生育后期养分胁迫对水稻衰老进程影响的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻既是世界重要的粮食作物之一,又是基因组学研究的模式材料,在生产实践和科学研究中都占有极其重要的地位。杂交水稻具有适应性广、多抗、高产、优质等特点,但部分杂交稻组合存在早衰现象,水稻早衰不仅影响后期干物质的生产和积累,也会影响前期积累的干物质转化为产量的实现,影响籽粒灌浆和干物质的运输与分配,最终阻碍产量潜力的发挥。杂交水稻早衰是一个相对复杂的生理生化过程,除受遗传因素影响外,环境条件也是水稻发生早衰的重要诱导因子。
     本研究采用双向电泳分离技术、蛋白质质谱分析技术以及生物信息学等手段,对养分胁迫下易早衰杂交早稻威优916灌浆期根、叶、叶鞘及籽粒蛋白质组的差异表达进行分析,探讨杂交水稻早衰机理及在不同组织器官中的代谢特征,是学科前沿与实际应用的有机结合,在科研和生产实践中都具有重要的意义。
     首先,不同处理下易早衰杂交早稻威优916根、叶、叶鞘及籽粒的四个时期可溶性蛋白经双向电泳分离,构建了相应器官的蛋白质组表达图谱,并对发生了差异表达的121个目的蛋白质点进行了MALDI-TOF-MS/MS分析和数据库检索鉴定,共有89个蛋白质功能得到鉴定,成功率为73.55%。这些被鉴定的蛋白质根据其功能可以分为6个不同类别,其中绝大数为光合作用、抗性及逆境信号传递、特定器官生长发育相关蛋白质。
     生育后期持续的养分胁迫,诱导了威优916剑叶中的部分蛋白质发生了差异表达,其中绝大部分为光合作用、信号传导及胁迫抗性相关蛋白质。与光合作用相关蛋白质如转酮醇酶、核酮糖二磷酸羧化酶/加氧酶大亚基、核酮糖磷酸盐羧化酶主链蛋白前体等在整个养分胁迫期间表达量均是大幅下降,表明叶片的光合能力显著下降,光合产物减少。信号传导及胁迫抗性相关蛋白质包括丝氨酸蛋白激酶、半胱氨酸合成酶及S-腺苷甲硫氨酸合成酶等,养分胁迫诱导了叶片中大量该类蛋白质的积累,表明叶片能够感知并传递外界胁迫信号,使其能够迅速启动逆境防御系统,最大限度的减少逆境伤害,而类胚素蛋白的高表达和过氧化氢酶类的低表达,会导致叶片中大量H202积累,从而破坏叶片的正常生理活动。
     叶鞘中受养分胁迫影响的蛋白质大部分为信号传导及胁迫抗性相关蛋白质,其次为光合作用相关蛋白质。信号传导及胁迫抗性相关蛋白质包括铁蛋白、分泌型过氧化物酶及谷胱甘肽硫转移酶等,养分胁迫导致叶鞘中这些保护酶类在处理两周后的表达量逐渐下调,而充分的养分供应则使叶鞘中保护酶表达量持续上调,意味着养分胁迫导致叶鞘的抗逆性减弱,而逆境响应蛋白质V型ATP酶和乙醇脱氢酶表达量上调表达,叶鞘感知胁迫加剧并传递信号。养分胁迫导致叶鞘中叶绿素合成受阻,直接参与光合作用蛋白质表达量下调,叶鞘光合能力下降。
     因养分胁迫而发生差异表达的根系蛋白质中,绝大部分为根系生长发育和逆境胁迫响应相关蛋白质。养分胁迫前中期诱导了威优916根系中包括阿拉伯呋喃糖苷酶、RGP蛋白、几丁质酶等根系生长类蛋白质的上调表达,从而促进了根系的快速分化和生长,是植物根系养分缺乏环境下的一种自我调节机制,通过增大根系吸收面积来提高吸收效率。逆境胁迫响应相关蛋白质包括甘油-3-磷酸脱氢酶、过氧化物酶植物凝集素等,这些蛋白质均为胁迫应激反应类蛋白质,这些蛋白质在根系中的上调表达,表明根系感知胁迫反应剧烈。
     养分胁迫对水稻的影响最终都会通过籽粒这个特定的器官表现出来,养分胁迫导致籽粒的结实率和千粒重显著下降。通过对籽粒的蛋白质组表达变化分析发现,养分胁迫诱导了威优916籽粒中的部分蛋白质发生了差异表达,其中绝大多数为籽粒充实发育相关蛋白质,如谷蛋白、WD40结构域蛋白、胚蛋白等,这类蛋白质在快速灌浆的前中期表达量下调,导致籽粒灌浆和胚发育不良。而籽粒中热激蛋白质Hsp70、半胱氨酸合成酶、分支酸变位酶等逆境抗性及信号传递蛋白质的差异表达,表明籽粒作为最终的“库”器官同样能够感知胁迫信号,但保护类蛋白质的下调表达也意味着植株的抗性减弱。
     本研究利用蛋白质组学方法来揭示养分胁迫对易早衰水稻不同器官组织的衰老进程影响,鉴定了一些发生了差异表达的蛋白质,通过对其功能及表达量变化的分析,为更好的理解水稻早衰生理代谢机理提供依据。
Rice is one of the most important staple food crops for human in the world, which plays important role in the agricultural production and scientific research. Besides, it is a model monocot for genome study. Hybrid rice has some merits such as broad adaptability, high resistance, high yield and quality. However, the phenomenon of premature senescence widely appears in the combination of inter-subspecific hybridization, which not only impacts the assimilation and accumulation of dry matter during late growth stage, but also affects the grains filling, dry matter transportation and distribution, hence decreases the potential of high yield. As a very complicated genetic physiological process, premature senescence can be induced by genetic and environmental factors.
     Hybrid rice Weiyou916was found to be easily induced for premature senescence under nutrient stress. Therefore, classical proteomic approaches including two-dimensional electrophoresis (2-DE), matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) and bioinformatics technique were used to analyze the differential expression proteomics of roots, leaves, leaf sheathes and grains of Weiyou916. in order to find out the premature senescence mechanism of hybrid rice and metabolism character in different tissues under nutrient stress. It would be the bridge between research prospect and practical application, and it would provide important value in the field of scientific research and agricultural production.
     The2-DE technology was used to determine the tissue proteome maps of roots, leaves, leaf sheathes and grains of Weiyou916at four different stages, respectively. Totally,121proteins were analyzed by MALDI-TOF/MS and database searching, among which89proteins were identified. The success ratio of proteins identification was73.55%. The identified proteins could be classified into6functional categories. Most of these proteins involved in photosynthesis, resistance, stress signal transportation, and tissue development.
     The proteins in flag leaves of Weiyou916performed differential expression under nutrient stress at late development stage. Most of these proteins involved in photosynthesis, signal transduction and resistance. The expression amount of proteins associated with photosynthesis such as transketolase, ribulose bisphosphate carboxylase and precursor of ribulose bisphosphate carboxylase main chain were greatly decreased under nutrient stress, which resulted in low photosynthetic rate and low accumulation of dry matter in flag leaves. Lots of proteins involved in signal transduction and resistance such as serine/threonine protein kinases, cysteine synthase and S-adenosylmethionine synthetase in Weiyou916flag leaves were induced and accumulated under nutrient stress, indicating that rice plant could immediately trigger off the resistance system by receptors and signal transduction, and that the great amount of expression on these proteins reduced the damage of stress. Nevertheless, the accumulation of H2O2in flag leaves were induced by high amount of germin-like protein and low amount of catalase, which disturbed the normal physiological activities of leaves.
     Most of proteins induced by nutrient stress in leaf sheathes were involved in signal transduction and stress resistance, and minority of proteins were related to the photosynthesis. The expression amount of proteins related to signal transduction and stress resistance including ferritin, secretory peroxidases and glutathione S-transferase were decreased under nutrient stress after two weeks, which indicated low resistance, but those enzymes in sheathes under full nutrient supply increased in expression. Vacuolar ATPase and alcohol dehydrogenase involved in stress response increased in protein expression, which showed that leaf sheathes could sense and transfer the environment stress information. The biosynthesis of chlorophyll and photosynthesis proteins in leaf sheathes were inhibited by nutrient stress, hence decreasing photosynthesis of leaf sheathes.
     Most of protiens with differential expression due to nutrient stress in roots were related to roots growth, development and stress resistance. Proteins involved in growth such as arabinofuranosidase. reversibly glycosylated polypeptide and chitinase have shown drastically increase in response to nutrient stress, which promoted root growth. It could attribute to the fact that roots had a self-regulation mechanism and enhanced the nutrient uptake by increasing the radicular absorption area under insufficient nutrient condition. GPDH. peroxidase and jasmonate-induced lectin were the proteins which associated stress resistance and stress response, and the increase of these proteins indicated that roots had a sensitive-receptor.
     Finally, nutrient stress resulted in low seed setting rate and1000-grain weight. The analysis of grain proteome by proteomics technology showed that nutrient stress resulted in differential expression in some proteins in grains. Among those proteins, some are associated with grain filling and development, such as glutelin, WD40domain and germin-like protein presented low expression, which resulted in low grain filling rate and germ dysplasia. However, the Hsp70protein, cysteine synthases and chorismate mutase involved in stress resistance and signal transduction showed low expression, which indicated that grains could receive the stress signal and attenuation resistance in plant.
     In this study, proteome was used to determine the effect of nutrient stress on rice tissues, valuable functional and abundant information of some differential expression proteins was analyzed and acquired. The results would contribute to a deep understanding on the mechanism of early-ageing hybrid rice.
引文
[1]王旭军,徐庆国,杨知建.水稻叶片衰老生理的研究进展[J].中国农学通报,2005,21(3):187-191
    [2]袁政,张大兵.植物叶片衰老的分子机制[J].植物生理学通讯,2002,38(4):417-421
    [3]段俊,梁成邺,黄毓文.杂交水稻开花结实期间的叶片衰老[J].植物生理学报,1997,23(2):139-144
    [4]梁建生,曹显祖.杂交水稻叶片的若干生理指标与根系伤流强度的关系[J].江苏农学院学报,1993,14(4):25-30
    [5]张其德,卢从明,张启峰,等.几种杂交组合杂交稻及其亲本光合特性的比较研究[J], 植物生理学报,1996,12(3):511-5161
    [6]Leshem Y Y. Oxygen free radicals and plant secenence [J]. Wheats New in Plant Physiol,1981.12: 1-41
    [7]李瑞,周玮,李丽,等.水稻叶片自然衰老过程中Rubisco大亚基的含量变化[J].中国水稻科学,2009,23(5):555-558
    [5]李晴,朱玉贤.植物衰老的研究进展及其在分子育种中的应用[J].分子植物育种,2003,1(3):289-296
    [8]Jiang D A, XuYF. Internal Dominant Factor for Declination of Photosynthesis during Rice Leaf Scenescence[J]. Journal of Zhejiang Agricultural University,1995,21(5):533-538
    [9]严建民.重穗型杂种稻光合特性及其超高产光合生理指标的探讨[D].南京:南京农业大学,2002
    [10]马林.植物衰老期间生理生化变化的研究进展[J].生物学杂志,2007,24(3):12-15
    [11]Martinc, Thimann K V. The role of protein synthesis in the secenence of leaves[J]. Plant Physiol,1972,49:64-71
    [12]焦德茂,李霞,黄雪清,等. 不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系[J].中国农业科学,2002,35(5):487-492
    [13]Bilger W, Bjorkman O. Temperature dependence of violaxanthin deepoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parvifora L.[J]. Planta,1991,184:226-234
    [14]李柏林,梅慧玉.燕麦叶片衰老与活性氧代谢的关系[J].植物学报,1989,15(1):6-12
    [15]王丹英,章秀福,邵国胜,等.不同叶色水稻叶片的衰老及对光强的响应[J].中国水稻科学,2008,22(1):77-81
    [16]Leshem Y Y. Oxygen free radicals and plam secenence [J]. Wheats New in Plan t Physiol,1981, 12-14
    [17]聂先舟,刘道宏,徐竹生.水稻旗叶脂质过氧化作用与叶龄及Ni2+,Ag+的关系[J].植物生理学通讯,1989,(2):32-34
    [18]林植芳,李双顺,林桂株,等.水稻叶片衰老与超氧化物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615
    [19]TANG Y L, WEN X G, LU C M.Differential changes in degradation of chlorophy Ⅱ protein complexes of photosystem I and photosystem Ⅱ during flag leaf senescence of rice[J]. Plant Physiology and Biochemistry,2005,43:193-201
    [20]翁晓燕,蒋德安, 张峰.水稻抽穗后剑叶衰老过程中光合关键酶的基因表达[J].植物生理与分子生物学学报,2002,28(4):311-316
    [21]黄发松.水稻根系生长生理与根系遗传育种研究[c].北京:中国农业出版社,1998
    [22]许乃霞,杨益花.抽穗后水稻根系活力与地上部叶片衰老及净光合速率相关性的研究[J].安徽农业科学,2009,37(5):1919-1921
    [23]许凤英,马均,王贺正,等.强化栽培条件下水稻的根系特征及其与产量形成的关系[J].杂交水稻,20(B,18(4):61-65
    [24]吴伟明,王一平,赵航,等.水稻不定根的穿鞘现象及其与叶片衰老的关系[J].中国农业科学,20(15,38(3):474-479
    [25]Watanabe A, Imaseki H. Changes in translantabele mRNA in senescing wheat leaves[J]. Plant Cell Physiol,1982,23(3):489-498
    [26]张丽霞,水稻叶片衰老相关基因的分离.硕士学位论文,福建农业大学,导师:李维明,薛勇彪,2000,pp:4446
    [27]Lee R H, Lin M C, Chen S C. A novel alkaline a-galactosidase gene is involved in rice leaf senescence[J].Plant Molecullar Biology,2004,55:281-295
    [28]Kong Z S, Li M N, Yang W Q, et al. A novel nuclear-localized CCCH-Type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice[J]. Plant Physiology,2006,141(4): 1376-1388
    [29]Yan H, Saika H, Maekawa M, et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J]. Genes& Genetic Systems,2007,82(4):361-366
    [30]Brown J H, Thompson J E. Physiological mechanisms of plant senescence[J]. New York: Academice press Inc,1991,229
    [31]王碧茜,范晓荣.徐国华,等.不同氮效率水稻品质旗叶的衰老特征[J].南京农业大学学报,2010,33(2):8-12
    [32]Demming B A W W, Logan B A, Verhosven A S. Xanthophy Ⅱcycle-dependent energy dissipation and flexible PHⅡ efficiency in plants acclimated to light stress[J]. Aust J Plant Physiol,1995,22:261-276
    [33]Lin J F, Wu S H. Molecular events in senescing Arabidopsis leaves[J]. Plant J,2004,39:612-628
    [34]Wang J, Wu S, Zhou Y, et al. Genetic analysis and molecular mapping of a presenescing leaf gene psll in rice(Oryza sativa L.)[J]. Chinese Science Bulletin,2006,51(24):2986-2992
    [35]武立权,沈圣泉,王荣富,等.水稻黄叶突变体光合特性的日变化[J].核农学报,2007,21(5):425-429
    [36]曹孟良,周智,张启发PSAG12—IPT转基因植物的抗早衰研究[J].云南大学学报(自然科学版),1999,21(4):25-26
    [37]袁政,潘爱虎,简志英,等.转基因(SAG12-IPT)青菜的迟衰特性[J].2002,植物生理与分子生物学学报,28(5):379-384
    [38]章家长,孙振元,李召虎,等.转SAG12-IPT基因结缕草的获得及其衰老特性分析[J],自然科学进展,2005,15(7):818-824
    [39]王亚琴,梁承邺.转PSAG12-ipt基因水稻延衰性能的初步研究[J].广西植物,2004,24(6):540-543
    [40]段永波,赵德刚.转ipt-bar双价基因水稻植株抗衰老特性研究[J].分子植物育种,2007,5(6):751-757
    [41]Cha K W, Lee Y J, Koh H J, etal. Isolation characterization and mapping of the stay green mutant in rice[J]. Theor. Appl. Genet.,2002,104:526-532
    [42]Jiang H W, Li M R, Liang N T, etal. Molecular cloning and function analysis of the stay green gene in rice[J]. Plant J.,2007,52(2):197-209
    [43]Fu J D, Lee B W. Changes in photosynthetic charactefisfics during grain filling of a functional stay-green rice SNU-SGI an d its Fl hybrids[J]. Journal of crop science and biotechnology,2008, 11(1):75-82
    [44]丁铮,李合松.植物叶片衰老的影响因素及调控研究进展[J].湖南农业大学学,2004,12(30):20-23
    [45]叶伟建.山区单季晚稻枯叶早衰矫治技术研究[J].土壤,2001,(5):257-267
    [46]邹应斌,贺帆,黄见良,等.包膜复合肥对水稻生长及营养特性的影响[J].植物营养与肥料学报,2005,]1(1):57-63
    [47]潘伟彬,李延.镁对水稻剑叶和根系衰老的影响[J].闽西职业大学学报,2000,(1):1-2
    [48]叶春升,罗奇祥,李祖章,等.不同钾肥品种在水稻防早衰上的应用[J].江西农业学报,2005,17(4):15-20
    [49]王有芬,周腰华,侯守贵,等.硅肥对水稻抗早衰的生理作用[J].安徽农学通,2006,12(10):110-112
    [50]郑圣先,聂军,戴平安,等.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响[J].植物营养与肥料学报,2006,12(2):188-194
    [51]文汉,聂凡.干旱对水稻抽穗后旗叶衰老和产量构成因子的影响[J].安徽农业大学学报,2000,27(2):135-137
    [52]马跃芳,陆定志.灌水方式对杂交水稻衰老及生育后期一些生理活性的影响[J].中国水稻科学,1990,4(2):56-62
    [53]朱练峰,刘学,俞盛苗,等.增氧灌溉对水稻生理特性和后期衰老的影响[J].中国水稻科学,2010,24(3):257-263
    [54]孙永建,孙园园,刘凯,等.水氮互作对结实期水稻衰老和物质运转及产量的影响[J].植物营养与肥料学报,2009,15(6):1339-1349
    [55]李名迪,魏东,颜满莲,等.水稻叶片的活性氧代谢及衰老调控[J].江西农业学报,2005.17(4):112-116
    [56]魏道智,戴新宾,许晓明,等.植物叶片衰老机理的几种假说[J].广西植物,1998,18(1):89-96
    [57]曾富华,罗泽民.赤霉素对杂交水稻生育后期剑叶中活性氧清除剂的影响[J].作物学报,1994,20(3):347-351
    [58]李伯林,梅慧生.燕麦叶片衰老和活性氧代谢关系[J].植物生理学报,1989, (15):6-9
    [59]张文学,彭春瑞,孙刚,等.不同外源激素对二晚后期叶片衰老的影响[J].江西农业学报,2007,19(2):11-13
    [60]吴冬云,朱碧岩,丁四兵,等.6-BA和GA对水稻后期衰老的影响[J].华南师范大学学报(自 然科学版),2003,119-123
    [61]杨知建,徐庆国,朱春生,等.6-BA处理对水稻根系中后期生长的影响[J].湖南农业大学学报(自然科学版),2009,35(5):462-465
    [62]陈国惠,严军,王光明,等.4PU-30对杂交水稻后期叶片衰老及再生芽萌发的影响研究[J].中国生态农业学报,2004,12(4):75-77
    [63]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry,1975,250:4007-4021
    [64]Kenned Y D. The importance of rice[J]. Science,2002,296(5565):13
    [65]Yu J, Hu S N, Wang J, etal. A draft sequence of the rice genome(Oryza sativa L. ssp. indica)[J]. Science,2002,296(5565):79-92
    [66]Goff S A, Riche D, LAN T H, etal. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J]. Science,2002, Apr 5,296(5565):92-100
    [67]Goff S A. Collaborating on the rice genome[J]. Science,2002, Apr 5,296(5565):45
    [68]Bennetzen J. The rice genome:Opening the door to comparative plant biology[J]. Science,2002 Apr 5,296(5565):60-63
    [69]Qi F, Zhang Y J, Hao P, etal. Sequence and analysis of rice chromosome 4[J]. Nature,2002, 420:312-316
    [70]Sasaki T, Matsumoto T, Yamamoto K, etal. The genome sequence and structure of rice chromosome [J]. Nature,2002,420:316-320
    [71]Shen S, Matsubae M, Takao T. A proteomic analysis of leaf-sheaths from rice [J]. Journal of Biochemisitry,2002,132(4):613-620
    [72]李兆伟,熊君,齐晓辉,等.水稻灌浆期叶片蛋白质差异表达及其作用机理分析[J].作物学报,2009,35(1):132-139
    [73]邵彩虹,王经源,林文雄.苗期水稻叶片发育进程的差异蛋白质组学分析[J].中国水稻科学,2008,41(11):3831-3837
    [74]Komatsu S, Muhammad A, Rakwal R. Separation and characterization of proteins from green and etiolated shoots of rice(OryzasativaL.):towards a rice proteome. Electrophoresis,1999,20: 630-63
    [75]Yang P F, Chen H, Liang Y, etal. Proteomic analysis of de-etiolated rice seedlings upon exposure to light[J]. Proteomics,2007,7:2459-2468
    [76]文李,刘盖,王坤,等.红莲型水稻细胞质雄性不育花粉总蛋白质初步比较分析[J].武汉植物学研究,2007,25(2):112-117
    [77]Yuzo N, Akira T, Kenichi K. Proteomic analysis of rice leaf, stem and root tissues during growth course[J]. Proteomics 2006, (6):3665-3670
    [78]Yang P F, Liang Y, Shen S H, Kuang T Y. Proteome analysis of rice uppermost internodes at the milky stage [J]. Proteomics 2006, (6):3330-3338
    [79]Zhao C F. Proteomic changes in rice leaves during development of field-grown rice plants[J]. Proteomics,2005, (5):961-972
    [80]Han F, Chen H, Li X J, etal. A comparative proteomic analysis of rice seedlings under various high-temperature stresses[J]. Biochimica et Biophysica Acta 2009,1794:1625-1634
    [81]Jagadish S V K, Muthurajan R, Oane R, etal. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)[J]. Journal of Experimental Botany.2010, 61(1):143-156
    [82]Guo Y and Song Y. Differential proteomic analysis of apoplastic proteins during initial phase of salt stress in rice[J]. Plant Signaling & Behavior,2009,4:2,121-122
    [83]Mushtaq R, Katiyar S, Bennett J. Proteomic Analysis of Drought Stress-Responsive Proteins in Rice Endosperm Affecting Grain Quality[J]. J. Crop Sci. Biotech.,2008,11(4):227-232
    [84]Salekdeh G H, Siopongco J, Wade L J, et al. A proteomic approach to an alyzing drought and salt responsiveness in rice[J]. Field Crops Research,2002,76:199-219
    [85]Salekdeh G, Siopongco J, Wade L, et al. Proteomic Analysis of Rice Leaves During Drought Stress and Recovery[J]. Proteomics,2002, (2):1131-1145
    [86]Zhang H X, Lian C L, Shen Z G. Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa[J]. Annals of Botany,2009,103:923-930
    [87]谢金水,邵彩虹,唐秀英,等.养分胁迫对籽粒灌浆期水稻叶片衰老影响的蛋白质组学分析[J].中国水稻科学,2011,25(2):143-149
    [88]谢金水,邵彩虹,唐秀英,等.养分胁迫对威优916生育后期叶鞘衰老影响的蛋白质组分析[J].华北农学报,2011,26(1):118-124
    [89]Rakwal R, Komatsu S. Role of jasmonate in the rice(Oryza sativa L) self-defense mechanism using proteome analysis[J]. Electrophoresis.2000,21:2491-2500
    [90]Oguchi k, Tanaka N, Komatsu S, etal. Methylmalonate-semialdehyde dehydrogenase is induced in auxin-stimulated and zinc-stimulated root formation in rice[J]. Plant Cell Report,2004, 22(11):848-858
    [91]Kim S T, Kang S Y, Kim S G, etal. Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds[J]. Proteomics,2008,8(17):3577-3587
    [92]Gu J Y, Wang Y, Zhang S H, etal. Identification of gibberellin acid-responsive proteins in rice leaf sheath using proteomics[J]. Front Bioscience,2010,15:826-839
    [93]Shen S, Kamatsu S. Charaterization of Proteins Responsive to Gibberellin in the Leaf Sheath of Rice(Oryza sativa L.)Seedling Using Proteome Analysis[J]. Biological and Pharmaceutical Bulletin,2003(26):129-136
    [94]Komatsu S, Muhammad A, RakwalAKWAL R. Separation and Characterization of Proteins from Green and Etiolated Shoots of Rice(Oryza sativa L.):Towards a Rice Proteome[J]. Electrophoresis,1999, (20):630-636
    [95]Kim ST, Cho KS, Yu S, Kim SG, etal. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension cultured rice cells[J]. Proteomics,2003, 3:2368-2378
    [96]Kim S T, Kang Y H, Wang Y, et al. Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor[J]. Proteomics,2009, (5): 1302-1313
    [97]Ventelon-Debout M, Delalande F, Brizard J P, etal. Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection[J]. Proteomics,2004,4(1):216-225
    [98]Hajduch M, Rakwal R, Garawal GK, etal. High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice(Oryza sativa L.) leave:drastic reductions/fragmentation of ribulose-1.5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins[J]. Electrophoresis,2001,22(13):2824-2831
    [99]田红英.邵继荣.孙敬三.水稻叶片火绿过程中Rubisco酶活性与其蛋白亚基的变化[J].川北教育学院学报.2002,12(1):61-63
    [100]彭新湘,彭少兵.水稻叶片在自然衰老过程中1,5-二磷酸核酮糖羧化酶/加氧酶的降解[J].植物生理学报,2000,26(1):46-52
    [101]王忠.植物生理学[M].中国农业出版社,1999,150
    [102]Rhee S G.Kang S W, Chang TS, etal. Peroxiredoxin.a novel family of peroxidases[J]. IUBMB Life,2001,52:35-41
    [103]冯燕飞,梁月荣.茶树S-腺苷甲硫氨酸合成酶基因克隆和序列分析[J].茶叶科学,2001,2(1):21-251
    [104]Woodson W R, Park K Y, Drory A, et al. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers[J]. Plant Physiol,1992,99:526-532
    [105]Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants[J]. Ann Rev Plant Physiol,1984,35:155-189
    [106]王丽,王晓丽,刘佳,等.植物草酸氧化酶及其基因的研究进展[J].中国农学通报,2010,26(7):48-51
    [107]Delisle M, Champoux M. Houde Characterization of Oxalate Oxidase and Cell Death in Al-Sensitive and Tolerant Wheat Roots[J]. Plant Cell Physiol.2001,42(3):324-333
    [108]刘雷,尹钧.硫氧还蛋白的研究[J].东北农业大学学报,2003,34(2):219-225
    [109]Broin M, and Rey P, Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS12-cysteine peroxiredoxin and increased lipid Peroxidation in thylakoids under photooxidative stress[J]. Plant Physiol,2003,132(3):1335-1343
    [110]刘明坤,刘关君,魏志刚,等.西伯利亚蓼半胱氨酸合成酶基因的克隆与表达[J].遗传,2008,30(10):]363-137
    [111]章波,向渝梅,白云.抗氧化蛋白Peroxiredoxin家族研究进展[J].生理科学进展,2004,35(4):352-355
    [112]杨洪强,接玉玲,李林光.脱落酸信号传导研究进展[J].植物学通报,2001,18(4):427-435
    [113]肖文娟,宾金华,武波.植物体内的MAPK[J]植物学通报,2004,21(2):205-215
    [114]Zhang S, Klessig D F. MAPK cascades in plant defense signaling[J]. Trends Plant Sci,2001, 6:520-527
    [115]Asai T, Tena G, Plomikova J, etal. MAP kinase signaling cascade in Arabidopsis innate immunity[J]. Nature,2002,415:977-983
    [116]马立安,张忠明.Ran的GTPase活性及其生物学功能研究进展[J].长江大学学报(自然科学版),2008,5(3):52-57
    [117]蔡红梅,肖景华,张启发,等.抑制表达谷氨酰胺合成酶基因对水稻氮代谢和生长发育的影响[J].科学通报,2010,55(10):875-886.
    [118]He Z H, LI J, Sundqvist C, etal. Leaf developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea[J]. Plant Physiology,1994,106:537-546
    [119]曹树青,翟虎渠,钮中一,等.不同产量潜力水稻品种的剑叶光合特性研究[J].南京农业大学学报,2000,23(3):1-4
    [120]Theil E C. Regulation of ferritin and transferrtin receptor mRNAs[J]. Journal Of Biological Chemistry,1990,265:4771-4774
    [121]Cairo G, Tacchini L. Induction of ferritin synthesis by oxidative stress. Transcriptional and posttranslational regulation by expansion of the free iron pool[J]. Journal Of Biological Chemistry,1995,270:700-703
    [122]Martiny-Baron G, Manolson M F, Poole R J, etal. Proton transport and phosphorylation of tonoplast polypeptides from zucchini are stimulated by the phospholipids platelet-activating factor[J]. Plant Physiology,1992,99:1635-1641
    [123]石之光,叶磊,巩鹏涛,等.乙醇脱氢酶(ADH)家族生物信息学分析[J].基因组学与应用生物学,2009,28(3):429-432.
    [124]Klaus W, Wieczorek B H. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation[J]. J Exp Biol,2006,29:577-589
    [125]Chen J G, Ullah H, Temple B, etal. RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis[J]. Journal of Experimental Botany,2006,57(11): 2697-2708
    [126]李大红,刘卉,杨艳丽,等.转反义OsRACK1基因增强水稻抗旱能力[J].植物学通报,2008,25(6):648-655
    [127]Song S Q, Fredlund K M, Moller I M. Changes in low molecular weight heat shock protein 22 of mitochondria during high-temperature accelerated ageing of Beta vulgaris L. seeds[J]. Acta Phytophysiologica Sinica,2001,27(1):73-80
    [128]王晓云,毕玉芬.植物苹果酸脱氢酶研究进展[J].生物技术通报,2006,(4):44-448
    [129]张经余,赵志虎,蔡民华GroEL分子伴侣研究进展[J].生物技术通讯,2001,12(2):127-129
    [130]邹承鲁.新生肽链及蛋白质折叠的研究[M].长沙:湖南科学技术出版社,1997,173-175
    []31]许成钢,范晓军,付月君,等.二硫键的形成与蛋白质的氧化折叠[J].中国生物工程杂志,2008,28(26s):259-264
    [132]Bulaj G. Formation of disulfide bonds in proteins and peptides[J]. Biotechnol Advance,2005, 23(1):87-92
    [133]刘建新,沈福泉,田丹青,等.擎天凤梨花器官全长cDNA文库的构建及EST分析[J].分子植物育种,2009,7(6):1137-1143
    [134]Claudia S G, Aaron F, Adriano N N, etal. Reduced Expression of Succinyl-Coenzyme A Ligase Can Be Compensated for by Up-Regulation of the y-Aminobutyrate Shunt in Illuminated Tomato Leaves[J]. Plant Physiology,2007,145(3):626-639
    [135]李雄彪,张金忠.半纤维素的化学结构和生理功能[J].植物学通报,1994,11(1):27-33
    [136]薛业敏,卢晨,毛忠贵,邵蔚蓝.阿拉伯糖苷酶基因的克隆、表达及表达产物的酶稳定性[J].中国农业科学,2003,8(5):9-13
    [137]Kanwarpal S D, Suresh C T, Peter M R. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis:Purification, gene cloning, and trans-Golgi localization[J]. Plant Biology,1997,94:7679-7684
    [138]Gupta A, Kumar P H, Dineshkumar T K, etal. Crystal Structure of Rv2118c:An AdoMet-dependent Methyltransferase from Mycobacterium tuberculosis H37Rv[J]. Journal of Molecular Biology,2001, PP:312,381-391
    [139]欧阳文石,赵开军,冯兰香.植物中几丁质酶的作用[J].生物学通报,2002,37(6):13-14
    [140]吕刚,纪青,展永,等.驱动蛋白及其研究进展[J].现代物理知识,2002,14(5):16-20
    [141]Mills E N. Allergens of The Cupin Superfamily[J]. Biochem Soc Trans.,2001,30(6):925-929
    [142]Carita N C. Structure and Biogenesis of The Cell Walls of Grasses[J]. Annu Rev Plant Physiol Plant Mol Biol.,1996,47:445-476
    [143]Kim H J, TriPlett B A. Cotton Fiber Germin-like Protein.1.Moleeular Cloning and Gene expression[J]. Planta,2004,218:516-524
    [144]Xavier Filho J. The Biological Roles of Serine and Cysteine Proteinase Inhibitors in Plants[J]. Revista Brasileira de Fisiologia Vegetal,1992,4(1):1-6
    [145]Beopoulos A, Mrozova Z, Thevenieau F, etal. Control of lipid accumulation in the yeast Yarrowia lipolytica[J]. Applied and Environmental Microbiology,2008.74(24):7779-7789
    [146]Gardocki M E, Jani N, Lopes J M. Phosphatidylinositol biosynthesis:biochemistry and regulation[J]. Biochimica et Biophysica Acta,2005,1735(2):89-100
    [147]Athenstaedt K, Daum G. Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae[J]. Journal of Bacteriology,1997,179(24):7611-7616
    [148]Larsson C, Paohlman IL, Ansell R, etal. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae[J]. Yeast,1998,14(4):347-357
    [149]Boy-Marcotte E, Lagniel G, Perrot M, etal. The heat shock response in yeast:differential regulations and contributions of the Msn2p/Msn4p and Hsfl P regulons[J]. Molecular Microbiology,1999,33(2):274-283
    [150]Panadero J, Pallotti C, Rodriguez-Vargas S, etal. A downshift in temperature activates the high osmolarity glycerol(HOG)pathway, Which determines freeze tolerance in Saccharomyces cerevisiae[J]. The Journal of Biological Chemistry,2006,281(2):4638-4645
    [151]Lee J, Godon C, Lagniel G, et al. Yapl and Skn7 control two specialized oxidative stress response regulons in yeast[J]. The Journal of Biological Chemistry,1999,274(23):16040-16046
    [152]Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science,2002, 7(9):405-410
    [153]Rouhier N, Jacquot JP. Plant peroxiredoxins:alternative hydroperoxide scavenging enzymes[J]. Photosynth Research,2002,74(3):259-268
    [154]Haslekas C, Stacy RA, Nygaard V, etal. The expression of a peroxiredoxin antioxidant gene, AtPerl, in Arabidopsis thaliana is seed-specific and related to dormancy[J]. Plant Molecular Biology,1998,36(6):833-845
    [155]Choi YO, Cheong NE, Lee KO, etal. Cloning and expression of a new isotype of the peroxiredoxin gene of Chinese cabbage and its comparison to 2Cys-peroxiredoxin isolated from the same plant[J]. Biochemistry Biophysics Research Communication,1999,258(3):768-771
    [156]Horling F, Konig J, Dietz K.J. Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana:its expression and activity in comparison with other peroxiredoxins[J]. Plant Physiology and Biochemixtry,2002,40(6-8):491-499
    [157]李晓玲,赵欣欣.植物基因组中的反转录转座子[J].春工业大学学报:自然科学版,2004,4(4):21-24
    [158]唐益苗,马有志.植物反转录转座子及其在功能基因组学中的应用[J].植物遗传资源学报,2005,6(2):221-225
    [159]石凤敏,云锦凤,赵彦,等.蒙古冰草基因类反转录转座子基因同源序列的克隆与序列分析[J].华北农学报,2010,25(6):52-56
    [160]BeguiristainT, Grandbastien M A, Puigdomenech P, et al. Three Tntl subfamilies show diferent stress -associated patterns of expression in tobacco:consequences for retrotransposon, control and evolutionin plants[J]. Plant Physiology,2001,127:212-221
    [161]Rashkova S, Karam S E, Pardue M L. Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm[J]. Proceedings of the National Academy of Sciences,2002,99:3621-3626
    [162]Van Damme, E.J.M., Rouge, etal. Carbohydrate-protein interactions:plant lectins. In Comprehensive Glycoscience-From Chemistry to Systems Biology[M].2007, Edited by Kamerling. J.P., Boons,125 G.J.. Lee, Y.C., Suzuki, A., Taniguchi, N., and Voragen, A.G.J. Elsevier, New York, in press
    [163]Van Damme, E.J.M., Barre, etal. Cytoplasmic/nuclear plant lectins:a new story[J]. Trends Plant Sci.,2004,9:484-489
    [164]Van Damme, E.J.M., Lannoo, N., etal. The identification of inducible cytoplasmic/nuclear carbohydrate-binding proteins urges to develop novel concepts about the role of plant lectins[J]. Glycoconjugate J,2004,20:449-460
    [165]吕桂云,郭绍贵,张海英,等.西瓜与枯萎病菌非亲和互作的表达序列标签分析[J].中国农业科学,2010,43(9):1883-1894
    [166]陈娟.水稻花后颖壳和果皮光合特性的研究[J].安徽农业科学,2009,37(13):5897-5900
    [167]顾蕴洁,王忠,陈娟,等.水稻果皮的结构与功能[J].作物学报,2002,28(4):439-444
    [168]宁书菊,赵敏,向小亮,等.不同氮素水平下水稻生育后期叶片和籽粒的蛋白质组学[J].应用生态学报,2010,21(10):2573-2579
    [169]Yamagishi K, Nagata N, Yee KM, et al. TANMEI/EMB2757 encodes a WD repeat protein required for embryo development in Arabidopsis[J]. Plant Physiology,2005,139:163-173
    [170]杨红玉,张学琴.拟南芥WD40蛋白[J].植物生理学通讯,2008,44(5):1025-1033
    [171]Gong Z, Dong CH. Lee H, et al. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis[J]. The Plant Cell,2005,17: 256-267
    [172]秦佳,杨金莹,伊淑莹,等.热激蛋白对细胞凋亡的调节作用[J].生命科学,2007,19(2):159-163
    [173]Notor G, Foyer C H. Acrorbate and glutathione:keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:249-279
    [174]Lappartient A G, Vidmar J J, Leustek T, et al. Inter-organ signaling in plants:regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound[J]. Plant Journal,1999,18(1):89-95
    [175]马立安,张忠明.Ran的GTPase活性及其生物学功能研究进展[J].长江大学学报(自然科学版),2008,5(3):52-57
    [176]高夕全,夏凯,周燮.温度胁迫对稻胚酯酶同工酶、蛋白质和内源脱落酸(ABA)水平的影响[J].安徽农业技术师范学院院报,1999,13(4):12-16
    [177]Gu R, Fonseca S, Puskas L G, et al. Transcript identification and profiling during salt stress and recovery of Populus euphratica[J]. Tree Physiology,2004,24(3):265-276
    [178]章波,向渝梅,白云.抗氧化蛋白Peroxiredoxin家族研究进展[J].生理科学进展,2004,35(4):352-355
    [179]Degrassi G, Devescovi G, Bigirimana J, et al. Xanthomonas oryzae pv. oryzae XKK.12 contains an AroQy chorismate mutase that is involved in rice virulence[J]. Phytopathology,2010,100(3): 262-270
    [180]陈娟,王忠,莫亿伟,等.水稻颖果充实与呼吸活性的关系[J].扬州大学学报(农业与生命科学版),2005,26(2):61-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700