富贵锑的加压氧化浸出分离贱金属工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对现阶段我国富贵锑的处理现状,提出了用高压氧化浸处理富贵锑的新工艺。该工艺能有效地将富贵锑中的铜镍优先脱除,使富贵锑的后续处理变得简单,提高了富贵锑中铜镍的附加值。
     探索表明:氯离子浓度、酸度、浸出电位以及H_2O_2滴加快慢对贵贱金属的分离有关键影响,要保证贱金属的完全溶出就要控制高的浸出电位、高的氯离子浓度、高的酸度,但此时银难免要进入溶液,要使得贱金属完全脱除同时又要使银几乎不溶,这两点是相互矛盾、相互制约的,要在这两点问找一个平衡点是极不容易的,而且物料的组成一旦变化其结果也会变化,因此,在氯化物介质中,用控电位法深度分离贵贱金属是不易控制的。
     用高压氧浸工艺处理富贵锑主要包括两个过程:高压氧浸工序和盐酸浸出工序。经过高压氧浸脱除了铜镍的高压浸渣用盐酸浸出脱除锑、铅,得到高品位的粗金粉。实验时,固定盐酸浸出条件,考察了硫酸浓度、液固比、双氧水用量、浸出时间、浸出温度等因素对高压氧浸工艺各指标的影响,在最优条件:[H_2SO_4]=1.5mol/L、L:S=7:1、双氧水用量为理论量1.2倍、浸出时间4h、浸出温度150℃,铜镍浸出率≥99%、锑浸出率为92.8%、粗金粉品位达66.1%,达到了很好的脱除贱金属的目的。
In this work, a new hydrometallurgical method of treating with theantimony-gold alloy by high-pressure oxidation leaching has beeninvestigated, in which, copper and nickel can be firstly removed from thealloy, which let the follow-up treatment be simple.
     The exploration indicated that, the concentration of chloride ions,acidity, leaching potential and the dropping speed of H_2O_2 would be thekey influences on base-noble separation. It is contradictory and mutualrestraint between the insolubility of silver and the complete removal ofbase metals, and it is difficult to find a balance between them. To ensurethe complete dissolution of base metals needs higher leaching potential,higher concentration of chloride ions and higher acidity, this time, silverinevitably enter the solution, all influences will change while thecomponent changes, therefore, it is not easy to get the depth-separationpurpose by controlling leaching potential in the chloride solution.
     The process includes two main steps, the high-pressure oxidationleaching process and the hydrochloric acid leaching process. The residuesremoved copper and nickel in the high-pressure oxidation leachingprocess are gonging to remove antimony and lead in the hydrochloric acidleaching process, as a result, a high grade crude gold is obtained. Underthe fixed conditions of the hydrochloric acid leaching process, the effectsof the concentration of sulfuric acid, the liquid-solid ratio, theconsumption of hydrogen peroxide, leaching time and leachingtemperature on the indexes of the process have been investigated. Underthe optimal conditions: [H_2SO_4]=1.5mol/L, L:S=7:1, the amount ofhydrogen peroxide 1.2 times the theoretical amount, leaching time 4h,leaching temperature 427K, and the leaching efficiencies of copper andnickel are over 99%, the leaching efficiencies of antimony is 92.8%, thegrade of the crude gold reach up to 66.1%, which has reached a satisfiedpurpose of removal base metals.
引文
[1] 卜建军,段其发.藏北赤布张错南部帮麦锑金矿点的地质特征及意义[J].地质通报,2006,25(1-2):273—276.
    [2] 聂凤军,胡朋,江思宏等.藏南地区金和锑矿床(点)类型及其时空分布特征[J].地质学报,2005,79(3):373—385.
    [3] 江国红,张岳,欧阳伦熬等.高砷高锑难浸金矿石的碱性水化学预氧化氰化浸金工艺研究[J].湿法冶金,2004,23(4):199—201.
    [4] 巫汉泉,张金矿.含砷锑碳低品位难浸金矿石氰化浸出工艺试验研究[J].黄金,2005,26(3):322—34.
    [5] 杨志洪.金锑钨尾矿资源综合回收试验研究及生产实践[J].有色金属,2002,(1):13—16.
    [6] 聂晓军,陈庆邦,李明建.氯化还原焙烧处理含锑、砷金矿石[J].黄金,1998,19(5):44—46.
    [7] 赵天从.锑[M].北京:冶金工业出版社,1987,495—504,595—631.
    [8] 匡文龙,古德生,刘新华.沃溪金、锑、钨矿床成矿地质特征及找矿前景分析[J].黄金,2004,25(6):10—15.
    [9] 刘伟锋.控电位选择性氯化分离贵锑中贱金属的工艺研究:[硕士学位论文].长沙:中南大学,2006,1—6,16—68.
    [10] 编委会.重有色金属设计手册(锡锑汞贵金属卷)[M].北京:冶金工业出版社,1995,313—648.
    [11] 湖南辰州矿业有限公司冶炼厂.操作规程.2002(内部资料).
    [12] 唐利平.高压湿法冶金的回顾与展望[J].有色冶炼,2000.29(3):36—39.
    [13] 柯家骏.湿法冶金中加压浸出过程的进展[J].湿法冶金,1996,2(58):1—13.
    [14] 杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,2001,239—272.
    [15] 杨重愚.轻金属冶金学[M].北京:冶金工业出版社,1991,29—36.
    [16] 郭天立摘译.科明科特累尔锌厂的浸出和净化[J].有色冶炼,2003,(6):7—26.
    [17] 孙天友,王吉坤,杨大锦等.硫化锌精矿加压氧化酸浸动力学研究[J].有色金属,2006,(2):21—23.
    [18] Collins M J.锌加压浸出工艺的应用[J].株冶科技,1990,71(3—4):90—100.
    [19] T. J. Harvey, W. Tai Yenand J. G. Paterson. A kinetic investigation into the pressure oxidation of sphalerite from a complex concentrate[J].Minerals Engineering, 1993, 6(8—10) : 949-967.
    [20] B. I. Whittington, R.G. McDonald, J.A. Johnson, D.M. Muir,.Pressure leaching of arid-region nickel laterite ore.Hydrometallurgy, 2003, 70:31-46.
    [21] A. Vizsolyi, H. Veltman, I.H. Warren, V.N. Mackiw. Copper and elemental sulphur from chalcopyrite by pressure leaching[J]. Journal of Metals 1967, 19 (11) : 52-59.
    [22] M. Baghalha, V.G. Papangelakis ,W. Curlook. Factors affecting the leachability of Ni/Co/Cu slags at high temperature[J]. Hydrometallurgy, 2007, 85(1) : 42-52.
    [23] J.E. Silva, D. Soares, A.P. Paiva etc. Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media[J]. Journal of Hazardous Materials, 2005, 121 (1—3) :195-202.
    [24] D. H. Rubisov ,V. G. Papangelakis. Sulphuric acid pressure leaching of laterites—a comprehensive model of a continuous autoclave[J].Hydrometallurgy, 2000, 58(2):89-101.
    [25] D. Georgiou and V. G. Papangelakis. Sulphuric acid pressure leaching of a limonitic laterite: chemistry and kinetics [J].Hydromotallurgy, 1998, 49 (1—2) : 23-46.
    [26] 刘大星.从镍红土矿中回收镍!钴技术的进展[J].有色金属(冶炼部分),2003(3):6—10.
    [27] 烟伟.混合铜矿的高压氨浸工艺[J].化工冶金,2000,21(4):403—406.
    [28] 烟伟.混合铜矿的常压氨浸与高压氨浸[J].湿法冶金,200l,20(2):76—78.
    [29] 邓彤.镍钻的加压氧化浸出[J].湿法冶金,1994,(2):16—22.
    [30] 兰兴华.镍的高压湿法冶金[J].世界有色金属,2002,(1):25—26.
    [31] 史有高摘译.新型加压浸出提取钴和铜工艺在赞比亚谦比希钴厂的研制及应用[J].中国有色冶金,2005,(4):7—13.
    [32] C. Komnitsas, F. D. Pooley. Mineralogical characteristics and treatment of refractory gold ores [J]. Minerals Engineering, 1989, 2 (4) :449-457.
    [33] 桑利摘译.难处理金精矿加压氧化浸出技术的工业应用[J].有色冶炼,2000,29(2):45-46.
    [34] S·N·罗索夫斯基.难处理金砷硫化物精矿的碱浸[J].国外金属矿选矿,1996(7):50-51.
    [35] M. N. Lehmann, S. O'Leary, J. G. Dunn. An evaluation of pretreatments to increase gold recovery from a refractory ore containing arsenopyrite and pyrrhotite[J]. Minerals Engineering, 2000,13(1):1-18
    [36] F. P. Gudyanga, T. Mahlangu, R. J. Roman etc. in acidic pressure oxidation pre-treatment of refractory gold concentrates from the KweKwe roasting plant, Zimbabwe[J]. Minerals Engineering, 1999,12(8):863-875.
    [37] 秦晓鹏.高温高压氰化提金新工艺的试验研究[J].黄金,2000,21(4):34—36.
    [38] 李锋.难处理金精矿加压氧化一氰化提金工艺研究[J].湿法冶金,2003,22(4):183—187.
    [39] 王力军,刘春谦.难处理金矿石预处理技术综述[J].黄金,2000,21(1):38—45.
    [40] 逯艳军,聂凤莲.用加压氰化浸出法提取金和银的工艺试验[J].黄金地质,2003,9(4):72—75.
    [41] 薛光.用加压氧化-氰化法从硫精矿中提金试验研究[J].黄金地质,1998,4(4):68—71.
    [42] L·S·帕恩格姆等.难处理金矿石的加压氯化物浸出[J].国外金属矿选矿,1997,(8):15—20.
    [43] 夏光祥,石伟,方兆珩.铜阳极泥全湿法处理工艺研究[J].有色金属,2001,1:29—33.
    [44] 邓锋,刘英杰.国外从阳极泥中回收金、银主要厂家工艺改进状况[J].黄金,1998,5(19):37—41.
    [45] 奥利·雅维能(Olli Jarvinen).近来开发的阳极泥贵金属处理的现代温梅斯/奥托昆普(Wenmec/Outokumpu)技术[J].国外金属矿选矿(原载于第19届国际选矿会议论文集),1996,(11):3—5.
    [46] 编委会.重有色金属冶金分析[M].北京:冶金工业出版社,2001,10—11,273.
    [47] 北京矿冶研究总院分析室.矿石及有色金属分析手册[M].北京:冶金工业出版社,1985,20—26,59,68,85.
    [48] 株洲冶炼厂等.有色冶金中元素的分离与测定[M].北京:冶金工业出版社,1987,4,124,160.
    [49] 吴维昌,冯洪清,吴开治(编译).标准电极电位数据手册[M].北京:科技出版社,1991,10,30,80,143—145,154,170,208.
    [50] 朱元保,沈子琛,张传福等.电化学数据手册[M].湖南:湖南科学技术出版社,1985,143—145,197—198,132—133,231.
    [51] 古映莹,李丹.过氧化氢氧化的锑白溶液中SbⅢ,SbⅤ和过氧化氢的测定[J].冶金分析,2006,26,(4):20—23.
    [52] 迪安.兰氏化学手册(美)[M].北京:科学出版社,2003,1—6,166.
    [53] 杨天足,夏星,窦爱春.Pb~(2+)—Cl~-—SO_4~(2-)—H~+体系中铅的形态分析(待发表).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700