木质素酚醛泡沫保温材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚醛泡沫是一种具有自阻燃性的新型隔热保温材料,被称为“第三代保温材料”。传统的酚醛泡沫塑料由化石基甲阶酚醛树脂和发泡剂、表面活性剂和酸固化剂共混,在一定温度下发泡制备。随着化石资源的日益枯竭和人们环保意识的逐渐提高,具有可再生的天然生物质资源替代化石资源制备酚醛泡沫的研究受到了广泛的关注。木质素是生物质资源中重要的可再生酚类化合物,利用价格便宜的木质素替代苯酚制备酚醛泡沫保温材料对发挥生物质资源优势、改善生态环境,促进酚醛保温材料行业发展均有明显的促进作用。
     本论文采用一种新的方法将木质素应用到甲阶酚醛树脂中。通过低温下氧化降解木质素,使降解产物中含有多种低分子量的酚类小分子化合物,提高了木质素的反应活性;采用木质素磺酸钙的氧化降解产物替代苯酚50%制备甲阶酚醛树脂,进一步制备性能良好的酚醛泡沫;研究木质素的引入对甲阶酚醛树脂和酚醛泡沫保温材料性能的影响。论文的主要研究内容和结论如下:
     1.采用FTIR、UV、~1H NMR、GPC、DSC、TG和元素分析对木质素磺酸钙、玉米秸秆碱木质素和Indulin碱木质素进行结构差异、官能团定性定量分析和热力学性能表征。FTIR结果显示玉米秸秆碱木质素属于典型的GSH型木质素,Indulin碱木质素和木质素磺酸钙以愈创木基结构为主。~1H NMR结果表明,木质素结构单元之间的连接方式有β-1、β-5和β-O-4,以β-O-4和β-5连接方式为主。木质素磺酸钙、玉米秸秆碱木质素和Indulin碱木质素的酚羟基含量分别为2.32%、3.26%和2.66%,有效成分分别为59.82%、85.35%和90.26%,数均分子量分别为17774、1205和1977。DSC表明玉米秸秆碱木质素T_g为124℃,Indulin碱木质素T_g为143℃,木质素磺酸钙在测试温度范围内没有检测到T_g。
     2.采用响应面法优化木质素氧化降解工艺条件。以双氧水2g,反应时间2h,反应温度60℃,pH=10反应条件为例,木质素磺酸钙、玉米秸秆碱木质素和Indulin碱木质素数均分子量分别降至493、895和1449,酚羟基含量增至2.98%、3.70%和2.91%。结合三种木质素市场供应,选择木质素磺酸钙作为苯酚替代物进行后续研究。
     3.对木质素磺酸钙氧化降解产物进行结构表征。FTIR结果表明酚羟基含量增加,甲氧基含量降低。氧化降解前后~1H NMR变化显著,8.50ppm处质子吸收峰很强,推测芳香核连接有强吸电子基所致,6.00-8.00ppm之间、5.62-5.25ppm、4.52-4.00ppm和3.80ppm处的质子吸收峰减弱,表明氧化降解过程中发生了醚键断裂,甲氧基部分脱除,木质素大分子发生降解,木质素磺酸钙在β-O-4和β-5处断裂的可能性最大。UV分析表明木质素极少量开环,红移现象表明愈创木基含量增加。GC-MS显示降解产物含有多种小分子酚类化合物。与甲醛反应活性研究表明在反应0.5h时,100g氧化降解木质素磺酸钙消耗甲醛0.59mol,而原料木质素磺酸钙消耗甲醛0.41mol。
     4.采用木质素磺酸钙氧化降解产物部分替代苯酚,研究不同甲醛苯酚摩尔比(以下简称摩尔比)和不同木质素替代量(指木质素替代苯酚的质量百分含量,以下同)反应条件下甲阶酚醛树脂的性能。结果表明在相同木质素替代量下,游离酚随摩尔比的增加而降低,游离醛随摩尔比的增加而增加;在相同摩尔比下,游离酚和游离醛均随着木质素替代量的增加而降低。低摩尔比和低木质素替代量下树脂黏度增加缓慢,反之黏度增加较快。采用哈克流变仪研究树脂反应活性,以摩尔比1.7:1和不同木质素替代量下的甲阶酚醛树脂为研究对象,结果表明随着木质素替代量的增加,树脂反应活性逐渐下降,初始黏度开始增加的温度逐渐上升,木质素替代量为0%的树脂黏度在125℃开始上升,而木质素替代量为50%的树脂黏度在130℃开始上升。采用DSC研究摩尔比1.7:1、木质素替代量分别为40%和0%条件下制备的两种树脂等温固化反应动力学,并建立动力学模型,反应级数分别为0.838和0.845,固化活化能分别为125.27KJ mol~(-1)和110.35KJ mol~(-1),木质素的引入降低了树脂的反应活性。
     5.研究不同的摩尔比、不同的木质素替代量和不同的泡沫密度对泡沫性能的影响。结果表明相同的木质素替代量制备的泡沫,在密度相同的情况下,压缩强度随摩尔比的增加而增加。相同摩尔比且相同木质素替代量制备的泡沫,其压缩强度随泡沫密度的增加而增加。例如,在摩尔比1.9:1和20%木质素替代量下,密度60kg/m~3的泡沫压缩强度最高,达到0.21MPa。根据Gbison-Ashby方程建立了泡沫密度与泡沫力学性能之间的动力学模型,泡沫力学性能均与密度呈指数关系,压缩性能指数在3.30左右,弯曲性能指数在2.35左右。木质素替代量对泡沫的闭孔率和孔径有影响,闭孔率由纯酚醛泡沫的99.9%降至木质素替代量为50%的86.3%,纯酚醛泡沫孔径为115μm,木质素替代量为50%时孔径增至290μm。泡沫导热系数较低,由纯酚醛泡沫的0.021W/(m·K)增至50%替代量的0.030W/(m·K)。木质素的引入增加了泡沫的韧性,降低了泡沫的热稳定性和临界氧指数,但仍属难燃材料。锥型量热分析显示木质素酚醛泡沫与纯酚醛泡沫相比,点燃时间和持续燃烧时间均缩短,有效燃烧热(EHC)和峰值EHC降低,热释放速率(HRR)和峰值HRR变化不大,CO和CO_2生成速率增加,但增加幅度不大,总释放热(THR)随着木质素的替代量的增加逐渐降低。当摩尔比1.5:1和1.7:1,木质素替代量10%-30%,三种密度的泡沫均达到GB/T20974-2007要求。
Phenolic foam is a new kind of flame-retatdant thermal insulation material, it is known as“the third generation of thermal insulation material”. Conventional phenolic foam wassynthesized by incorporating petroleum-based resol resin with several additional chemicals.However, with the rising cost and foreseeable future scarcity of petrochemicals and theimprovement of the environmental protection consciousness, researches on natural renewableresources replacing petrochemicals has attracted more and more attention. Lignin is animportant feedstock for the renewable production of phenolic compounds in forestrymaterials, and technical lignin is available in great quantities. Less expensive lignin can replacephenol to formulate phenolic foam thermal insulation material, which has significantpromotion to make biomass resource advantage, improve ecological environment and developphenolic foam thermal insulation material industry.
     In the present work, a new method of introducing lignin into resol resin was explored.Lignin was oxidated into fractions containing phenolic compounds at low temperauture, whichimproved its reactive activity. Oxidatively degradated fractions of lignosulfonate replaced50%phenol to formulate resol resin and good properties of the resulted phenolic foam was obtained.The main purpose of the thesis was to reveal effect of replacement percentage of phenol byoxidatively degradated lignin on properties of resol resin and phenolic foam. The main researchand obtained results were summarized as follows.
     1. Structure difference, qualitative and quantitative analysis of functional group, andthermodynamic properties of lignosulfonate. Corn kraft lignin and indulin kraft lignin werecharacterized by FTIR、UV、~1H NMR、GPC、DSC and TG, corn kraft lignin was a typical GSHtype lignin, lignosulfonate and indulin kraft lignin were mainly guaiacyl structure.~1H NMRanalysis showed three phenylpropanoid monomers were interconnected by a multitude ofinter-unit bonds that include several types of ethers (e.g. β~(-1), β-5, and β-O-4) and carbon-carbon linkages, β-O-4and β-5structures constituted the main intermonomericconnections. The contents of phenolic hydroxyl in lignosulfonate, corn kraft lignin, and Indulinkraft lignin were2.32%、3.26%and2.66%, respectively, and effective lignin contents were59.82%、85.35%and90.26%, respectively. DSC analysis indicated T_gof corn kraft lignin andIndulin kraft lignin were124℃and143℃, respectively,lignosulfonate T_gwasn’t foundwithin the range of temperature.
     2. Optimization of lignin oxidative degradation technology was carried out usingDesign-Exper8.0software. Take reactive conditions of H2O22g, reaction time2h, reactiontemperature60℃, pH=10for example, number molecular weight (Mn) of lignosulfonate,corn kraft lignin and indulin kraft lignin decreased to493、895and1449after oxidativedegradation, versus17774、1205and1977before oxidative degradation, respectively. Thecontents of phenolic hydroxyl of lignosulfonate, corn kraft lignin and indulin kraft ligninincreased to2.98%、3.70%and2.91%after oxidative degradation, respectively. Consideringprices of three lignins, lignosulfonate was selected as phenol substitution to proceed the nextstudy.
     3. Oxidative degradation fractions of lignosulfonate were characterized. FTIR showedphenolic hydroxyl content increased, while methoxyl content decreased. Great changes in~1HNMR spectrum was observed pre-and post-oxidative degradation. Proton absorption peak at8.5ppm was very strong, while almost none in raw lignosulfonate~1H NMR spectrum, whichwas likely attributed to aromatic proton connected with strong electron-withdrawing group.Proton absorption peak at6-8ppm weakened, and so did peak at5.2ppm,4.5ppm and3.80ppm, which indicated part cleavage of ether bond and methoxy removal, macromoleculelignosulfonate degradated into small fractions. Great possible cleavage occurred at β-O-4andβ-5. UV analysis revealed partial lignosulfonate benzene rings open after oxidative degradation,its spectrum has a little red shift in comparison with raw lignosulfonate, guaiacly monoercontent increased to some extent. GC-MS analysis disclosed there were kinds of phenoliccompounds in oxidative degradation fractions. Reactive activity toward formaldehyde experiment indicated100g oxidative degradation fractions consumed0.59mol formaldehyde,versus0.41mol formaldehyde consumed by raw lignosulfonate.
     4. Oxidatively degradated lignosulfonate substitute phenol to formulate resol resin,properties of resol resin were effected by different formaldehyde/phenol molar ratio anddifferent lignin replacement. Free phenol content decreased and free formaldehyde contentincreased with the increasing molar ratio under the same replacement percentage of phenol bylignin. Free phenol content and free formaldehyde content both decreased with the increasingreplacement of phenol by lignin under the same formaldehyde/phenol molar ratio. Viscosity ofresol resin increased slowly when both formaldehyde/phenol molar ratio and replacementpercentage of phenol by lignin were low, Whereas it increased rapidly. Take resol resinprepared under the conditions of formaldehyde/phenol molar ratio1.7:1and differentreplacement percentage of phenol by lignin for example, HAAKE Rotational Rheometer isused to evaluate resol resin reactive activity. The results showed that reactive activity decreasedwith the increasing replacement percentage of phenol by lignin, temperature at which viscositybegan to increase tended to rise, for example,125℃was for resol resin with0%replacementpercentage to increase viscosity rose to130℃f or resol resin with50%replacement percentage.Take resol resin prepared under the conditions of formaldehyde/phenol molar ratio1.7:1forexample, differential scanning calorimetry (DSC) was applied to investigate resin resolisothermal curing reaction kinetics at different temperature, when replacement percentage ofphenol by lignin were40%and0%, reaction order were0.838and0.845, and curingactivation energy were125.27KJ mol~(-1)and110.35KJ mol~(-1), respectively, indicating theintroduction of lignin decreased resol resin reactive activity.
     5. Different replacement percentage of phenol by lignin,different formaldehyde/phenolmolar ratio and different foam density had influence on properties of phenolic foam. Foamcompressive strength increased with the increasing of formaldehyde/phenol molar ratio on thecondition of the same replacement percentage of phenol by lignin and the same foam density.Foam compressive strength increased with the increasing of foam density on the condition of the same formaldehyde/phenol molar ratio and the same replacement percentage of phenol bylignin. When formaldehyde/phenol molar ratio was1.9:1, replacement percentage of phenol bylignin was20%and foam density was60kg/m~3, foam compressive strength reached its highestvalue (0.21MPa). According to Gbison-Ashby equation, foam density-compressive strengthmodels was established. Foam closed hole rate and hole diameter were effected by replacementpercentage of phenol by lignin, when replacement percentage of phenol by lignin increasedfrom0%to50%, closed role rate decreased from99.9%to86.3%, and hole diameter increasedfrom115μm to290μm. Foam thermal conductivity was very low, it ranged from0.021W/(m·K)(0%replacement) to0.030W/(m·K)(50%replacement). The introduction of lignininto phenolic foam leaded to higher toughness, lower thermal stability, and lower oxygen index.Cone calorimeter analysis indicated lignin phenolic foam possessed shorter igniting time andlasting time, it had a decrease in effective heat of combustion (EHC) and its peak values, heatrelease rate (HRR) and its peak values (PHRR) changed little, CO and CO_2rate increased alittle, heat release results decreased (THR) with the increasing replacement percentage ofphenol by lignin, compared to conventional phenolic foam.
引文
[1]蒋挺大.木质素.北京:化学工业出版社,2009.
    [2] H. Jr. Sandermann, D. Scheel, T. V. D. Trenck. Metabolism of Environmental Chemicals byPlants-Copolymerization into lignin. J. Appl. Polym. Sci.,1983,37:402-407
    [3] E. Dorrestijin, L. J. J. Laarhoven, I. W. C. E Arends, et al. Lingin Depolymerization and Conversion:aReview of Thermochemical Methods. Chemical Engineering and Technology,2011,34(1):29-41
    [4] F. Y. Liu, D. R. CAO. Progress in Utilization of Lignin from Pulping Spent Liquor. Journal of CelluloseScience and Technology,2008,16(1):65-70
    [5]余慧群,周海,廖艳芳等.工业木质素的来源及其改性应用进展.企业科技与发展,2010,18,19-23
    [6] C. Pouteau, P. Dole, B. Cathah, et al. Antioxidant Properties of Lignin in Polypropylene.PolymerDegradation and Stability,2003,81(1):9-18
    [7] R. J. A. Gosselink, B. Guran, A. Ab cherli. Co-ordination Network for Lignin-standardisation,Production and Applications Adapted to Market Requirements (Eurolignin). Industrial Crops andProducts,2004,20:121-129
    [8] J. H. Lora, W. G. Glasser. Recent Application of Lignin: a Sustainable Alternative to NonrenewableMaterials. Journal of Polymers and the Environment,2002,10:39-48
    [9] S. H. Lee, Y. Teramoto, N. Shiraishi. Resol-type Phenolic Resin from Liquefied Phenolated Wood and ItsApplication to Phenolic Foam. Journal of Applied Polymer Science,2002,84:468-472
    [10] http://news.youboy.com/2011/04/12/newsb410350.html
    [11]刘兴之.隔热用酚醛泡沫塑料.中国塑料,1992,6(2):72-79
    [12]黄发荣,焦杨声.酚醛树脂及应用.北京:化学工业出版社,2003
    [13] L. W. Zhao, B. F. Griggs, C. L. Chen, C. Y. Hse. Utilization of Sftwood Kraft Lignin as Adhensive forthe Manufacture of Reconstituted Wood. Journal of Wood Chemistry and Technology,1994,14(1):127-145
    [14] J. Marton, T. Marton, S. I. Falkchag, E. Adler.“Alkali-Catalyzed Reactions of Formaldehyde withLignins,” In: Lignin Structure and Reactions. Advances in Chemistry Series59,American ChemicalSociety,Washington,D.C.,1996,125-144
    [15] A. Pizzi, F. A. Cameron, G. H. Klashorst.“Soda Bagasse Lignin Adhensive for Particleboard,” In:Adhesives from Renewable Resources, ACS Symposium Series385,Washington,D.C.,1989,82
    [16] A.U. Buranov, G.Mazza. Lignin in Straw of Herbaceous Crops. Industrial Crops and Products,,2008,28(3):237-259
    [17]孙其宁,秦特夫,李改云.木质素活化及在木材胶粘剂中的应用进展.高分子通报,2008,(9):55-60
    [18] A. Effendi, H. Gerhauser, A. V. Bridgwater. Production of Renewable Phenolic Resins byThermochemical Conversion of Biomass: a review. Renewable and Sustainable Energy Reviews,2008,12:2092-2116
    [19]刘纲勇,邱学青,邢德松.麦草碱木素酚化改性及其制备LPF胶粘剂工艺研究.高校化学工程学报,2007,21(4):678-684
    [20] V.Sudan. Process Fur Preparing a Black Liquor-Phenol form Aldehyde Thermoset Resin.USP:6632912,2003
    [21]赵斌元,胡克鳌,吴人洁.木质素磺酸钠的酚化改性初步研究.高分子材料科学与工程,2000,16(1):158-161
    [22]方桂珍,李丽英,任世学.钯/炭催化剂对碱木质素还原反应的催化作用.中国造纸学报,2004,19(2):129–133
    [23]方桂珍,徐凤英,任世学等. CuO/C催化还原碱木质素的化学结构特征.中国造纸学报,2007,22(1):42–44
    [24]陈克利.一种酚类系列物质的制备方法. CN1583695,2005
    [25] K. C. Li, X. L. Geng. Formaldehyde-Free Wood Adhesives from Decayed Wood. Macromol. RapidCommun.,2005,26(7):529–532
    [26]孙其宁.利用褐腐木材制备无醛胶黏剂的研究.中国林业科学研究院硕士学位论文,2009.
    [27] Wahyudiono, Sasaki, M., M. Goto. Recovery of Phenolic Compounds Through the Decomposition ofLignin in Near and Supercritical Water. Chemical Engineering and Processing,2008,47:1609-1619
    [28] N.E. Mansouri, J.Salvadó. Structure Characterization of Technical Lignins for the Production ofAdhesives: Application to Lignosulfonate, Kraft, Soda-Anthraquinone, Organosolv and Ethanol Processlignins. Industrial Crops and Products,2006,24:8-16
    [29] J. D. Benign, I. S.Goldstein. Neutral Hydrolysis of Alkali Lignin to Monomeric Phenols. Journal ofPolymer Science: Part C,1971,36:467-475
    [30] J. Li, G. Henriksson, G. Gellerstedt. Lignin Depolymerization/Repolymerization and Its Critical Role forDelignification of Aspenwood by Steam Explosion. Bioresource Technology,2007,98:3061-3068
    [31] V. M. Roberts. Homogeneous and heterogeneous catalyzed hydrolysis of lignin. Technische Universit tMünchen,doctoral dissertation,Munich,2008
    [32] T. Malutan, R. Nicu, V. I. Popa. Contribution to the Study of Hydroxymethylation Reaction of AlkaliLignin. BioResources,2008,3(1):13-20
    [33]穆有炳,王春鹏,赵临五等.低游离甲醛羟甲基化木质素磺酸盐-酚醛复合胶黏剂研究.林产化学与工业,2009,29(3):38-42
    [34]林再雄,欧阳新平,杨东杰等.羟甲基化对合成木质素改性酚醛胶粘剂性能的影响.世界科技研究与发展,2010,32(3):348-351
    [35] M. V. Alonso, M. Oliet, F. Rodríguez, et al. Use of a Methylolated Softwood AmmoniumLignosulfonate as Partial Substitute of Phenol in Resol Resins Manufacture. Journal of AppliedPolymer Science,2004,94:643-650
    [36] G.Vázquez, J.González, F. G.Antorrena. Effect of chemical modification of lignin on the gluebondperformance of lignin-phenolic resins. Bioresource Technology,1997,60:191-198
    [37] M. Olivares, J. A. Guzmán, A. Natho, et al. Kraft Lignin Utilization in Adhensives.Wood Sci.Technol.,1988,22:157-165
    [38] R. Bernini, M. Barontini, P. Mosesso, et al. A Selective De-O-methylation of Guaiacyl Lignans toCorresponding Catechol Derivatives by2-iodoxybenzoic acid (IBX). The Role of the Catechol Moietyon the Toxicity of Lignans. Organic&Biomolecular Chemistry,2009,7:2637-2377
    [39] J. C. Villar, A. Caperos, F.García-Ochoa. Oxidation of Hardwood Kraft-Lignin to Phenolic DerivativesNitrobenzene and Copper Oxide as Oxidants. Journal of Wood Chemistry and Technology,1997,17(3):259-285
    [40] A. A. Geronikaki, K. A. Abduazimov. An Investigation of the Hydrochloric Acid Lignin of CottonStems. Chemistry of Natural Compounds,1975,11(5):677-678
    [41] N. V. Kuznetsova, L. S. Smirnova, K. A. Abduazimov. A Study of Cotton Lignin. Chemistry of NaturalCompounds,1972,8(1):96-98
    [42] N. Morohoshi, W. G. Glasser. The Structure of Lignins in Pulps. Part4:Comparative Evaluation of FiveLignin Depolymerization Techniques. Wood Science and Technology,1979,13:165-178
    [43] Q. Xiang, Y. Y. Lee. Oxidative Cracking of Precipitated Hardwood Lignin by Hydrogen Peroxide.Applied Biochemistry and Biotechnology,2000,84-86:153-162
    [44]田震.碱木质素的化学改性及其作为减水剂的应用基础研究.华南理工大学博士学位论文,2003
    [45]陈云平,方润,程贤甦.固体超强酸催化降解木质素的研究.纤维素科学与技术,2008,16(3):9-13
    [46]李忠正,任承霞,王海燕.不同氧化剂对禾草类碱木质素结构变化的影响.中国造纸学报,2006,21(3):1-5
    [47]任承霞,李忠正.麦草碱木质素的氧化降解及产物特性的研究.林产化学与工业,2001,21(4):49-54
    [48]王海燕,倪宁晖,李忠正等.麦草碱木素复合臭氧氧化改性及应用性能的研究.中国造纸学报,2005,20(1):101-105
    [49] W. A. Herrmann, R. W. Fischer."Polymerization" of an Organometal Oxide: the Unusual Behavior ofMethyltrioxorhenium(VII) in Water. J. Am. Chem. Soc.,1995,117:3223-3230
    [50] W. A. Herrmann, H. S. GENIN, K. A. Lawler, et al. Polymeric Methyltrioxorhenium: Some Models forIts Electronic Structure. J. Am. Chem. Soc.,1995,117:3244-3252
    [51] C. Crestini, M. C. Caponi, D. S. Argyropoulos, et al. Immobilized Methyltrioxo Rhenium (MTO)/H2O2Systems for the Oxidation of Lignin and Lignin Model Compounds. Bioorganic&MedicinalChemistry,2006,14:5292–5302
    [52]谌凡更,李静.碱木素硫化反应以及木素酚醛树脂固化性能的研究.纤维素科学与技术,2000,8(2):1-6
    [53] X. N.An, H. A.Schroeder, G. E. Thompson. Demethylated Kraft Lignin as a Substitute for Phenol inWood Adhesive. Chemistry and Industry of Forest Products,1995,15(3):36-42
    [54] S. B. Wu, H. Y. Zhan. Characteristics of Demethylated Wheat Straw Soda Lignin and Its Utilization inLignin-based Phenolic Formaldehyde Resins. Cellulose Chemistry and Technoligy,2001,35:253-262
    [55]陈克利,任承霞,石淑兰等.桦木硫酸盐木素的改性及树脂的合成研究.环境化学,1999,1(85):464-470
    [56] L. S. Yang, N.J. Hightstown.Demethylated lignin and process, US.P.4250088.1981
    [57] http://wenku.baidu.com/view/882d6da3b0717fd5360cdcd3.html.
    [58] http://www.cnbaowen.net/news/show/6592/.
    [59] W. M. Yu, Application of Bakelite Foam Plastic in Outwall Insulation and Fireproof. PaintingElectroplating,2011,(6):19-21
    [60]钱伯章.酚醛泡沫塑料新产品新应用.国外塑料,2011,29,(3):36-41
    [61]王军晓.可发性酚醛树脂合成及泡沫体性能研究.青岛科技大学硕士学位论文,2005
    [62]王志才,白培康.酚醛泡沫及其复合材料的研究与应用进展.工程塑料应用,2011,39(5):106-109
    [63]林巧佳,刘景宏,杨桂娣等.用硫酸盐纸浆黑液制木材胶粘剂.中国造纸学报,2005,20(1):106-120
    [64] M. V. Alonso, M. Oliet, F. Rodríuez, et al. Modification of Ammonium Lignosulfonate by Phenolationfor Use in Phenolic Resins. Bioresour Technology,2005,96(9):1013-1018
    [65] R. E. Ysbrandy, R. D. Sanderson, G. E. R. Gerischer. Adhesives from Autohydrolysis Bagasse Lignin, aRenewable Resource. Part1.The physical Properties of Laminates Made with Phenolated LigninNovalacs. Holzforchung,1992,46(3):249-252
    [66]张文博,牛敏,孙丁阳.意大利杨树皮苯酚液化物制备酚醛发泡材料.林产化学与工业,2009,增刊,129-132.
    [67] S. H. Lee, Y.Teramoto, N. Shiraishi, Resol Type Phenolic Resin from Liquefied Phenolated Wood andIts Application to Phenolic Foam. J. Appl. Polym. Sci.,2002,84:468-472
    [68]郑志锋.核桃壳树脂化基础研究.东北林业大学,博士学位论文,2006
    [69] Y. B. Huang, Z. F. Zheng, H. Pan. Phenolic Poam from Liquefied Products of Walnut Shell in Phenol.Advanced Materials Research,2011,236-238:241-246
    [70]张金萍,杜孟浩,王敬文.竹粉苯酚液化物制备酚醛泡沫塑料技术研究.安徽农业科学,2010,38(28):15710-15713
    [71] M. A. Khan, S. M. Ashraf, V. P.Malhotra. Eucalyptus Bark Lignin Substituted Phenol FormaldehydeAdhesives: a Study on Optimization of Reaction Parameters and Characterization. Journal of AppliedPolymer Science,2004,92:3514-3523
    [72] N. E. E. Mansouri, X. Farriol, J. Salvadó. Structural Modification and Characterization ofLignosulfonate by a Reaction in an Alkaline Medium for Its Incorporation into Phenolic Resins. Journalof Applied Polymer Science,2006,102(4):3286-3292
    [73] Y. Q. Jin, X. S. Cheng, Z. B.Zheng. Preparation and Characterization of Phenol–FormaldehydeAdhesives Modified with Enzymatic Hydrolysis Lignin. Bioresource Technology,2010,101:2046-2048
    [74]程贤甦.酶解木质素或它的衍生物改性酚醛发泡材料及其制备方法. CN101269930A,2008
    [75]储富祥,许玉芝,王春鹏等.发泡用木质素甲阶酚醛树脂及其制法. CN101985492A,2010
    [76] C. G. Dos-Santos, M. A. Costa, W. A. D. Morais, V. M. D. Pasa. Phenolic Foams from Wood Tar Resols.Journal of Applied Polymer Science,2010,115:923-927
    [77] J. P.Basbagill. Fbier Reinforced Phenolic Foam:Climatic Effects on Mechanical Properties and BuildingApplications in Northern Thailand. University of Southern California,Naster Dissertation,2008
    [78]罗学刚.高纯木质素提取与热塑改性.北京:化学工业出版社,2008
    [79] K. Lundquist, B. Ohlsson, R. Simonson. Isolation of lignin by means of lignin liquid extraction. Svensk.Papperst,1977,80:143-144
    [80]郭京波,陶宗娅,罗学刚.竹木质素的红外光谱与X射线光电子能谱分析.化学学报,2005,63(16):1536-1540
    [81]刘贵生.木质素官能团分析.哈尔滨:东北林业大学出版社,1996
    [82] G. F. Zakis. Functional Analysis of Lignins and Their Derivatives. Atlanta:Tappi Press,1994
    [83] J.P.凯西.纸浆造纸工艺学.第三版,第一卷,轻工业出版社,1988
    [84] W. G. Glasser, R. K. Jain. Lignin Derivaties. I. Alkanoates. Holzforschung,1993,47:225-233
    [85]焦艳华.改性木质素磺酸盐的合成及其在三次采油中的应用研究.大连理工大学博士学位论文,2005
    [86] T. Okamoto, H. Takeda, T. Funabiki, et al. Fundamental Studies on the Development of Lignin-basedAdhensives. I. Catalytic Demethylation of Anisole with Molecular Oxygen. React React. Kinet. Catal.Lett.,1996,58(2):237-242
    [87] A.Nadif, D.Hunkeler, P.Kaauper. Sulfur-free Lignins from Alkaline Pulping Testedin Mortar forIndustrial Applications IPPA:Quarterly Journal of Indian Pulp and Paper Technical Association,2001,(13):49-54
    [88] A. Bj rkman. Studies on Finely Divided Wood, part I. Extraction of Lignin with Neutral Solvents.Svensk. Papperst,1956,59:477-485
    [89]刘全校.碱法制浆黑夜中木质素综合利用的研究.天津轻工业学院博士学位论文,2001.
    [90] R.E.Hage, N. Brosse, L. Chrusciel, et al. Characterization of Milled Wood Lignin and EthanolOrganosolv Lignin from Miscanthus. Polymer Degradation and Stability,2009,94(10):1632-1638
    [91] F. Xu, J.X.Sun, R.C. Sun, et al. Comparative Study of Organosolv Lignin from Wheat Straw. IndustrialCrops and Products,2006,23(2):180-193
    [92] M. Theodor, N. Raluca, I. P. Valentin. Contribution to the Study of Hydroxymetylation Reaction ofAlkali Lignin. Bioresources,2008,3(1):13-20
    [93] Q.N. Sun, T.F. Qin, G.Y. Li. Chemical Groups and Structural Characterization of Brown-rotted PinusMassoniana Lignin. International Journal of Polymer Anal. Charact,2009,14:19-33
    [94]田震.碱木质素的化学改性及其作为减水剂的应用研究基础.华南理工大学博士学位论文,2003
    [95]孙勇,周海涛,周莉莉等.白腐菌改性木质素的化学反应活性研究,全国生物化工技术发展研讨会,2010
    [96]孙勇,张金平,杨刚等.玉米秸秆木质素氧化与改性的研究.光谱学与光谱分析,2007,27(10):1997-2000
    [97]杨东杰,杜艳刚,付尽国等.蔗渣木质素磺酸镁的结构特征与表面物化性能.化工学报,2010,61(7):1859-1865
    [98] C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, et al. Lignins as Macromonomers for PolyurethaneSynthesis: a Comparative Study on Hydroxyl Group Determination. Journal of Applied PolymerScience,2008,109:3008-3017
    [99] A. Gartner, G. GeUerstedt, T.Tamminen. Determination of Phenolic Hydroxyl Groups in ResidualLignin Using a Modified UV-method. Nordic Pulp Paper Research Journal,1999,14:163
    [100]方惠群,于俊生,史坚.仪器分析.北京:科学出版社,2001
    [101]姚燕,王树荣,郑赞等.基于热红联用分析的木质素热裂解动力学研究.燃烧科学与技术.2007,13(1):50-53
    [102]梁文学,邱学青,欧阳新平,杨东杰.磺化麦草碱木质素热分析动力学研究.中国科学院研究生院学报,2007,24(2):174-177
    [103] W. J. Lee,K. C. Chang, I. M. Tseng. Properties of Phenol-Formaldehyde Resins Prepared fromPhenol-Liquefied Lignin. Journal of Applied Polymer Science,2011,124(6):4782-4788
    [104]吴书彬,谭扬,郭伊丽等.黑液的热失重特性及其动力学研究.华南理工大学学报(自然科学版,2007,13(1):59-63
    [105] L. H. Hu, H. Pan, Y. H. Zhou,et al. Methods to Improve Lignin Reactivities as Phenol Substitute andOther Phenolic Compounds: a Mini-Review. Bioresources,2011,6(3):3515-3525
    [106] L. H. Hu, Y. H. Zhou, R.J Liu, et al. Progress of Production of Phenolic Compounds Via OxidativeDegradation of Lignin. Biomass Chemical Engineering,2012,46(1):23-33
    [107] C. Amen-Chen, H. Pakdel, C. Roy. Production of Monomeric Phenols by Thermochemical Conversionof Biomass: a Review. Bioresource Technology,2001,79:277-299
    [108] A. Effendi, H. Gerhauser, A. V. Bridgwater. Production of Renewable Phenolic Resins byThermochemical Conversion of Biomass: a Review. Renew. Sust. Energ. Rev.,2008,12:2092-2116
    [109] T. Malutan, R. Nicu, V. I. Popa. Contribution to the Study of Hydroxymethylation Reaction of AlkaliLignin. BioResources,2008,3(1):13-20
    [110]张录达,王韬,杨丽明等.傅里叶变换近红外全谱回归分析的应用研究.光谱学与光谱分析,2005,25(12):1959-1962
    [111]李改云,黄安民,王戈等.近红外光谱法快速测定毛竹Klason木质素的含量.光谱学与光谱分析,2007,27(10):1977-1980
    [112]李改云,黄安民,秦特夫.毛竹化学成分光谱分析的快速建模方法研究.光谱学与光谱分析,2009,29(7):1868-1871
    [113]江泽慧,黄安民,王斌.木材不同切面的近红外光谱信息与密度快速预测.光谱学与光谱分析,2006,26(6):1034-1037
    [114]江泽慧,黄安明.木材中的水分及其近红外光谱分析.光谱学与光谱分析,2006,26(8):1464-1468
    [115]杨忠,江泽慧,费本华. SIMCA法判别分析木材生物腐朽的研究.光谱学与光谱分析,2007,27(4):686-690
    [116]江泽慧,李改云,王戈.近红外光谱法测定毛竹综纤维素的含量研究.林产化学与工业,2007,27(1):15-18
    [117] M.V. Alonso, M. Oliet, F. Rodríguez, et al. Modification of Ammonium Lignosulfonate byPhenolation for Use in Phenolic Resins. Bioresource Technology,2005,96,1013-1018
    [118]李云雁,胡传荣.试验设计与数据处理.北京:化学工业出版社,2005
    [119]冯国东,周永红,郭晓昕等.响应面分析法优化木材微博液化的工艺研究.纤维素科学与技术,2009,17(4):21-30
    [120]梁凌云.秸秆热化学液化工艺和机理的研究.中国农业大学博士学位论文,2005
    [121] R.Yá ez, J. L. Alonso, J. C. Parajo. Enzymatic Saccharification of Hydrogen Peroxide-TreatedSolids from Hydrothermal Processing of Rice Husks. Process Biochemistry,2006,41:1244-1252
    [122] G. Vázquez, J. González, S. F.&G. Antorrena. Effect of Chemical Modification of Lignin on theGluebond Performance of Lignin-Phenolic Resins. Bioresource Technology,1997,60:191-198
    [123]郑志锋,陈浪,邹局春等.核桃壳木质素与甲醛反应能力的研究.中国胶粘剂,2006,15(9):23-26
    [124]罗朝霞.高性能酚醛泡沫的合成与制备研究.北京化工大学硕士学位论文,2007
    [125]朱殿奎,李晴,沈志明等.外墙外保温用栲胶改牲酚醛树腊泡沫的研究.新型建筑材料,2009,(7):75-78
    [126]金日光,华幼卿.高分子物理.北京:化学工业出版社,1999
    [127]张伟,庄晓伟,许玉芝等.甲醛/苯酚配比对可发性甲阶酚醛树脂性能的影响研究.应用化工,2010,39(7):970-974
    [128]穆有炳. E0级胶合板用工业木质素-酚醛树脂的制备、结构与性能研究.中国林业科学研究院硕士学位论文,2009
    [129]李改云.褐腐预处理木材的苯酚液化及产物的树脂化研究.中国林业科学研究院博士学位论文,2007
    [130]张求慧.木材的苯酚液化及其生成物的树脂化.北京林业大学博士学位论文,2005
    [131] X. M. Tan, N.Y. Huang, Y. H. Shang, et al. Synthesis and Characterization of Boron-Modified PhenolicResin Containing Large Hydromethyl Groups. China Plastics Industry,2001,29(4):6-8
    [132] B. Y. Zhao, K. A. Hu, R. J. Wu. Primary Study on the Phenolic Modification of SodiumLignosulphoate. Polymer Materials Science&Engineering,2001,16(1):158-161
    [133]林明涛.松香-丙烯酸酯复合高分子乳液的制备、结构与性能的研究.中国林业科学研究院,博士学位论文,2007
    [134] H. B. Shen. Toughening of Phenolic Foam. University of Southern California, Doctor Dissertation,2003
    [135] K. R. Denslow, G. K. Rickle. Surfactant Effects in Phenolic Foam Resins. Joumal of Celluar Plastic,1989,25(1):31-42
    [136]孙中心,王雷,李东风.酚醛泡沫塑料制备和性能研究.塑料工业,2007,35(8):46-49
    [137]欧阳昆,吴幼青,吴诗勇.酚醛泡沫的制备及改性研究.广西轻工业,2009,124(3):32-34
    [138]李守海.橡实基复合高分子材料的制备与性能研究.中国林业科学研究院博士学位论文,2011
    [139]唐路林,李乃宁,吴培熙.高性能酚醛树脂及其应用技术.北京:化学工业出版社,2008
    [140] L. J. Gibson, M. F. Ashby, J. Zhang, et al. Failure Surfaces for Cellular Materials under MultiaxialLoads.I.Modelling. International Journal of Mechanical Sciences,1989,31(9):980-990
    [141] L. J. Gibson, M. F. Ashby. Cellular Solids: Structure and Properties. Cambridge: Cambridge UniversityPress,1999
    [142] S. Goods, C.Neuschwanger, C. Henderson, et al. Mechanical Properties of CRETE, a PolyurethaneFoam. Journal of Applied Polymer Science,1998,68(7):1045-1055
    [143] C. Philip, T. Miller, T. Sina. Comperssive Properties of Rigid Polyurethane Foams. Polymers andPolymer Composites,1999,7(2):117-124
    [144]李斌,王建祺.聚合物材料燃烧性和阻燃性的评价-锥型量热仪(CONE)法.高分子材料科学与工程,1998,14(5):15-19
    [145]徐晓楠.新一代评估方法-锥型量热仪(CONE)法在材料阻燃研究中的应用.中国安全科学学报,2003,13(1):19-23
    [146]李斌.聚氯乙烯(PVC)的抑烟与阻燃.哈尔滨:东北林业大学出版社,2000,85-204
    [147] A. H. Charles.Handbook of building materials for fire protection.America:McGraw-Hill,2004,450-460
    [148]刘新民,张维丛,徐春霞.复合板用聚氨酯硬泡的研制.现代塑料加工应用,2004,16(1):3-7
    [149]李斌,孙才英,张秀成.用锥型量热仪研究聚乙烯膨胀阻燃体系的燃烧性.高等学校化学学报,1999,20(1):146-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700