无准则多维图像阈值分割算法——最优进化算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像阈值分割是图像分割中的重要技术之一,是一个古老而经典的图像处理问题,目前仍然是数字图像处理中的一个焦点问题。图像阈值分割的准确性将直接影响后续任务的有效性,是对图像进一步分析、识别的前提。作为一种传统的图像分割方法,图像阈值分割方法实现简单、计算量小、性能稳定,因而成为图像分割中最基本和应用最广泛的分割技术。本文分析了现有的图像阈值分割算法,与现有方法的研究思路不同,提出了无准则图像阈值分割算法——最优进化算法(Optimal Evolution Algorithm, OEA),并将算法推广到高维空间得到无准则高维图像阈值分割算法。本文的主要工作及创新点如下:
     (1)与现有图像阈值分割算法的研究思路不同,提出无准则图像阈值分割的概念。根据生物进化论和遗传算法理论,提出了最优进化方向存在的假设,并提出了最优进化方向必须具有进化的一致性和稳定性。
     (2)根据生物进化论和遗传算法,建立了种群进化模型和阈值更新模型,定义了编码规则、采样方法、种群的初始化方法、初始进化方向的设定方法、适值的计算和选择机制,实现了无准则图像阈值分割算法――最优进化算法。设计了大量实验验证了最优进化方向的存在,通过大量实验验证了种群受到最优进化方向的吸引最强烈,无需任何准则函数的指引即可找到最优进化方向,验证了最优进化方向是使得种群的进化最稳定的方向。各类图像的测试结果说明,OEA是有效的图像阈值分割算法。
     (3)针对OEA存在的问题,改进了算法的性能。在进一步细化种群进化模型的基础上,发现了种群进化中初始阈值和最优阈值的关系,改进了阈值更新模型,建立了阈值修正模型,得到了收敛迅速,收敛速度和计算结果稳定的OEA。改进后的OEA解决了当初始阈值随机选取时,OEA存在计算结果和迭代次数不稳定的问题;解决了当目标像素点与背景像素点的个数相差较大时,OEA得到的最优阈值易偏向于数量较多的一方,从而使分割结果中产生噪声的问题。用细化后的种群进化模型更清晰地表达了种群的进化过程,通过细化后的种群进化模型及大量的实验更进一步验证了假设的合理性。各类图像的测试结果表明,改进后的OEA的算法性能和分割效果有了显著提高,改进后的OEA是高效的无准则图像阈值分割算法。
     (4)在OEA的理论基础上,给合二维图像阈值分割思想,将OEA推广到二维,提出了一种通用的,无准则函数的二维图像阈值分割算法框架――二维最优进化算法(Two-dimensional Optimal Evolution Algorithm,2D-OEA)。实验结果表明2D-OEA是快速、稳定和有效的图像二维阈值分割算法,2D-OEA的算法性能和分割效果比1D-OEA有了显著提高。
     (5)针对目前的图像阈值分割方法仅限于一维或二维的现状,和高维空间中图像阈值分割算法面临的计算复杂度高和区域划分等问题,建立了法向量定向模型,提出了超体划分和超平面划分两种区域划分方法,实现了无准则高维图像阈值分割算法(N-dimensional Optimal Evolution Algorithm,ND-OEA)。提出的ND-OEA收敛迅速,收敛速度和计算结果稳定,算法复杂度远远小于高维图像阈值分割的理论算法复杂度( )
     O L2 N。用各类图像对ND-OEA的两种划分方式进行了测试,超体分划分随着空间维数的增高,目标丢失越来越严重;超平面划分方式的分割效果稳定。ND-OEA实现了无准则高维图像阈值分割算法,实现了高维空间中的快速图像阈值分割算法。随着空间维数的增高,ND-OEA越来越趋于反应图像中目标和背景的整体特性,细节越来越少,目标与背景的对比越来越强烈,符合人类视觉系统的信息选择机制,是一种智能化的算法。
     (6)将最优进化算法推广到了彩色图像阈值分割和灰度图像的边缘检测问题中,对3幅现有图像阈值分割方法难以得到理想分割效果的彩色图像进行了测试。实验结果表明,ND-OEA不需要进行颜色空间建模,也能自适应地在RGB空间找到最优分割面;基于ND-OEA的边缘检测方法提取出的边缘清晰、细节丰富、连通性好,是有效的边缘检测方法。
Image thresholding is one of the most classical and important techniques of image segmentation. It is an old but hot topic in digital image processing. Image thresholding is the pre-processing of most of image processing techniques. It will deeply affect the following image understanding or image analysis. As a traditional image segmentation method, image thresholding is one of the most basic and popular techniques of image segmentation, because of its simple process, low time complexity but efficient results. After analyzing most of image thresholding methods, this paper proposed an image thresholding algorithm without a criterion——the optimal evolution algorithm (OEA) which is different from other image thresholding methods. Furthermore, the optimal evolution algorithm has been extended to high dimensional space. The principal work and remarks of this paper are as follow:
     (1) Unlike other image thresholding algorithms, we try to find an image thresholding algorithm without a criterion. According to the theories of biological evolution and genetic algorithm, we assume that there exists an optimal evolution direction. The direction is consistent and stable in the evolution process.
     (2) According to the theories of biological evolution and genetic algorithm, we established the population evolution model and the threshold updating model. After defining the chromosomes’coding rule, the sampling method, the initialization method of the evolution direction, the fitness function and the selection mechanism, we proposed an image thresholding algorithm without a criterion—the optimal evolution algorithm. Experimental results show that the optimal evolution direction does exist; the population is strongly attracted by the direction; the direction is the most stable direction during the population’s evolution. The optimal evolution algorithm performs well in image thresholding experiments.
     (3) To solve the problems found in the experiments, we improve the optimal evolution algorithm. We discover the relationship between the initial threshold and the optimal threshold in biological evolution by detailed in the population evolution model. Based on the relationship, we improve the threshold updating model; establish a threshold modification model to obtain a fast and stable OEA. The improved OEA solved the problems that the optimal threshold obtained by OEA and the iterative times are unstable while randomly initialize the threshold; thresholding results contain some noise because the optimal threshold obtained by OEA is too close to the class which has more samples than the other. Detailed population evolution model supports the existence of the optimal evolution direction. Experimental results show that the improved OEA is much more efficient.
     (4) Based on theories of OEA and the idea of two-dimensional image thresholding methods, we extended OEA to two-dimensional space, and proposed an algorithm framework for two-dimensional image thresholding without a criterion—2D-OEA. Results show that 2D-OEA is a fast, stable and efficient image thresholding algorithm. Compared with 1D-OEA, the properties and the results of 2D-OEA are much better.
     (5) Image thresholding algorithm is one-dimensional or two-dimensional, because the computational complexity is too high and there is no corresponding region division method in high-dimensional space for image thresholding. To decrease computational complexity and find a region division method in high-dimensional space, we establish an orientation model of normal vector, and propose hypercubic division method and hyperplane division method in high-dimensional space for image thresholding. Based on these two region division methods in high-dimensional space, we proposed a high-dimensional image thresholding algorithm without a criterion—N-dimensional optimal evolution algorithm, ND-OEA. The ND-OEA has a rapid and stable convergence. The computational complexity of ND-OEA is much lower than ( )O L2 N which is the computational complexity of high-dimensional image thresholding algorithm in theory. Experimental results show that ND-OEA is a fast and efficient image thresholding algorithm. With the increasing of the space’s dimension, hypercubic division method is losing more and more pixels belonging to the object, but hyperplane division method’s thresholding results are stable. ND-OEA presents a multi-dimensional image thresholding algorithm without a criterion. It solves the problem of computational complexity in high-dimensional space. With the increasing of space’s dimension, the global relationship between the object and the background is getting more and more clear, details of the object are losing more and more seriously, but the contrast between object and background is getting more and more strong. ND-OEA’s thresholding results, which is strong contrast between the object and the background in high-dimensional space, are consistent with the selection mechanism of human visual system. So ND-OEA is an intelligent algorithm.
     (6) We apply ND-OEA to color image thresholding, and propose an edge detection algorithm based on ND-OEA. Three color images, whose objects are hardly segmented from the background by most image thresholding algorithm, are selected to test ND-OEA. Results show that ND-OEA can find the optimal hyperplane in color space without building a color space model; edge detection algorithm based on ND-OEA is an efficient edge detection algorithm, and edges detected by it have clear contours, rich details, nice connectivity.
引文
[1]罗彤.视觉感知启发的图像分割系统研究[D].浙江:浙江大学, 2008.
    [2] Marr David. Vision-A Computational Investigation into the Human Representation and Processing of Visual Information[M]. San Francisco: Freeman, 1982:
    [3]陈强.图像分割若干理论方法及应用研究[D].南京:南京理工大学, 2007.
    [4]潘建江.数字图像分割及变形技术研究[D].浙江:浙江大学, 2004.
    [5] Fu K. S.Mui, J. K. A survey of image segmentation[J]. Pattern Recognition, 1981, 13(1): 3-16.
    [6]王新成.高级图像处理技术[M].中国科学技术出版社, 2000:
    [7] Sezgin MehmetSankur, Bülent. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146-165.
    [8] Luessi M., Eichmann M., Schuster G. M., et al. New results on efficient optimal multilevel image thresholding[A]. In: Proceedings of 2006 IEEE International Conference on Image Processing, ICIP 2006, Proceedings[C]. New York: IEEE, 2006: 773-776.
    [9] Luessi M., Eichmann M., Schuster G. M., et al. Framework for efficient optimal multilevel image thresholding[J]. Journal of Electronic Imaging, 2009, 18(1): 013004-1-013004-10.
    [10] Carlotto M. J. Histogram analysis using a scale-space approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, PAMI-9(1): 121-129.
    [11] Sezan M. I. A peak detection algorithm and its application to histogram-based image data reduction[J]. Computer Vision, Graphics, and Image Processing, 1990, 49(1): 36-51.
    [12] Olivo J. C. Automatic threshold selection using the wavelet transform[J]. CVGIP: Graphical Models and Image Processing, 1994, 56(3): 205-218.
    [13] Ramesh N., Yoo J. H., Sethi I. K. Thresholding based on histogram approximation[J]. IEE Proceedings-Vision, Image and Signal Processing, 1995, 142(5): 271-279.
    [14] Guo R., Pandit S. M. Automatic threshold selection based on histogram modes and a discriminant criterion[J]. Machine Vision and Applications, 1998, 10(5-6): 331-338.
    [15] Davies E. R. Stable bi-level and multi-level thresholding of images using a new global transformation[J]. IET Computer Vision, 2008, 2(2): 60-74.
    [16] Kampke T., Kober R. Nonparametric optimal binarization[A]. In: Jain A. K., Venkatesh S., Lovell B. C. Proceedings of Proceedings Fourteenth International Conference on Pattern Recognition[C]. Brisbane, Qld., Australia: IEEE Comput. Soc, 1998: 27-29.
    [17] Jinhai Cai, Zhi-Qiang Liu. A new thresholding algorithm based on all-pole model[A]. In: Jain A. K., Venkatesh S., Lovell B. C. Proceedings of Proceedings Fourteenth International Conference on Pattern Recognition[C]. Brisbane, Qld., Australia: IEEE Comput. Soc, 1998: 34-36.
    [18] Rosenfeld A.de La Torre, P. Histogram concavity analysis as an aid in threshold selection[J]. IEEE Transactions on System Man Cybern, 1983, 13(2): 231-235.
    [19] Ridler T. W.Calvard, S. Picture thresholding using an iterative selection method[J]. IEEE Transactions on System Man Cybern, 1978, 8(2): 630-632.
    [20] Leung C. K.Lam, F. K. Performance analysis of a class of iterative image thresholding algorithms[J]. Pattern Recognition, 1996, 29(9): 1523-1530.
    [21] Trussel H. J. Comments on picture thresholding using iterative selection method[J]. IEEE Trans. Syst. Man Cybern, 1979, 9(1): 311-323.
    [22] Yanni M. K.Horne, E. A new approach to dynamic thresholding[A]. In: Proceedings of EUSIPCO’94: 9th European Conf. Sig. Process[C]. 1994: 34-44.
    [23] Antonio Dos Anjos, Reza Shahbazkia Hamid, Veloso A. Bi-level image thresholding - A fast method[A]. In: Proceedings of Funchal: INSTICC-INST SYST TECHNOLOGIES INFORMATION CONTROL & COMMUNICATION, AVENIDA D MANUEL L, 27A 2 ESQUERDO, SETUBAL, 2910-595, PORTUGAL, 2008: 70-76.
    [24] Dong Liju, Yu Ge, Ogunbona Philip, et al. An efficient iterative algorithm for image thresholding[J]. Pattern Recognition letters, 2008, 29(9): 1311-1316.
    [25] Otsu Nobuyuki. A threshold selection method from gray level histogram[J]. IEEE Transactions on System, Man and Cybernetics, 1979, 9(1): 62-67.
    [26] Kittler J.Illingworth, J. On threshold selection using clustering criteria[J]. IEEE Transactions on System and Man Cybernetics, 1985, SMC-15(5): 652-655.
    [27] Lee H.Park, R. H. Comments on an optimal threshold scheme for image segmentation[J]. IEEE Trans. Syst. Man Cybern, 1990, 20(741-742.
    [28] Liu J. Z.Li, W. Q. The automatic thresholding of gray-level pictures via two-dimensional Otsu method[J]. Acta Automatica Sin., 1993, 19(101-105.
    [29] Li L. Y., Gong J., Chen W. N. Gray-level image thresholding based on Fisher linear projection of two-dimensional histogram[J]. Pattern Recognition, 1997, 30(5): 743-749.
    [30] Chen Guo. The Fisher criterion function method of image thresholding[J]. Chinese Journal of Scientific Instrument, 2003, 24(6): 564-7, 576.
    [31] Lloyd D. E. Automatic target classification using moment invariant of image shapes. Farnborough, UK, 1985
    [32] Kittler J.Illingworth, J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19(1): 41-47.
    [33] Cho S.Haralick, R.Yi, S. Improvement of Kittler and Illingworths’s minimum error thresholding[J]. Pattern Recognition, 1989, 22(609-617.
    [34] Pun T. A new method for gray-level picture thresholding using the entropy of histogram[J]. Signal Processing, 1980, 2(1): 223-237.
    [35] Kapur J. N.Sahoo, P. K.Wong, A. K. C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics and Image Processing, 1985, 29(3): 273-285.
    [36] Shanbag A. G. Utilization of information measure as a means of image thresholding[J]. Comput. Vis. Graph. Image Process., 1994, 56(3): 414-419.
    [37] Wen-Bing Tao, Jin-Wen Tian, Jian Liu. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm[J]. Pattern Recognition letters, 2003, 24(16): 3069-3078.
    [38] Cheng H. D.Chen, Y. H.Sun, Y. A novel fuzzy entropy approach to image enhancement and thresholding[J]. Signal Process., 1999, 75(12): 277-301.
    [39]陈果,左洪福.图像分割的二维最大熵遗传算法[J]. 2002, 14(6): 530-534.
    [40] Sahoo P. K., Arora G. Image thresholding using two-dimensional Tsallis-Havrda-Charvát entropy[J]. Pattern Recognition letters, 2006, 27(6): 520-528.
    [41]吴一全,张金矿.基于改进的二维最大熵及粒子群递推的图像分割[J].计算机辅助设计与图形学学报, 2008, 20(10): 1338-1344.
    [42] Tang Y. G., Di Q. Y., Zhao L. X., et al. Image thresholding segmentation based on two-dimensional minimum Tsallis-cross entropy[J]. Acta Physica Sinica, 2009, 58(1): 9-15.
    [43] Tsai W. H. Moment-preserving thresholding: A new approach[J]. Graph. Models Image Process., 1985, 19(3): 377-393.
    [44] Cheng S. C.Tsai, W. H. A neural network approach of the moment-preserving technique and its application to thresholding[J]. IEEE Transactions on Computers, 1993, 42(3): 501-507.
    [45] Chen I. P., Lai M. Y., Wang L. L. An Improvement in the Moment-Preserving Thresholding Method[J]. International Journal of Imaging Systems and Technology, 2008, 18(5-6): 365-370.
    [46] Chen-Tsung Kuo, Da-Chun Wu, Shyi-Chyi Cheng. 3D triangular mesh watermarking for copyright protection using moment-preserving[J]. Proceedings of the 2009 Fifth InternationalConference on Intelligent Information Hiding and Multimedia Signal Processing. IIH-MSP 2009, 2009, 136-9.
    [47] Zhang Juan, Li Yibin, Song Rui, et al. Depth measurement of color object based on moment - preserving[J]. Computer Measurement & Control, 2007, 1458-1460.
    [48] Delp E. J.Mitchell, O. R. Moment-preserving quantization[J]. IEEE Trans. Commun., 1991, 39(3): 1549-1558.
    [49] Hertz L.Schafer, R. W. Multilevel thresholding using edge matching[J]. Comput. Vis. Graph. Image Process., 1988, 44(5): 279-295.
    [50] Srikanthan T.Asari, K. V. Automatic segmentation algorithm for the extraction of lumen region and boundary from endoscopic images[J]. Med. Biol. Eng. Comput., 2001, 39(1): 8-14.
    [51] Murthy C. A.Pal, S. K. Fuzzy thresholding: A mathematical framework, bound functions and weighted moving average technique[J]. Pattern Recogn. Lett., 1990, 11(3): 197-206.
    [52] Huang L. K.Wang, M. J. J. Image thresholding by minimizing the measures of fuzziness[J]. Pattern Recogn., 1995, 28(1): 41-51.
    [53] Yager R. On the measure of fuzziness and negation. Part I: Membership in the unit interval[J]. International Journal of General Systems, 1979, 5(1): 221-229.
    [54] Ramar K.Arunigam, S.Sivanandam, S. N.Ganesan, L.Manimegalai, D. Quantitative fuzzy measures for threshold selection[J]. Pattern Recogn. Lett., 2000, 21(1-7.
    [55]Russ J. C. Automatic discrimination of features in gray-scale images[J]. J. Microsc., 1987, 148(3): 263-277.
    [56] Pikaz A.Averbuch, A. Digital image thresholding based on topological stable state[J]. Pattern Recogn., 1996, 29(1): 829-843.
    [57] Leung C. K.Lam, F. K. Maximum segmented image information thresholding[J]. Graph. Models Image Process., 1998, 60(1): 57-76.
    [58] Rosenfeld A. The fuzzy geometry of image subsets[J]. Pattern Recognition Letters, 1984, 2(5): 311-317.
    [59] Pal S. K.Rosenfeld, A. Image enhancement and thresholding by optimization of fuzzy compactness[J]. Pattern Recognition Letters, 1988, 7(2): 77-86.
    [60] Liu Y.Fenrich, R.Srihari, S. N. An object attribute thresholding algorithm for document image binarization[A]. In: Proceedings of ICDAR’93: Proc. 2nd Intl. Conf. Document Anal. Recog.[C]. 1993: 278-281.
    [61] Liu Y.Srihari, S. N. Document image binarization based on texture analysis[J]. Proc. SPIE, 1994, 2181(15): 254-263.
    [62] Don H. S. A noise attribute thresholding method for document image binarization[A]. In:Proceedings of IEEE Conf. Image Process.[C]. 1995: 231-234.
    [63] Guo S. A new threshold method based on morphology and fourth order central moments[A]. In: Proceedings of Proc. SPIE[C]. 1998: 317-320.
    [64] Solihin Y.Leedham, C. G. Integral ratio: A new class of global thresholding techniques for handwriting images[J]. IEEE Transactions on Pattern Analysis and Machine Intellelligence, 1999, 21(8): 761-768.
    [65] Aviad Z.Lozinskii, E. Semantic thresholding[J]. Pattern Recognition Letters, 1987, 5(5): 321-328.
    [66]Gallo G.Spinello, S. Thresholding and fast iso-contour extraction with fuzzy arithmetic[J]. Pattern Recognition Letters, 2000, 21(1): 31-44.
    [67] Fernandez X. Implicit model oriented optimal thresholding using Kolmogorov-Smirnov similarity measure[A]. In: Proceedings of ICPR’2000: Intl. Conf. Patt. Recog.[C]. Barcelona: 2000: 466-469.
    [68] Kirby R. L.Rosenfeld, A. A note on the use of (gray level, local average gray level) space as an aid in threshold selection[J]. IEEE Trans. Syst. Man Cybern., 1979, 9(1): 860-864.
    [69] Fekete G.Eklundh, J. O.Rosenfeld, A. Relaxation: evaluation and applications[J]. IEEE Trans. Pattern Anal. Mach. Intell., 1981, 3(4): 459-469.
    [70] Rosenfeld A.Smith, R. Thresholding using relaxation[J]. IEEE Trans. Pattern Anal. Mach. Intell., 1981, 3(1): 598-606.
    [71] Leung C. K.Lam, F. K. Maximum a posteriori spatial probability segmentation[J]. IEEE Proc. Vision Image Signal Process., 1997, 144(161-167.
    [72] Friel N., Molchanov I. S. A new thresholding technique based on random sets[J]. Pattern Recognition, 1999, 32(9): 1507-1517.
    [73] Chanda B.Majumder, D. D. A note on the use of gray level co-occurrence matrix in threshold selection[J]. Signal Process., 1988, 15(5): 149-167.
    [74] Pal N. R.Pal, S. K. Entropic thresholding[J]. Signal Process., 1989, 16(2): 97-108.
    [75] Lie W. N. An efficient threshold-evaluation algorithm for image segmentation based on spatial gray level cooccurrences[J]. Signal Process., 1993, 33(1): 121-126.
    [76] Chang C.Chen, K.Wang, J.Althouse, M. L. G. A relative entropy based approach in image thresholding[J]. Pattern Recogn., 1994, 27(8): 1275-1289.
    [77] Abutaleb A. S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Comput. Vis. Graph. Image Process., 1989, 47(12): 22-32.
    [78] Brink A. D. Thresholding of digital images using two-dimensional entropies[J]. Pattern Recogn., 1992, 25(3): 803-808.
    [79] L Li J. GongChen, W. Gray-level image thresholding based on fisher linear projection of two-dimensional histogram[J]. Pattern Recogn., 1997, 30(13): 743-749.
    [80] Cheng H. D.Chen, Y. H. Thresholding based on fuzzy partition of 2D histogram[J]. Intl. Conf. Patt. Recog., 1998, 9(3): 1616-1618.
    [81] Brink A. D. Gray level thresholding of images using a correlation criterion[J]. Pattern Recognition Letters, 1989, 9(3): 335-341.
    [82] Brink A. D. Minimum spatial entropy threshold selection[J]. IEEE Proc. Vision Image Signal Process., 1995, 142(12): 128-132.
    [83] Cheng H. D.Chen, Y. H. Fuzzy partition of two-dimensional histogram and its application to thresholding[J]. Pattern Recogn., 1999, 32(5): 825-843.
    [84] Beghdadi A., Le Negrate A., Viaris de Lesegno P. Entropic thresholding using a block source model[J]. Graphical Models and Image Processing, 1995, 57(3): 197-205.
    [85] Nakagawa Y.Rosenfeld, A. Some experiments on variable thresholding[J]. Pattern Recogn., 1979, 11(3): 191-204.
    [86] Deravi F.Pal, S. K. Grey level thresholding using second-order statistics[J]. Pattern Recogn. Lett., 1983, 1(417-422.
    [87]Niblack W. An Introduction to Image Processing[M]. Prentice-Hall, Englewood Cliffs, NJ, 1986:
    [88] Sauvola J.Pietaksinen, M. Adaptive document image binarization[J]. Pattern Recogn., 2000, 33(8): 225-236.
    [89] Bernsen J. Dynamic thresholding of gray level images[A]. In: Proceedings of ICPR’86: Proc. Intl. Conf. Patt. Recog.[C]. 1986: 1251-1255.
    [90] Kamel M.Zhao, A. Extraction of binary character/graphics images from grayscale document images[J]. Graph. Models Image Process, 1993, 55(3): 203-217.
    [91] Palumbo P. W.Swaminathan, P.Srihari, S. N. Document image binarization: Evaluation of algorithms[A]. In: Proceedings of Proc. SPIE[C]. 1986: 278-286.
    [92] White J. M.Rohrer, G. D. Image thresholding for optical character recognition and other applications requiring character image extraction[J]. IBM J. Res. Dev., 1983, 27(4): 400-411.
    [93] Yasuda Y.Dubois, M.Huang, T. S. Data compression for check processing machines[A]. In: Proceedings of Proc. IEEE[C]. 1980: 874-885.
    [94] Yanowitz S. D.Bruckstein, A. M. A new method for image segmentation[J]. Comput. Graph. Image Process., 1989, 46(9): 82-95.
    [95] Shen D.Ip, H. H. S. A Hopfield neural network for adaptive image segmentation: An active surface paradigm[J]. Pattern Recogn., 1997, 18(5): 37-48.
    [96] Pal S. K.King, R. A.Hashim, A. A. Automatic gray level thresholding through index of fuzziness and entropy[J]. Pattern Recognition letters, 1983, 1(3): 141-146.
    [97] Jawahar C. V.Biswas, P. K.Ray, A. K. Investigations on fuzzy thresholding based on fuzzy clustering[J]. Pattern Recognition, 1997, 30(10): 1605-1613.
    [98] Cheng H. D., Chen Y. H., Jiang X. H. Thresholding using two-dimensional histogram and fuzzy entropy principle[J]. IEEE Transactions on Image Processing, 2000, 9(4): 732-735.
    [99] Tizhoosh Hamid R. Image thresholding using type II fuzzy sets[J]. Pattern Recognition, 2005, 38(12): 2363-2372.
    [100] Vlachos Ioannis K., Sergiadis George D. Comment on: "Image thresholding using type II fuzzy sets"[J]. Pattern Recognition, 2008, 41(5): 1810-1811.
    [101] Doyle W. Operations useful for similarity-invariant pattern recognition[J]. ACM, 1962, 9(2): 259-267.
    [102] Baidya Nath Saha, Ray N. Image thresholding by variational minimax optimization[J]. Pattern Recognition, 2009, 42(5): 843-856.
    [103] Bustince H., Barrenechea E., Pagola M. Image thresholding using restricted equivalence functions and maximizing the measures of similarity[J]. Fuzzy Sets and Systems, 2007, 158(5): 496-516.
    [104]陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报, 2007, 30(1): 110-119.
    [105] Tao W. B., Jin H., Zhang Y. M., et al. Image thresholding using graph cuts[J]. IEEE Transactions on Systems Man and Cybernetics Part a-Systems and Humans, 2008, 38(5): 1181-1195.
    [106] Wang Shitong, Chung Fu-lai, Xiong Fusong. A novel image thresholding method based on Parzen window estimate[J]. Pattern Recognition, 2008, 41(1): 117-129.
    [107]蔡珣,孟祥旭,郝兴伟,连莉,姜龙.一种基于物理反射模型颜色不变性的阈值分割算法[J].计算机学报, 2009, 32(2): 282-287.
    [108] Nakib A., Oulhadj H., Siarry P. Image thresholding based on Pareto multiobjective optimization[J]. Engineering Applications of Artificial Intelligence, 2010, 23(3): 313-320.
    [109] Yen Jui-ChengChang, Fu-JuayChang, Shyang. A New Criterion for Automatic Multilevel Thresholding[J]. IEEE Transactions on Image Processing, 1995, 4(3): 370-378.
    [110] Bazi Y., Bruzzone L., Melgani F. Image thresholding based on the EM algorithm and the generalized Gaussian distribution[J]. Pattern Recognition, 2007, 40(2): 619-634.
    [111] Hammouche K., Diaf M., Siarry P. A multilevel automatic thresholding method basedon a genetic algorithm for a fast image segmentation[J]. Computer Vision and Image Understanding, 2008, 109(2): 163-175.
    [112] Kaiping Wei, Tao Zhang, Xianjun Shen, et al. An Improved Threshold Selection Algorithm Based on Particle Swarm Optimization for Image Segmentation[A]. In: Proceedings of Haikou: 2007: 591-594.
    [113] Shi Zhen-gang, Gao Li-qun, Wan Kun. A Novel Approach to Image Enhancement and Thresholding Based on Fuzzy Theory[A]. In: Proceedings of 2007: 2201-2205.
    [114] Bo Lei, Jiu-Lun Fan. Parameter Selection of Generalized Fuzzy Entropy-Based Thresholding Segmentation Method with Particle Swarm Optimization[A]. In: Proceedings of Harbin: 2008: 901-904.
    [115] Wei Chen, Kangling Fang. Multilevel Thresholding Algorithm Based on Particle Swarm Optimization for Image Segmentation[A]. In: Proceedings of Kunming: 2008: 348-351.
    [116] Malisia A. R., Tizhoosh H. R. Image Thresholding Using Ant Colony Optimization[A]. In: Proceedings of Waterloo: 2006: 26- 31.
    [117] Ziyang Zhen, Zhisheng Wang, Yuanyuan Liu. Image thresholding method by minimizing fuzzy entropy function based on ant colony algorithm[A]. In: Proceedings of Wuhan: 2007: 308-311.
    [118] Bo Lei, Jiulun Fan. Parameter selection of generalized fuzzy entropy-based thresholding method with Quantum-Behavior Particle Swarm Optimization[A]. In: Proceedings of Shanghai: 2008: 546-551.
    [119] Huang Yourui, Wang Shuang. Multilevel Thresholding Methods for Image Segmentation with Otsu Based on QPSO[A]. In: Proceedings of Sanya: 2008: 701-705.
    [120] Xin Zhao, Myung-Eun Lee, Soo-Hyung Kim. Improved Image Thresholding Using Ant Colony Optimization Algorithm[A]. In: Proceedings of Dalian: 2008: 210-215.
    [121] Ahuja Narendra, Rosenfeld Azriel. A Note on the Use of Second-Order Gray-Level Statistics for Threshold Selection[J]. Systems, Man and Cybernetics, IEEE Transactions on, 1978, 8(12): 895-898.
    [122] Kirby Robert L., Rosenfeld Azriel. A Note on the Use of (Gray Level, Local Average Gray Level) Space as an Aid in Threshold Selection[J]. Systems, Man and Cybernetics, IEEE Transactions on, 1979, 9(12): 860-864.
    [123] Qing Wang, Zheru Chi, Zhao R. Image thresholding by maximizing of nonfuzziness of the 2D grayscale histogram[J]. Computer Vision and Image Understanding, 2002, 85(2): 100-116.
    [124] Yuksel M. E., Borlu M. Accurate Segmentation of Dermoscopic Images by Image Thresholding Based on Type-2 Fuzzy Logic[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(4): 976-982.
    [125] Li Cao, Bao P., Zhongke Shi. The strongest schema learning GA and its application to multilevel thresholding[J]. Image and Vision Computing, 2008, 26(5): 716-724.
    [126] Shu-Chien Huang. A multilevel thresholding method based on cross entropy and genetic algorithms[J]. 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC 2009), 2009, 385-388.
    [127] Holland John. Adaptation in natural and artificial systems[M]. University of Michigan, 1975: 1-228.
    [128] Grefenstette John J., Baker James E. How genetic algorithms work: a critical look at implicit parallelism[A]. In: Proceedings of Proceedings of the Third International Conference on Genetic Algorithm[C]. San Francisco: 1989:
    [129]温惠英,徐建闽,林正春.适于物流配送车辆导航路径优化的遗传算法[J].华南理工大学学报(自然科学版), 2009, 37(2): 82-86+91.
    [130] Abutableb Ahmed S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer Vision, Graphics and Image Processing, 1989, 47(1): 22-32.
    [131] Lo Bosco G. A genetic algorithm for image segmentation[A]. In: Proceedings of 2001: 262-266.
    [132] Zhengchun Lin, Zhiyan Wang, Yanqing Zhang. Image Thresholding Using Particle Swarm Optimization[A]. In: Proceedings of MultiMedia and Information Technology, 2008. MMIT '08. International Conference on[C]. 2008: 245-248.
    [133] Weszka J.Rosenfeld, A. Histogram Modification for Threshold Selection[J]. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9(1): 38-52.
    [134] Gong J. A., Li L. Y., Chen W. N. Fast recursive algorithms for two-dimensional thresholding[J]. Pattern Recognition, 1998, 31(3): 295-300.
    [135]刘健庄,栗文清.灰度图象的二维Otsu自动阈值分割法[J]. 1993, 19(1): 101-105.
    [136] Wen-Tsuen Chen, Chia-Hsien Wen, Chin-Wen Yang. A fast two-dimensional entropic thresholding algorithm[J]. Pattern Recognition, 1994, 27(7): 885-893.
    [137] Wu X. J., Zhang Y. J., Xia L. Z. A fast recurring two-dimensional entropic thresholding algorithm[J]. Pattern Recognition, 1999, 32(12): 2055-2061.
    [138] Ugarriza L. G., Saber E., Vantaram S. R., et al. Automatic Image Segmentation byDynamic Region Growth and Multiresolution Merging[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2275-2288.
    [139] Kay D. A., Tomasi A. Color Image Segmentation by the Vector-Valued Allen-Cahn Phase-Field Model: A Multigrid Solution[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2330-2339.
    [140] Haralick R.Zhuang, X. Image analysis using mathematical morphology[J]. IEEE Transactions on PAMI, 1987, 9(4): 532-550.
    [141] Márquez David A.Paredes, JoséL.García-Gabín, Winston. Nonlinear filters based on support vector machines[A]. In: Proceedings of IEEE, ICASSP[C]. 2007: 581-584.
    [142] Kass M., Witkin A., Terzopoulos D. Snakes: active contour models[A]. In: Proceedings of Proceedings of the First International Conference on Computer Vision (Cat. No.87CH2465-3)[C]. London, UK: IEEE Comput. Soc. Press, 1987: 259-268.
    [143] Xu ChenyangPrince, L. Jerry. Snake, shapes, and gradient vector flow[J]. IEEE Transactions on Image Processing, 1998, 7(3): 359-369.
    [144]马苗,樊养余,谢松云,郝重阳,黎新伍.基于灰色系统理论的图象边缘检测新算法[J].中国图象图形学报, 2003, 8A(10): 1136-1139.
    [145] Medina-Carnicer R., Carmona-Poyato A., Munoz-Salinas R., et al. Determining Hysteresis Thresholds for Edge Detection by Combining the Advantages and Disadvantages of Thresholding Methods[J]. IEEE Transactions on Image Processing, 2010, 19(1): 165-173.
    [146] Medina-Carnicer R., Madrid-Cuevas F. J., Carmona-Poyato A., et al. On candidates selection for hysteresis thresholds in edge detection[J]. Pattern Recognition, 2009, 42(7): 1284-1296.
    [147]林正春,王知衍.基于核主成分分析和子空间分类的边缘检测方法[J].华南理工大学学报(自然科学版), 2009, 37(1): 59-63.
    [148] Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700