川中丘陵区旱地生态系统温室气体排放通量观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验设置在川中丘陵区紫色土农业生态站,土壤为钙质紫色土,紫色土旱地生态系统温室气体通量排放的研究对整个陆地生态系统的碳循环研究提供理论依据。农田生态系统是人类活动最活跃的部分,农田生态系统碳通量研究对全球碳循环研究有重要意义。
     利用静态箱/气相色谱法定点、监测川中丘陵区旱地生态系统温室气体排放的季节变化与日变化规律,研究不同气候环境条件下川中丘陵区旱地生态系统的温室气体变化规律,揭示影响川中丘陵区早地生态系统温室气体通量排放的主要环境因子。
     通过野外观测与采样分析,查明川中丘陵区旱地生态系统温室气体的日变化与季节变化特征,明确环境因子对各温室气体的影响作用。研究了川中丘陵区早地生态系统温室气体的通量排放及相关过程。试验分为四个处理:按常规施肥,种作物的常规处理,主要测定植株、根系和土壤呼吸作用;箱内无作物空白处理,主要测定作物根系和土壤呼吸作用;裸地,主要测定在没有作物时土壤的呼吸作用;箱内有作物的无氮处理,主要测定作物在不施氮肥的状况下作物对温室气体排放的影响。结果表明,川中丘陵区早地生态系统的CH_4、CO_2和N_2O的通量排放呈现出不同的季节变化与日变化进程,CH_4的季节通量以吸收为主,总体上表现为汇的功能;CO_2和N_2O的季节通量过程以排放为主,表现为源的功能。在不同的作物生长季节,温室气体的季节排放规律出现不同的变化趋势,在小麦的生长季节中,温室气体的季节排放规律与小麦植株的生长呈现明显的相关性;在玉米的生长季节,其季节排放规律和作物的生长性无必然联系。日变化趋势大致相同。通过同种作物的不同试验处理,温室气体的通量排放差异性显著,总体上通量排放表现为,常规处理>空白处理>裸地处理。
     在小麦的整个生长季中,常规、无氮、空白、裸地等实验处理的CO_2、N_2O和CH_4的通量排放具有显著差异。CO_2通量排放表现为常规>空白>裸地,且作物的不同生长季CO_2通量排放具有一定的差异。其中常规处理季节平均通量排放为329.67 mg·m~(-2)·h~(-1),空白处理季节平均通量排放为175.65 mg·m~(-2)·h~(-1),裸地处理季节平均通量排放为89.25mg·m~(-2)·h~(-1),无氮处理季节平均通量排放为359.32mg·m~(-2)·h~(-1)。在小麦生长季中,N_2O通量排放呈递增趋势,N_2O通量排放表现为常规>空白>裸地,常规处理季节平均通量排放为0.02751mg·m~(-2)·h~(-1),空白处理季节平均通量排放为0.0036 mg·m~(-2)·h~(-1),裸地处理季节平均通量排放为-0.015mg·m~(-2)·h~(-1)。CH_4通量排放在旱地小麦生态系统中缺乏CH_4产生的厌氧环境,排放无规律。
     川中丘陵区早地玉米CO_2通量排放表现为排放,但是季节变化规律不明显,总体上排放差异性不大,没有形成排放峰值与谷值。在整个季节变化中,常规试验处理的平均通量排放为313.32 mg·m~(-2)·h~(-1),裸地处理的平均通量排放为344.90 mg·m~(-2)·h~(-1),无氮处理的平均通量排放为408.15 mg·m~(-2)·h~(-1)。同样出现了无氮处理通量排放的异常现象。川中丘陵区旱地玉米N_2O通量排放表现为排放,季节变化规律明显。由于试验处理差异,整个玉米生长季所获得的温室气体排放无植株呼吸的贡献。旱地玉米CH_4通量排放的季节变化波动大,无明显规律,
    
    西南农业大学硕士学位论文
    摘要
    但通量排放特点表现为吸收。
     早地小麦在不同生长季日变化CO:排放通量具有一定的差异。日最高排放值在每日
    一3:00一5:00时出现,通量排放为拔节期242.76 mg·m,·h一’;扬花期70一25 mg·m一,·h一’。最
    低出现在凌晨3:00一6:00,排放通量为拔节期l一2.74 mg·m一,·h一’;扬花期379.73 mg·m一,·h一’。
     观测期间,对影响川中丘陵区旱地生态系统温室气体通量排放的相关因子进行分析中发
    现,温度和植株生长状况与co:通量排放呈显著性相关(r,>0 .80),可以确定影响coZ通量
    排放的主导因子是温度和植株生长状况。N20的通量排放和温度、湿度及植株生长状况的相
    关不显著〔产<0 .1),表明影响N20通量排放的因素较复杂,要确定其主导影响因子在川中丘
    陵区早地生态系统中还需继续观测研究。
     在不同的试验设计中,研究表明,常规处理的co:排放通量主要受土壤微生物对有机质
    的分解(即抑氧呼吸,RH),植物根系呼吸(自氧呼吸,RAR)和地上植物部分的呼吸作用
    (RAs)三者的共同作用。与空白处理及裸地处理对比发现,植株呼吸作用是川中丘陵区早
    地生态系统CO:排放的主要贡献者,占整个排放的46.7%。
     在对早地NZO排放通量的分析中发现,表明NZo通量排放和植株、根系及土壤生物有
    着一定的联系。但是由于其排放通量都比较低,很难定性它们之间的排放机制。有待进一步
    深入研究植物排放及传输机理后才能彻底解决这一问题。
Purple soil agro-ecosystem research center (Chinese Academy of Sciences) is situated in upriver Yangtze and southwest SiChuan hilly region. Calcium purple soil is the main soil type of that region. Research on greenhouse gas emission of dry land purple soil ecosystem has significant meaning to carbon fluxes of land ecosystem. Agro-ecosystem is the most active part of human activities, therefore, research on carbon fluxes of agro-ecosystem is essential to the study of global carbon fluxes.
    Using static chamber and gas chromatographic techniques, both seasonal and daily change rules of greenhouse gas emission from dry land ecosystem of mid-SiChuan hilly area were carefully monitored. Furthermore, variation characteristics of greenhouse gas emission under different climate condition were studied. Environmental factors which are responsible for greenhouse gas emission were also proposed.
    By means of field investigation and sample analysis, both daily and seasonal variation characteristics of greenhouse gas emission from dry land ecosystem were inquired, and environmental factors' influence on various greenhouse gases was clarified. In this study, we concerned on emission fluxes and related process of greenhouse gas in dry land ecosystem of mid-SiChuan hilly area. There were four treatment schemes involved in this experiment. Scheme one, crops were fertilized and treated as conventional, respiration effects of plant, root system and soil were determined respectively. Scheme two, the control (without plant in the static chamber), respiration effects of root system and soil were determined. The third scheme was plain field, and respiration effects of soil without plant were investigated. The fourth scheme involved plants in the chamber, but without nitrogen input, by which crops' influences on greenhouse gas emission were achieved. Results showed that emission fluxes of methane, carbon dioxide,
     and N2O in these area presented different seasonal change and daily change. The seasonal fluxes of methane was proved to be mainly absorbing, which could be regarded as a sink on the whole. While the seasonal fluxes of CO2 and N2O were mainly emission, which could be viewed as a source. Seasonal emission rules of greenhouse gas also showed different change trend at different season of plant growth. During the growth period of wheat, seasonal emission character of greenhouse gas showed evident correlation with the growth of wheat. Whereas during the growth season of corn, its seasonal emission character of greenhouse gas had no evident relationship with the growth of corn. However, daily variation trends were basically the same. Result indicated that emission fluxes of greenhouse gas significantly varied from each other. Generally, the emission fluxes followed the order of conventional treatment>the control>plain field treatment.
    
    
    
    
    Through the whole growth period of wheat, emission fluxes of CO2, N2O, and CH4 varied significantly from treatment to treatment. Emission fluxes of CO2 followed the sequence of conventional treatment>the control>plain field treatment, and different growth period could also influence the emission fluxes. The average seasonal emission fluxes of conventional treatment was 329.67 mg m-2h-1, and the average seasonal emission fluxes of the control was 175.65 mg m-2h-1 while the average seasonal emission fluxes of plain field was 89.25mg m-2 h-1, and that of non-nitrogen treatment was 359.32mg m-2 h-1 During the growth period of wheat, emission fluxes of N2O fit the trend of increase by degrees, and followed the order of conventional treatment>the control>plain field treatment. The average seasonal emission fluxes of conventional treatment was 0.0275lmg m-2 h-1, and that of the control and plain field were 0.0036 mg m-2 h-1 -0.015mg m-2h-1 respectively. As for emission fluxes of CH4 its character was irregular because dry land ecosystem lack anaerobic environment, which was essential for the forming of CH4.
    Carbon dioxide emission fluxes of corn in mid-SiChuan hilly area was proved to be emissi
引文
[1] 陶波,葛全胜,李克让,邵雪梅.陆地生态系统碳循环研究进展.地理研究.2001,20(5):564-576
    [2] 王效科,白艳莹,欧阳志云,苗鸿.全球碳循环中的失汇及其形成原因.生态学报.2002,22(1):96-101
    [3] 王凯雄,姚铭,许利君.全球变化研究热点—碳循环.浙江大学学报(农业与生命科学版).2000(2):57-61
    [4] 王绍强、周成虎、夏洁.USGCRP碳循环研究的最新动向[J].地球科学进展,2000,15(5):592~597。
    [5] 汪业勖、赵士洞.陆地碳循环研究中的模型方法[J].应用生态学报.1998,9(6):658~664
    [6] 周炳中,杨浩,赵其国等.红壤地区土地可持续利用中的干旱约束与调控研究[J].地理研究,2002.21(4).459~468。
    [7] IGBP Terrestrial Carbon Working Group. The Terrestrial Carbon Cycle: Implications for the 8 Kyoto Protocol [J]. Science, 1998, (280): 1393~1394.
    [8] 杨昕,王明星.陆地碳循环研究中若干问题的评述[J].地理科学进展.2001,1(63):427-435
    [9] 任国玉,徐影,罗勇.世界各国CO_2排放历史和现状.气象科技.2002,30(3):129-134
    [10] 谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展。中国农业气象.2002,23(4):47-50
    [11] A D.麦克拉伦,G H.波得森,丁.斯库金斯等.土壤生物化学.北京:农业出版社,1984:490-491
    [12] 李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环.地学前缘.2002,9(2):351-356
    [13] Zak D R, Holmes W E. Macponald N W etal. Soil temperature, microbial respiration and nitrogen mineralization [J]. Soil sci. soc, Am. J.,1999, 63: 575—584
    [14] Joukllvola et al(1996). CO_2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology. 84: 48—50
    [15] 杨平,杜宝华.国外土壤二氧化碳释放问题的研究动态.中国农业气象.1996,17(1):48-50
    [16] 杜宝华等.农田土壤二氧化碳释放问题的研究[J].水土保持研究,1996,3(3):100—103
    [17] Prinn R D ,Cunnold R,Ras mussen R et al.Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALEGAGE data.J Geophys Res, 1990,95:18369-18385
    [18] 张金屯.气候变化对自然土壤碳,氮循环的影响.地理学报.1998,18(5):463-471
    [19] 陶波,葛全胜,李克让,邵雪梅.陆地生态系统碳循环研究进展.地理研究.2001,20(5):564-576
    [20] 郑淑颖.管东生.人类活动对全球碳循环的影响.热带地理.2001,21(4):369-372
    
    
    [21] C. S. Li(2000). Modeling trace gas emissions from agricultural ecosystems.Nutrient Cycling in Agro-ecosystems.58: 259—276
    [22] 黄国宏.旱作农田N_2O通量、产生机理及减排措施研究[C].1998.博士论文
    [23] 齐玉春,董云社.土壤N_2O产生、排放及其影响因素.地理学报.1999,54(6):534-539
    [24] 宋文质,王少彬,苏维翰等.我国农田土壤的主要温室气体CO_2、CH_4和N_2O排放研究.环境科学.1996,17(1):85-88
    [25] 衣存真等.温度、湿度及通气状况对土壤中N_2O释放量影响的研究.北京农业大学学报.1996,19(3):85-89
    [26] 徐文彬,刘广深,刘维屏.降雨和土壤湿度对贵州旱田土壤N_2O释放的影响.应用生态学报.2002,13(1):67-70
    [27] 徐华,蔡祖聪,李小平.土壤Eh和温度对稻田甲烷排放季节变化的影响.农业环境保护.1999,18(4):145-149
    [28] 封克,殷士学.影响氧化亚氮形成与排放的土壤因素.土壤学进展.1995.23(6):35-40
    [29] 徐华,刑光熹,蔡祖聪.鹤田治雄.土壤质地对小麦和棉花田N_2O排放的影响.农业环境保护.2000,19(1):1-3
    [30] 郑循华,王明星,王跃思等.温度对农田N_2O产生与排放的影响[J].环境科学.1997,18(5):1-5
    [31] T.Kamp.H(1998). Nitrous oxide emissions from a fallow and wheat field as affected by increased soil temperatures. Biol Fertil Soils. 27: 307—314
    [32] 黄国宏,陈冠雄,韩冰.土壤含水量与氧化亚氮产生途径研究.应用生态学报.1999.10(1):53-56
    [33] 徐华等.土壤水分状况和质地对稻田N_2O排放的影响[J].土壤学报,2000,37(4):499—505
    [34] 郑循华,王明星,王跃思等.稻麦轮作生态系统中土壤湿度对N_2O产生与排放的影响.应用生态学报.1996,7(3):273-279
    [35] Rodhe H.A comparison of the the contribution of various gases to the greenhouse effect. Science, 1990, 243: 1217-1219.
    [36] IPCC.Climate Change 1995.Cambridge, UK:Cambridge University Press,1995.
    [37] 王明星,李晶,郑循华.稻田甲烷排放及产生、转化、输送机理.大气科学,1998,22(4):600-612
    [38] 郭李萍,林而达,李少杰.大气氮化物的源汇及气候效应[J].农业环境保护,1999,18(5):193—199
    [39] 蔡祖聪,沈光裕,颜晓元等.土壤质地、温度和Eh对稻田甲烷排放的影响.土壤学报.1998,35(2).145-153
    
    
    [40] 颜晓元,蔡祖聪.土壤对甲烷氧化作用的研究进展.农村生态环境.1996,12(2):33-38
    [41] 黄耀,焦燕等.土壤理化特性对麦田N_2O排放影响的研究.环境科学学报,2002,22(5):599-602
    [42] 李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环.北京:气象出版社.2002:32-48
    [43] 赵景波,杜娟,袁道先,岳应利,张晓龙.西安地区土壤CO_2释放量和释放规律.环境科学.2002,23(1):22-25
    [44] Jenkinson DS..The fate of plant and animal residues in soil. In Greenland,DJ,Hayes M H B eds: The Chemistry of soil processes, John Wiley & Sons Ltd, 1981:505-561
    [45] Jenkinson DS..The fate of plant and animal residues in soil.In Greenland,DJ,Hayes M H B eds: The Chemistry of soil processes,John Wiley & Sons Ltd,1981:505-561
    [46] 崔玉亭,韩纯儒.集约高产农业生态系统有机物分解及土壤呼吸动态研究.应用生态学报.1997,8(1):59-64
    [47] 田景春.浅论温室效应.岩相古地理.1996,16(5):54-57
    [48] 刘强,刘嘉麒,贺怀宇.全球变化研究温室气体浓度变化及其源与汇研究进展.地球科学进展.2000,15(4):453-459
    [49] 黄耀.中国陆地和近海生态系统碳收支研究.中国科学院院刊.2002,2:104-107
    [50] Bronso, K.F, Mosier, A.R.and Bishnoi,K.N.1992,Nitrous Oxide emission in irrigated corn as affected by nitrification inhibitors.Soil SCI.SOC.Am.J.,56: 161-165
    [51] Houghton J T, Meira Filho L G, Bruce J.et al.eds.Climate Change 1994.Radiative Forcing of Climate and Evaluation of the IPCC IS92 Emission Scenarios. Cambridge University Oress,1995.339
    [52] Seiko Osozawa. Shuichi Hasegawa.Diel and seasonal changes in carbon dioxide concentration and flux in an andisol. Soil Science
    [53] 王明星,张仁健,郑循华.温室气体的源与汇.气候与环境研究.2000,5(1):75-79
    [54] Rodhe H.A comparison of the the contribution of various gases to the greenhouse effect. Science, 1990,243:1217-1219.
    [55] IPCC.Climate Change 1995.Cambridge, UK:Cambridge University Press,1995
    [56] IPCC. Third Assessment Report-Climate Change. 2001
    [57] IPCC report. 1992.Estimated sources and sink of nitrous oxide.Cambridge University Press, Cambridge.
    [58] 盐亭县县志编纂委员会.盐亭县志[M].成都:四川文艺出版社.1991,63~66
    [59] Batjes, N. H and Bridges, E. M, 1992. World inventory of soil emission, No. 92/4. Working Paper and preprint. p. 204
    
    
    [60] 薛澄泽.温室气体与土壤.农业环境保护.1994,13(5):221-225
    [61] 单正军,蔡道基,任阵海.土壤有机质矿化与温室气体释放初探.环境科学学报.1996,16(2):150-153
    [62] 王修兰.全球农作物对大气CO_2及其倍增的吸收量估算.气象学报.1996,54(4):466~472
    [63] 罗辑等.贡嘎山东坡峨眉冷杉林区土壤CO_2排放.土壤学报,2000,37(3):402-409
    [64] 危常州等.农田土壤温室气体释放通量的研究.石河子大学学报、(自然科学版),2001,5(4):267-270
    [65] 黄国宏,陈冠雄等.东北典型旱地农田N_2O和CH_4排放通量研究.应用生态学报.1995.6(4):383-386
    [66] 王少彬,宋文质,苏维翰等.冬小麦N_2O的排放[J].农业环境保护.1994.13(5):210-212
    [67] 宋文质,王少彬.华北地区旱田土壤N_2O的排放[J].环境科学进展.1997,5(4):49-54
    [68] 徐文彬,洪业汤,陈旭辉.贵州省旱田土壤N_2O排放及其环境影响因素.环境科学.2000,21(1):7-11
    [69] 张玉铭,董文旭,曾江海,陈德立.玉米地土壤反硝化速率与N_2O排放通量的动态变化.中国生态农业学报.2001,9(4):70-72
    [70] 徐华,刑光熹,张汉辉,金继生.太湖地区水田土壤N_2O排放通量及其影响因素.土壤学报.1995,32(增刊):144-149.
    [71] 陈冠雄,黄国宏,黄斌等.稻田CH_4和N_2O的排放及养萍和施肥的影响.应用生态学报.1995,6(4):378-382
    [72] zheng X, Wang M, Wang Y, el al. Characters of greenhouse gas (CH_4, N_2O, NO)emissions from croplands of southeast China [J]. World Review, 1999,11:229-245
    [73] 王明星 中国稻田甲烷排放 科学出版社 2001年85-87
    [74] 上官行健,王明星等.稻田CH_4的传输.见 王庚辰 温玉璞 主编 温室气体浓度和排放检测及相关过程 北京:中国环境科学出版社,1996
    [75] 曾江海,王智平.农田土壤N_2O生成与排放研究.土壤通报.1995,26(3):132-134
    [76] 王彩绒,田宵鸿,李生秀.土壤中N_2O的产生及减少排放量的措施.土壤与环境.2001,10(2):143-148
    [77] 齐玉春,董云社.土壤N_2O产生、排放及其影响因素.地理学报.1999,54(6):534-539
    [78] 黄国宏,陈冠雄,黄斌等.东北旱田生态系统N_2O排放通量测定及总量估算[A].见:王庚辰,温玉璞.温室气体浓度和排放监测及相关过程[C].北京:中国环境科学出版社.1996,351-357
    [79] 黄耀,王长科.陆地生态系统碳收支测定的基本原理.中国陆地和近海生态系统碳收支研究培训教材,2002.
    [80] 张金霞,曹广民,周党卫等.退化草地暗沃寒冻雏形土CO_2释放的日变化和季节动态.土
    
    壤学报.2001,38(1):32-39
    [81] Steven F, Chris T G,Cheng weixin.Diurnal and seasonal patterns of ecosystem CO_2efflux from upland Tundra in the foothills of the Brooks Range, Alaska, U.S.A. Arctic and Alpine Research, 1996,28(3):328-338
    [82] 周文能,林而达.小麦地N_2O排放特征研究[J].中国农业气象.1994,15(1):6-8
    [83] 于克伟,陈冠雄,杨思河.几种旱地农作物在N_2O释放中的作用及环境因素的影响[J].应用生态学报.1995,6(4):387-391
    [84] 徐文彬,刘维屏,刘广深.温度对旱田土壤N_2O排放的影响研究.土壤学报.2002,39(1)1-7
    [85] 王智平,曾江海,张玉铭.农田土壤N_2O排放的影响因素.农业环境保护.1994,13(1):40~42
    [86] Daum D, Schenk M K, Influence of soil pH on N_2O and N_2 emissions from a soilless culture system [J] Plant and Soil, 1998, 203: 279-287
    [87] Zak D R, Holmes W E. Macponald N W etal. Soil temperature, microbial respiration and nitrogen mineralization [J]. Soil sci. soc, Am.J., 1999,63:575—584

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700