy Control, New York:Elsevier.
    [23]Sugeno M., Yasukawa T.,1993. A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst.,1(1):7-31.
    [24]Teodorescu H. N., Jain L. C., Kandel A.,1998. Fuzzy and Neuro-Fuzzy Systems in Medicine. Boca Raton, FL:CRC.
    [25]Uragami M., Mizumoto M., Tanaka K.,1976. Fuzzy robot controls. J. Cybern.,6:39-64.
    [26]Yu L. X., Zhang Y. Q.,2005. Evolutionary fuzzy neural networks for hybrid financial predic-tion. IEEE Trans. Syst., Man, Cybern., C, App. Rev.,35(2):244-249.
    [27]FENG G.,2010. Analysis and Synthesis of Fuzzy Control System:a Model-based Approach. Boca Raton:CRC Press.
    [28]Feng G.,2006. A survey on analysis and design of Mmodel-based fuzzy control systems. IEEE Transaction on Fuzzy Systems,14(5),676-697.
    [29]Baturone I., Moreno-Velo F. J., Sanchez-Solano S., Ollero A.,2004. Automatic design of fuzzy controllers for car-like autonomous robots. IEEE Trans. Fuzzy Syst.,12(4):447-465.
    [30]Xiao J., Xiao J. Z., Xi N., Tummala R. L., Mukherjee R.,2004. Fuzzy controller for wall-climbing microrobots. IEEE Trans. Fuzzy Syst.,12(4):466-480.
    [31]Yang S. X., Li H., Meng M.Q. H., Liu P. X.,2004. An embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance. IEEE Trans. Fuzzy Syst.,12(4): 436-446.
    [32]Tong R. M., Beck M. B., Latten A., Fuzzy control of the activated sludge wastewater treatment process. Automatica,6:695-701.
    [33]Chiu S., Chand S., Moore D., Chaudhary A.,1991. Fuzzy logic for control of roll and moment for a flexible wing aircraft. IEEE Control Syst. Mag.,11(1):42-48.
    [34]Farinwata S. S., Pirovolou D., Vachtsevanos G. J.,1994. On input-output stability analysis of a fuzzy controller for a missile autopilot's yaw axis. in Proc.3rd IEEE Int. Conf. Fuzzy Systems, Orlando, FL, pp:930-935.
    [35]Lee S. H., Lim J. T.,2001. Multicast ABR service in ATM networks using a fuzzy-logic-based consolidation algorithm. Proc. Inst. Elect. Eng.-Commun.,148:8-13.
    [36]Horiuchi J. I., Kishimoto M.,2002. Application of fuzzy control to industrial bioprocesses in Japan. Fuzzy Sets Syst.,128(1):117-124.
    [37]Sugeno M.,1999. On stability of fuzzy systems expressed by fuzzy rules with singleton con-sequents. IEEE Trans. Fuzzy Syst.,7(2):201-224.
    [38]Chen J. Y.,2001. Rule regulation of fuzzy sliding mode controller design:Direct adaptive approach. Fuzzy Sets Syst.,120:159-168.
    [39]Takagi T., Sugeno M.,1985. Fuzzy identi?cation of systems and its ap- plications to modeling and control. IEEE Trans. Syst, Man, Cybem.., SMC-15(1):116-132.
    [40]Zeng K., Zhang N. Y., Xu W. L.,2000. A comparative study on suffcient conditions for Takagi-Sugeno fuzzy systems as universal approximators. IEEE Trans. Fuzzy Syst.,8(6): 773-780.
    [41]Ying H.,1998. General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators. IEEE Trans. Fuzzy Syst,6(4):582-587.
    [42]Wang L. X.,1993. Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst.,1(2):146-155.
    [43]Tong S. C., Li H. X.,2003. Fuzzy adaptive sliding-mode control for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst.,11(3):354-360.
    [44]Yang Y. S., Zhou C. J.,2005. Adaptive fuzzy H-infinity stabilization for strict-feedback canon-ical nonlinear systems via backstepping and small-gain approach. IEEE Trans. Fuzzy Syst., 13(1):104-114.
    [45]Passion K. M., Yupkovich S.,1998. Fuzzy Control. New York:Addison-Vesley.
    [46]Gupta M. M., Kiszka J. B., Trjan G. M.,1986. Mutivariab structure of fuzzy control systms. IEEE Transaction on Systems, Man and Cybernetics,16(5):638-655.
    [47]Jeon G. J., Lee P.G.,1995. Structure of multivariable fuzzy control systems with a coordinator. Fuzzy Sets and Systems,71(1):85-94.
    [48]Cross V., Sudkamp T.,1994. Patterns of geometric inference. Int. J. Approximate Reasoning, 4(11):235-255.
    [49]Joo M. G., Sudkamp T.,2009. A Method of Converting a Fuzzy System to a Two-Layered Hierarchical Fuzzy System and Its Run-Time Efficiency. IEEE Transaction on Fuzzy Systems, 17(1):93-103.
    [50]Cheng D.,2001. Semi-tensor product of matrices and its application to morgan's problem. Science in China, Series F:Information Sciences,44(3):195-212.
    [51]Cheng D.,2002. Matrix and Polynomial Approach to Dynamic Control Systems. Beijing: Science Press.
    [52]程代展,齐洪胜.(2007).矩阵的半张量积理论与应用.北京,科学出版社.
    [53]Cheng D., Qi H., Li Z.,2011. Analysis and Control of Boolean Networks:A Semi-tensor Product Approach. London:Springer.
    [54]Cheng D., Qi H.,2010. A linear representation of dynamics of Boolean networks. IEEE Trans. Aut. Contr.,55(10):2251-2258.
    [55]Cheng D.,2009. Input-state approach to Boolean networks. IEEE Trans. Neural Networks, 20(3):512-521.
    [56]Cheng D., Qi H.,2010. State-space analysis of Boolean networks. IEEE Trans. Neural Net-works,21(4):584-594.
    [57]Cheng D., Li Z., Qi H.,2010., Realization of Boolean control networks. Automatica,46(1): 62-69.
    [58]Cheng D., Qi H.,2009. Controllability and observability of Boolean control networks. Auto-matica,45(7):1659-1667.
    [59]Cheng D.,2011. Disturbance decoupling of Boolean control networks. IEEE Trans. Aut. Contr.,56(1):2-10,2011.
    [60]Cheng D., Qi H., Li Z., Liu J.,2011. Stability and stabilization of Boolean networks. Int. J. Robust Nonlin. Contr.,21:134-156,2011.
    [61]Zhao Y., Li Z., Cheng D., Optimal control of logical control networks. IEEE Trans. Aut. Contr.,56(8):1766-1776.
    [62]Cheng D., Zhao Y.,2011. Identification of Boolean control networks. Automatica,47(4): 702-710.
    [63]Cheng D., Qi H., Zhao Y.,2012. Analysis and control of general logical networks-An alge-braic approach. Annual Reviews in Contr.,36:11-25.
    [64]Li F., Sun J.,2012. Controllability and optimal control of a temporal Boolean network. Neural Networks,34:10-17.
    [65]Li H., Wang Y.,2012 On reachability and controllability of switched Boolean control net-works. Automatica,48(11):2917-2922.
    [66]Fornasini E., Valcher M. E.,2013. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans. Aut. Contr.,58(6),1390-1401.
    [67]Li F., Sun J.,2012. Controllability of higher order Boolean control networks. Appl. Math. Comput.,219(1),158-169.
    [68]Chen H., Sun J.,2013. A new approach for global controllability of higher order Boolean control network. Neural Networks,39:12-17.
    [69]Fornasini E., Valcher M. E.,2013. On the periodic trajectories of Boolean control networks. Automatica,49(5):1506-1509.
    [70]Li H., Wang Y.,2013 Consistent stabilizability of switched Boolean networks. Neural Net-works,46:183-189.
    [71]Li R., Chu T.,2012. Complete synchronization of Boolean networks. IEEE Trans. Neural Netw. Learn. Syst.,23(5):840-846.
    [72]Li R., Yang M., Chu T.,2012. Synchronization of Boolean networks with time delays. Appl. Math. Comput.,219(3):917-927.
    [73]Li R., Yang M., Chu T.,2013. Synchronization design of Boolean networks via the semi-tensor product method. IEEE Trans. Neural Netw. Learn. Syst,24(6):996-1001.
    [74]Li R., Yang M., Chu T.,2013. State feedback stabilization for Boolean control networks. IEEE Trans. Aut. Contr.,58(7):1853-1857.
    [75]Cheng D., Xu X.,2013. Bi-decomposition of multi-valued logical functions and its applica-tions. Automatica,49(7):1979-1985.
    [76]Cheng D., Feng J., Lv H.,2012. Solving fuzzy relational equations via semi-tensor product. IEEE Trans. Fuzzy Syst.,20(2):390-396.
    [77]Zhan L., Zhang K.,2013. Controllability and observability of Boolean control networks with time-variant delays in states. IEEE Trans. Neural Netw. Learn. Syst.,24(9):1478-1484.
    [78]Zhan L., Liu S., Lan H.,2007. On stability of swithed homogeneous nonlinear systems. J. Math. Anal. Appl.,334(1):414-430.
    [79]Xu X., Hong Y., Matrix approach to model matching of Asynchronous sequential machines. IEEE Trans. Aut. Contr., DOI:10.1109/TAC.2013.2259957.
    [80]Yang M., Li R., Chu T.,2013. Controller design for disturbance decoupling of Boolean control networks. Automatica,49(1):273-277.
    [81]Zhao Y., Kim J., Filippone M., Aggregation algorithm towards large-scale Boolean network analysis. IEEE Trans. Aut. Contr.,58(8):1976-1985.
    [82]Zhang L., Feng J., Mix-valued logic-based formation control. Int. J. Contr.,86(6):1191-1199.
    [83]Feng J., Lv H.,Cheng D.,2013. Multiple Fuzzy Relation and Its Application to Coupled Fuzzy Control. Asian Journal of Control,15(5):1313-1324.
    [84]Zhao Y, Qi H., Cheng D.,2010. Input-state incidence matrix of Boolean control networks and its applications. Systems and Control Letters,59(12):767-774.
    [85]Laschov D., Margaliot M., Even G.,2013. Observability of Boolean networks:A graph-theoretic approach. Automatica,49(8):2351-2362.
    [86]Laschov D., Margaliot M.,2011. A maximum principle for single-input Boolean control net-works. IEEE Trans. Aut. Contr.,56(4):913-917.
    [87]Laschov D., Margaliot M.,2013. Minimum-time control of Boolean networks. SIAMJ. Contr. Opt.,51:2869-2892.
    [88]Laschov D., Margaliot M.,2012. Controllability of Boolean control networks via Perron-Frobenius Theory. Automatica,48(6):1218-1223.
    [89]Cheng D., He F, Qi H., Xu T., F. He, Modeling, analysis and control of networked evolutionary games. http://lsc.amss.ac.cn/dcheng/preprint/NTGAME02.pdf (IEEE TAC, under revision).
    [90]程代展,赵寅,徐相如.(2011).混合值逻辑及其应用.山东大学学报(理学版),46(10):32-44.
    [91]Cheng D., Qi H., Zhao Y.,2012. An Introduction to Semi-tensor Product of Matrices and Its Applications. World Scientific, Singapore,2012.
    [92]Li Z., Cheng D.,2010. Algebraic approach to dynamics of multivalued networks, Int. J. Bifurcat. Chaos,20(3):561-582.
    [93]Li H., Wang Y.,2012. Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method. Automatica,48(4):688-693.
    [94]Li H., Wang Y., Liu Z.,2012. Existence and number of fixed points of Boolean transforma-tions via the semi-tensor product method. Applied Mathematics Letters,25(8):1142-1147.
    [95]Li H., Wang Y.,2013. Logical matrix factorization with applications to Boolean control net-works. Submitted.
    [96]Liu Z., Wang Y.,2012. Disturbance decoupling of mix-valued logical networks via the semi-tensor product method. Automatica,48(8):1839-1844.
    [97]Wang Y., Zhang C., Liu Z.,2012. A Matrix Approach to Graph Maximum Stable Set and Coloring Problems with Application to Multi-Agent Systems. Automatica,48(7):1227-1236.
    [98]Guo P., Wang Y., Li H.,2013. Algebraic formulation and strategy optimization for a class of evolutionary networked games via semi-tensor product method. Automatica,49:3384-3389.
    [99]Ge A., Wang Y, Wei A.,2012. Controller Design of Multi-variables Fuzzy Control Systems. Proceedings of the 31st Chinese Control Conference, July 25-27, Hefei, China, pp:3511-3516.
    [100]葛爱冬,王玉振,魏爱荣.(2013).基于半张量积方法的随机模糊系统控制器设计.山东大学学报(工学版),43(3):30-37.
    [101]葛爱冬,王玉振,魏爱荣,刘红波.(2013).多变量模糊系统控制设计及其在并行混合电动汽车中的应用.控制理论与应用,30(8):998-1004.
    [102]Li H., Wang Y.,2013. A matrix approach to latticized linear programming with fuzzy-relation inequality constraints. IEEE Transaction on Fuzzy Systems,21(4):781-788.
    [103]段培永,吕红丽,冯俊娥,刘聪聪,李慧.(2013).室内热舒适环境的模糊关系矩阵模型控制系统.控制理论与应用,30(2):215-221.
    [104]程代展,赵寅,徐相如.(2011).从布尔代数到布尔微积分.控制理论与应用,28(10):1513-1523.
    [105]Qi H., Cheng D.,2008. Logic and logic-based control. Journal of Control Theory and Appli-cations,6(1):123-133.
    [106]梅生伟,刘锋,薛安成.(2010).电力系统暂态分析中的半张量积方法.北京,清华大学出扳社.
    [107]Xue A., Mei s.,2008. A new transient stability margin based on dynamic security region and its applications. Science in China, Series F:Technological Sciences,51(6):750-760.
    [108]Ross K. A., Wright C. B. R.,2003. Discrete math. New York:Pentice Hall Inc.
    [109]罗铸楷,胡谋,陈廷槐.(1992).多值逻辑的理论与应用.北京,科学出版社.
    [110]Schechter E.,2005. Classical and nonclassical logics. New Jersey:Princeton University Press.
    [111]Alwadie A., Ying H., Shah H.,2003. A Practical two-input two-output Takagi-Sugeno fuzzy controller. International Journal of Fuzzy Systems,5(2):123-130.
    [112]Wood R. K., Berry M. W.,1973. Terminal composition control of a binary distillation column. Chemical Engineering Science,10:1707-1717.
    [113]Schouten N. J., Salman M. A., Kheir N. A.,2002 Fuzzy logic control for parallel hybrid vehicles. IEEE Transactions on Control Systems Technology,10(30):460-468.
    [114]Raju G. V. S., Zhou J., Kisner R. A.,1991. Hierarchical fuzzy control. International Journal of Control,54:1201-1216.
    [115]Raju G. V. S., Zhou J.,1993. Adaptive hierarchical fuzzy controller. IEEE Trans. Syst., Man Cybern.,23(4):973-980.
    [116]Torra V, Zhou J.,2002. Hierarchical fuzzy control. Int. J. Intell. Syst.,17:531-543.
    [117]Lee M. L., Chung H., Yu F.,2003. Modeling of hierarchical fuzzy systems. Fuzzy Sets Syst., 138:343-361.
    [118]Aja-Fernandez S., Alberola-Lopez C.,2008. Matrix Modeling of Hierarchical Fuzzy Sys-tems. IEEE Trans. Fuzzy Systems,16(3):585-599.
    [119]Aja-Fernandez S., Alberola-Lopez C.,2004. Fuzzy hierarchical systems with FITM. in Proc. FUZZ-IEEE,129:767-772.
    [120]Gegov A. E., Frank P. M.,1995. Hierarchical fuzzy control of multivariable systems. Fuzzy Sets and Systems,72:299-310.
    [121]Yager R. R.,1993. On a hierarchical structure for fuzzy modeling and control. IEEE Trans. Syst, Man Cybern.,23(4):1189-1197.
    [122]Yager R. R.,1998. On the construction of hierarchical fuzzy systems models. IEEE Trans. Syst., Man Cybern. B, Cybern.,28(1):55-66.
    [123]Horacek P., Binder Z.,1997. Hierarchical fuzzy controllers. Annu. Rev. Control,21: 93-101.
    [124]Kikuchi H., Otake A., Nakanishi S.,1998. Functional completeness of hierarchical fuzzy modeling. Info. Sci.,110:51-60.
    [125]Holve R.,2003. Rule generation for hierarchical fuzzy systems. in Proc. Annu. Meet. North Amer. Fuzzy Info. Process. Soc. (NAFIPS),444-449.
    [126]Peres C., Guerra R., Haber R., Alique A., Ros S.,1999. Fuzzy model and hierarchical fuzzy control integration:an approach for milling process optimization. Comput. Ind.,39: 199-207.
    [127]Du X., Ying H., Zhang N.,2005. Conditions for equivalence of hierarchical fuzzy systems and zero-order TS fuzzy systems. in Proc. FUZZ-IEEE,939-944.
    [128]Wang L. X.,1998. Universal approximation by hierarchical fuzzy systems. Fuzzy Sets Syst., 93:223-230.
    [129]Wang L. X.,1999. Analysis and design of hierarchinal fuzzy systems. IEEE Trans. Fuzzy Systems,7(5):617-624.
    [130]Joo M. G., Lee J. S.,2002. Universal approximation by hierarchical fuzzy system with con-strains on the fuzzy rule. Fuzzy Sets Syst.,130:175-188.
    [131]Joo M. G.,2003. A method of converting conventional fuzzy logic system to 2 layered hier-archical fuzzy system. in Proc. FUZZ-IEEE,1357-1362.
    [132]Wei C.,Wang L.,2000. A note on universal apprxomation by hierarchical fuzzy systems. Info. Sci.,123:241-248.
    [133]Zeng X., Keane J.,2005. Approximation capabilities of hierarchical fuzzy systems. IEEE Trans. Fuzzy Syst.,13(5):659-672.
    [134]Kikuchi H., Takagi N.,2002. Hierarchical fuzzy modeling and jointly expandable functions. Int. J. Intell. Syst.,17(5):515-529.
    [135]Buckley J. J., Feuring T., Hayashi Y.,2001. Fuzzy hierarchical analysis revisited. Euro. J. Oper. Res.,129:48-64.
    [136]张香燕,杜新宇,于娜,张乃尧.(2005).分层模糊系统和分层模糊控制的研究进展.中南大学学报(自然科学版),36(1):25-31.
    [137]Meghdadi A. H., Akbarzadeh M. R.,2001. Probablistic fuzzy logic and probabilistic fuzzy systems. In Proceedings of the 2001 IEEE International Conference on Fuzzy Systems, Mel-bourne, Australia, pp:1127-1130.
    [138]Zadeh L. A.,1995. Discussion:Probability theory and fuzzy logic are complimentary rather than competitive. Technometrics,37(3):271-276.
    [139]Kwakernaak H.,1978. Fuzzy random variables, Part I:Definitions and theorems. Informa-tion Sciences,15:1-29.
    [140]Kwakernaak H.,1979. Fuzzy random variables, Part II:Algorithms and examples for the discrete case. Information Sciences,17:253-278.
    [141]Li W., Jing Y., Zhang S.,2011. Adaptive state-feedback stabilization for a large class of high-order stochastic nonlinear systems. Automatica,47(4):819-828.
    [142]Zhou S., Ren W., Lam J.,2011. Stabilization for T-S model based uncertain stochastic sys-tems. Information Sciences,181(4):779-791.
    [143]Hu L., Mao X.,2008. Almost sure exponential stabilisation of stochastic systems by state-feedback control. Automatica,44(2):465-471.
    [144]Gao Q., Feng G., Wang Y., Qiu J.,2013. Universal Fuzzy Models and Universal Fuzzy Con-trollers for Stochastic Non-affine Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 21(2):328-341.
    [145]Liu Z., Li H.,2005. A probabilistic fuzzy logic system for modeling and control. IEEE Trans-action on Fuzzy Systems,13(6):848-859.
    [146]Li H., Liu Z.,2008. A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling. IEEE Transaction on Fuzzy Systems,16(4):898-908.
    [147]李安贵.(1994).模糊数学及其应用(第二版).北京,冶金工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700