瘤胃产甲烷菌定量检测与微生物菌群调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瘤胃甲烷的生成不仅是饲料能量的损失,而且通过暖气排入大气的甲烷是一种重要的温室气体。随着全球对温室气体排放的重视,反刍动物瘤胃甲烷生成受到越来越多的关注。本研究在建立分子生物学手段检测瘤胃产甲烷菌及微生物菌群的基础上,通过探讨不同调控途径对瘤胃产甲烷菌和微生物菌群的影响,研究产甲烷菌和微生物菌群与甲烷生成的密切关系。首先利用实时定量PCR方法,建立瘤胃产甲烷菌及微生物菌群的检测技术(第一部分);然后利用产甲烷菌选择性抑制剂研究产甲烷菌与微生物菌群的变化(第二部分),并以天然调控剂茶皂素为调控手段探讨其对产甲烷菌及瘤胃微生态的影响(第三部分);最后模拟高粗日粮条件,探讨甲烷生成与瘤胃微生态的关系(第四部分)。
     第一部分瘤胃产甲烷菌及微生物菌群分子研究方法的建立
     建立实时定量PCR方法检测瘤胃内产甲烷菌、原虫以及主要的纤维降解微生物,并建立产甲烷菌活性检测手段。以产甲烷短杆菌属的模式菌种——反刍兽甲烷短杆菌(Methanobrevibacter ruminantium)为研究对象,建立实时定量PCR绝对定量法。研究发现,荧光定量PCR方法(y)与传统计数法(x)对产甲烷菌的定量结果强相关,y=1.0152x-3×108(r=0.9753;P<0.01)。而后利用反转录Real Time PCR检测mcrA基因表达,表征产甲烷菌的活性。添加2-溴乙烷磺酸(BES)后,反刍兽甲烷短杆菌mcrA基因表达受抑制,培养30小时后其表达量仅为对照组的1%;而添加2,4-二羟基蝶呤(Lumazine)后,mcrA基因表达在前6小时内升高,而后逐渐下降。采用实时定量PCR方法定量分析混合培养微生物中产甲烷菌及主要的纤维降解微生物结果表明,各菌标准曲线可信度高,扩增效率相近(98.4-99.9%)。体外培养24小时后,BES处理组的产甲烷菌显著减少(P<0.01),仅为对照组的10.3%;BES处理组的真菌数量虽然随着培养时间的增加而增长,但其量明显受抑制,在培养12小时和24小时后分别减少40.0和61.9%;甲烷抑制组的产琥珀酸丝状杆菌增加50%,而黄化瘤胃球菌数量无明显变化。
     本部分研究结果表明,实时定量PCR方法可以准确定量瘤胃微生物,实践中可根据试验目的选用绝对定量法或相对定量法。
     第二部分不同抑制剂对瘤胃产甲烷菌及微生物菌群的调控
     以混合培养微生物为研究对象,探讨不同的选择性抑制剂(BES, Lumazine或Mevinolin(甲基四氢蝶呤))对甲烷生成和产甲烷菌的调控作用。研究表明,体外培养24小时后,三种抑制剂对甲烷生成、产甲烷菌含量以及产甲烷菌活性产生不同的影响。BES和Lumazine显著降低了甲烷生成量,分别为对照组的17.2%和83.8%, Mevinolin对甲烷生成量无显著影响。BES和Lumazine显著降低了产甲烷菌的含量,分别为对照组的42.2%和60.0%。Mevinolin对产甲烷菌没有显著影响。培养24小时后,BES显著抑制了产甲烷菌的活性,仅为对照组的1%。Lumazine组mcrA基因表达量在前12小时有所下降,24小时后比对照组高19%。Mevinolin组mcrA基因表达量在前12小时内无显著变化,24小时后比对照组高45%。DGGE结果表明,抑制剂降低了某些优势产甲烷菌的代谢活性。三种抑制剂显著提高了原虫数量,BES、Lumazine和Mevinolin组的原虫数较对照组分别提高42.3%、65.3%和27.5%。BES显著降低了真菌数量(P<0.05),为对照组的71.9%,Lumazine和Mevinolin提高了真菌数量(P<0.05),分别较对照组提高43.8%和37.5%。BES增加产琥珀酸丝状杆菌数量(P<0.05),降低黄色瘤胃球菌数量;Lumazine降低两种纤维降解菌数量;Mevinolin降低产琥珀酸丝状杆菌的数量(P<0.05),增加黄色瘤胃球菌的数量(P<0.05)。PCR-DGGE结果表明,16S rRNA扩增子获得的条带较16S rDNA扩增子获得条带数更多,说明混合微生物中代谢活性微生物菌群与微生物优势菌群的组成不同,而且BES和Lumazine对代谢活性微生物区系的影响更大。
     直接作用于甲烷生成途径的BES和Lumazine对产甲烷菌、mcrA基因表达和微生物区系的影响更大,Mevinolin影响产甲烷菌细胞壁的合成,其作用效果不如前二者明显。
     第三部分茶皂素对产甲烷菌及瘤胃微生物菌群的调控效果研究
     研究茶皂素对瘤胃微生物菌群、产甲烷菌数量与活性和纯培养反刍兽甲烷短杆菌的影响,探讨茶皂素降低瘤胃甲烷生成的作用机理。研究表明,茶皂素减少原虫数量,添加0.2和0.4 mg/ml的茶皂素组中原虫数量分别减少了51.2%和22.9%(P<0.05)。产甲烷细菌的数量并未受茶皂素的影响(P>0.05),表明甲烷产生并不完全对应于产甲烷菌的数量变化。在混合培养微生物中,茶皂素显著抑制了混合培养微生物的mcrA基因表达,茶皂素处理组的mcrA基因表达较对照组降低了76%。以反刍兽甲烷短杆菌为研究对象,发现茶皂素对瘤胃内优势产甲烷菌——反刍兽甲烷短杆菌无明显抑制作用。
     这些结果表明,茶皂素可以抑制原虫,从而抑制甲烷的生成。茶皂素对瘤胃内主要产甲烷菌没有直接影响,推测茶皂素通过抑制原虫作用影响氢气生成量,间接降低产甲烷菌活性。产甲烷菌活性,即mcrA基因表达可以更好地预测复杂微生态系统中甲烷生成的变化规律。
     第四部分高粗日粮对瘤胃产甲烷菌及微生物菌群的调控研究
     试验采用不同纤维来源及水平的NDF模拟高粗日粮条件下瘤胃的发酵模式,比较不同来源及水平的NDF对瘤胃产甲烷菌及微生物菌群的影响。不同来源的NDF对甲烷生成及产甲烷菌产生了显著影响,苜蓿NDF组与全株玉米青贮NDF组的产甲烷菌区系类似,相似性指数为93.3%;黑麦草与黑麦草青贮NDF组区系的相似性指数为87.1%。体外培养24小时后,NDF来源、水平及两者的互作对产甲烷菌产生极显著影响(P<0.01);苜蓿NDF与淀粉以60:40组合时,产甲烷菌数量最低;100%黑麦草为培养底物时,产甲烷菌数量最高。产甲烷菌与甲烷生成呈负相关关系。不同水平黑麦草青贮NDF对优势产甲烷菌影响不大,产甲烷菌相似性指数在91.1%到96.6%之间;但不同水平NDF影响了微生物区系,其相似性指数降到46%-72%。
     甲烷生成量与产甲烷菌和两种纤维降解菌呈负相关关系,与原虫无相关性。产甲烷菌与真菌呈正相关关系(P=0.0099),与其他菌不存在显著相关关系。
     综上所述,通过分析产甲烷菌数量及其mcrA基因表达,可以预测瘤胃内甲烷的生成;产甲烷菌数量与原虫数不完全相关,但产甲烷菌与纤维降解微生物呈此长彼长的关系。
Methane production in the rumen represents a loss of energy for the host animal, and, in addition, methane eructated by ruminants may contribute to a greenhouse effect or global warming. Scientists have been recently paying much attention to ruminal methanogens and methanogenesis with the global concerning on greenhouse gas emission. This study, divided into four parts, was carried out to establish molecular techniques to analyze the metanogens in the rumen, and to investigate the relationships among methanogenesis and methanogens and microbial community structure. In Part One, molecular techniques were established to monitor the change of methanogens and other microorganisms in the rumen. In Part Two, three known methnogen-inhibitors were selected to study their influence on ruminal methanogens and microbial populations. Tea saponin was used in Part Three to study rumen methanogenesis and methanogens. Part Four was conducted to study the relationship between methanogens and other microbial population in forage-rich diets in vitro.
     Part One:Establishing Real Time PCR technique to monitor ruminal methanogens and microbial population
     Real Time PCR technique was conducted to monitor the microbial populations including methanogens, fungi, F. succinogenes and R. flavefaciens, and activity of methanogens as well. Absolute quantification of methanogens was established. There was significant correlation on the quantification of Methanobrevibacter ruminantium by real time PCR (y) and counting (x):y= 1.0152x-3×108(r=0.9753; P<0.01). Then expression of mcrA gene was analyzed to predict the activity of methanogens. BES significantly reduced the mcrA gene expression in whole period of incubation, while lumazine began to reduce the gene expression after 6 h of incubation. Relative quantification was also established to detect the methanogens, fungi, F.succinogenes and R.flavefaciens in mixed culture when treated with BES. All standard curves have high R2 and their amplification efficiency were very close (98.4-99.9%).
     Real time PCR could be used to quantify ruminal microbial population. In practice, absolute and relative quantification could be adopted according to different research purpose.
     Part Two:Use of inhibitors to manipulate methanogens and microbial population
     Manipulation of inhibitors on methanogens and microbial population in mixed culture was investigated. After 24 h of incubation, BES, Lumazine and Mevinolin had different modes of effects on ruminal methanogenesis, methanogens and expression of mcrA gene. BES significantly reduced methane production, methanogens and expression of mcrA gene. Lumazine reduced methane production and methanogens, while Mevinolin had no significant effect. There was difference between present and active methanogens revealed by the DGGE profiles of DNA amplicons from 16S rDNA and 16S rRNA. Protozoa was increased by BES, Lumazine and Mevinolin. DGGE showed that there are big differences between present and active bacteria. BES and Lumazine had greater effect on the community of active bacteria.
     BES and Lumazine, which act on the pathway of methanogenesis, had greater effect on methanogenesis, methanogens and microbial community in mixed culture compared to Mevinolin.
     Part Three:Manipulation of methanogens and microbial population by tea saponins
     To explore the mechanism of tea saponin on reducing methnaogenesis, effect of tea saponin on ruminal microbial community, methanogens and pure culture of Methanobrevibacter ruminantium was investigated. Protozoa was significantly reduced by 51.2 and 22.9%(P<0.05) by the addition of 0.2 and 0.4 mg/ml tea saponin, respectively. Tea saponin did not have obvious effect on methanogens, and there was inconsistency between methanogenesis and methanogens. As the dominant methanogens in the rumen, Methanobrevibacter ruminantium was adopted to explore its response to tea saponin. There was no inhibited effect of tea saponin on Methanobrevibacter ruminantium. However, expression of mcrA gene in mixed culture was reduced by 76% with addition of 0.4 mg/ml tea saponin.
     Tea saponin inhibited protozoa and then reduced methane production, while it did not have significant effect on methanogens. It is speculated that tea saponin inhibited protozoa and reduce hydrogen production, and then reduced the activity of methanogens. Expression of mcrA gene is a more reasonable parameter to predict the change of methane production in the complex ecosystem compared to methanogenic population.
     Part Four:Manipulation of methanogens and microbial population in forage-rich diet
     Different sources and levels of neutral detergent fibers (NDFs) were adopted to simulate forage-rich diet in vitro. Different sources of NDF significantly influenced the methanogenesis and methanogens. As showed by DGGE, methanogens' community structures of NDFs extracted from alfalfa and corn silage were more similar to each other. After incubation of 24 h, NDF source, level and their interaction had significant effects on methanogens. There was negative correlation between methanogens and methanogenesis. Level of NDF had minor effect on the community structure of methanogens, but had strong effect on bacteria community structure and the similarity index was only 46-72% as showed by DGGE.
     There were negative correlation of methanogenesis and methanogens, F.succinogenes and R.flavefaciens, while positive correlation existed between methanogens and fungi.
     In summary, when considering the change of methanogenesis, methanogen number and mcrA gene expression should be taking into account in the ruminal ecosystem. There is significant correlation between methanogen and protozoa population, while positive correlation exists in methanogen and fibrolytic microorganisms.
引文
AOAC. (1990) Official Methods of Analysis.15th edn. Association of Official Analytical Chemists, Arlington. Virginia. pp.69-90,703,1213.
    Asanuma, N., Iwamoto, M. and Hino, T. (1999) Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. JDai Sci,82 (4),780-787.
    Bakken, L. R. and Olsen, R. A. (1987) The relationship between cell size and viability of soil bacteria. Microbiol Ecol,13,103-114.
    Balch, W. E., Fox, G. E., Magrum, L. J. Woese, C. R. and Wolfe, R. S. (1997) Methanogens: reevaluation of a unique biological group. Microbiol Rev,43 (2),260-296.
    Bauchop, T. and Mounfort, D. O. (1981) Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol,42, 1103-1110.
    Beever, D. E., Camrnell, S. B., Sutton, J. D., Spooner, M. C., Haines, M. J. and Harland, J. I. (1989) The effect of concentrate type on energy utilization in lactating cows. Proc.11th Symp. On Energy Metabolism EAAP Publication No.43,33.
    Beijer, W. H. (1952) Methane fermentation in the rumen of cattle. Nature,170,576-577.
    Beja, O., Suzuki, M. T., Koonin, E. V., Aravind, L., Hadd, A., Nguyen, L. P., Villacorta, R., Amjadi, M., Garrigues, C., Jovanovich, S. B., Feldman, R. A. and Delong, E. F. (2000) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol,2,516-529.
    Benchaar, C., Pomar C. and Chiquette, J. (2001) Evalutaion of dietary strategies to reduce methane production in ruminants:A modeling approach. Can J Anim Sci,81,563-574.
    Boschker, H. T., de Graaf, W., Koster, M., Meyer-Reil, L. and Cappenberg, T. E. (2001) Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol Ecol,35,97-103.
    Bult, C. J., White, O., Olsen, G.J., Zhou, L., Fleischmann, D., Sutton, G. G., Blake, J. A., Fitzgerald, L. M., Clayton, R. A., Gocayne, J. D., Kerlavage, A. R., Doughertyy, B. A., Tomb, J. F., Adams, M. D., Reich, C.I., Overbeck, R., Kirkness, E. F., Weinstock, K. G., Merrick, J. M., Glodek, A., Scott, J. L., Geoghagen, N. S. M., Weidman, J. F., Fuhrmann, J. L., Nguyen, D., Utterback, T. R., Kelley, J. M., Peterson, J. D., Sadow, P. W., Hanna, M. C., Cotton, M. D., Roberts, K. M., Hurst, M. A., Kaine, B. P., Borodovski, M., Klenk, H. P., Fraser, C. M., Smith, H. O., Woese, C. R. and Venter, J. C. (1996) Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science,273,1058-1073.
    Cann,I. K. O., Kocherginskaya, S. A., White B. A. (1996) Denaturing gradient gel electrophoresis analysis of polymerase chain-reaction amplified genes coding for 16S rRNAs from ruminal fibrolytic bacteria. Proc Jap Soc Rumen Metabol Physiol,7,10-18.
    Chalupa, W. (1977) Manipulating rumen fermentation. JAnim Sci,46,585-599.
    Chaucheyras, F., Fonty, G., Bertin, G. and Gouet, P. (1995) In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevesiae. Appl Environ Microbiol,61, 3466-3467.
    Christophersen, C. T., Wright, A. D. G. and Vercoe, P. E. (2004) Examing diversity of free-living methanogens and those associated with protozoa in the rumen. JAnim Feed Sci,13(S1),51-54.
    Daffonchio, D., De Biase, A., Rizzi, A. and Sorlini, C. (1998) Interspecific, intraspecific and interoperonic variability in the 16S rRNA gene of methanogens revealed by length and single-strand conformation polymorphism analysis. FEMS Microbiol Lett,164,403-410.
    Dehority, B. A. and Tirabasso, P. A. (2000). Antibiosis between ruminal bacteria and ruminal fungi. Appl Environ Microbiol,66,2921-2927.
    DeLong, E. F., Wickham, G. S. and Pace, N. R. (1989) Phylogenetic stains:ribosomal RNA-based probes for the identification of microbial cells. Science,243,1360-1363.
    Demeyer, D. I. and Van Nevel, C. J. (1975) Methanogenesis, an integrated part of carbohydrate fermentation and its control. In:McDonald, I.W., Warner, A.C.I. (Eds.), Digestion and Metabolism in the Ruminant. pp.366-382. University of New England Publishing Unit, Armidale.
    Denman, S. E. and McSweeney, C. S. (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58,572-582.
    Denman, S. E., Tomkins, N. W. and McSweeney, C. S. (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol,62,313-322.
    Deplancke, B., Vidal, O., Ganessunker, D., Donovan, S. M., Mackie, R. I. and Gaskins, H. R. (2002) Selective growth of mucolytic bacteria including Clostridium perfringens in a neonatal piglet model of total parenteral nutrition. Am J Clin Nutr,76,1117-11125.
    Deppenmeier, U., Johann, A., Hartsch, T.,, Merkl, R., Schmitz, R. A., Martinez-Arias, R., Henne, A., Wiezer, A., Baumer, S., Jacobi, C., Bruggemann, H., Lienard, T., Christmann, A., Bomeke, M., Steckel, S., Bhattacharyya, A., Lykidis, A., Overbeek, R., Klenk, Gunsalus, H., R. P., Fritz, H. and Gottschalk, G. (2002) The Genome of Methanosarcina mazei:Evidence for Lateral Gene Transfer Between Bacteria and Archaea. JMol Microbiol Biotechnol,4(4),453-461.
    Diaz, A., Avendano, M. and Escobar, A. (1993) Evaluation of Sapindus saponaria as a defaunating agent and its effects on different ruminal digestion parameters. Livestock Research for Rural Development,5,1-6.
    DiMarco, A. A., Bobik, T. A. and Wolfe, R. S. (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem,59,355-394.
    Dohme, F., Machmuller, A., Estermann, B. L., Pfister, P., Wasserfallen, A. and Kreuzer, M. (1999) The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Lett Appl Microbiol,29,187-192.
    Dohme, F., Machmuller, A., Wasserfallen, A. and Kreuzer, M. (2001) Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. LettAppl Microbiol,32,47-51.
    Dumitru, R., Palencia, H., Schroeder, S. D., DeMontigny, B. A., Takacs, J. M., Rasche, M.E., Miner, J. L. and Ragsdale S. W. (2003) Targeting Methanopterin Biosynthesis To Inhibit Methanogenesis Appl Environ Microbiol,69(12),7236-7241.
    Ermler, U., Grabarse, W., Shima, S., Goubeaud, M. and Thauer, R.K. (1997) Crystal structure of methyl coenzyme M reductase:the key enzyme of biological methane formation. Science,278, 1457-1462.
    Fenchel, T. and Finlay, B. J. (1995) Ecology and evolution in anoxic worlds. Oxford University, Oxford.
    Finlay, B. J., Esteban, G., Clarke, K. J., Williams, A. G., Embley, T. M. and Hirt, R. P. (1994) Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett,117,157-162.
    France, J. and Siddons, R. C. (1993) Volatile fatty acid production. In:Forbes J M, et al. ed. Quantitative Aspects of Ruminal Digestion and Metabolism. Cambridge:University Press, 107-121.
    Galagan, J. E., Nusbaum, C., Roy, A., Endrizzi, M. G., Macdonald, P., FitzHugh, W., Calvo, S., Engels, R., Smirnov, S., Atnoor, D., Brown, A., Allen, N., Naylor, J., Stange-Thomann, N., DeArellano, K., Johnson, R., Linton, L., McEwan, P., McKernan, K., Talamas, J., Tirrell, A., Ye, W., Zimmer A.,, Barber, R. D., Cann, I., Graham, D. E., Grahame, D. A., Guss, A. M., Hedderich, R., Ingram-Smith, C., Kuettner, H. C., Krzycki, J. A., Leigh, J. A., Li, W., Liu, J., Mukhopadhyay, B., Reeve, J. N., Smith, K., Springer, T. A., Umayam, L. A., White, O., White, R. H., de Macario, E. C., Ferry, J. G., Jarrell, K. F., Jing, H., Macario, A. J. L., Paulsen, I., Pritchett, M., Sowers, K. R., Swanson, R. V., Zinder, S. H., Lander, E., Metcalf, W. W. and Birren, B. (2002) The Genome of M. acetivorans Reveals Extensive Metabolic and Physiological Diversity. Genome Res,12,532-542.
    Garcia, J. L., Patel, K. C. and Ollivier, B. (2000) Taxonomic, Phylogenetic and Ecological Diversity of Methanogenic Archaea. Anaerobe,6,205-226.
    Garcia-Lopez, P. M., Kung, L. Jr. and Odom, J. M. I. (1996) In vitro inhibition of microbial methane production by 9,10-anthraquinone. JAnim Sci,74,2276-2284.
    Giovannoni, S. J., DeLong, E. F., Olsen, G. J., Pace, N. R. (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol,170, 720-726.
    Goel, G., Makkar, H. P. S. and Becker, K. (2007) Effect of saponin-rich fractions of different plants on rumen fermentation with particular reference to methane emission in vitro. Proceedings of the Society of Nutrition Physiology 16,84 (abstract).
    Head,I. M., Saunders, J. R. and Pickup, R. W. (1998) Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microbiol Ecol,35,1-21.
    Hegarty, R. S. (1999) Reducing rumen methane emissions through elimination of rumen protozoa. Aust J Agricul Res,50(8),1321-1328.
    Hendrickson, E. L., Kaul, R., Zhou, Y., Bovee, D., Chapman, P., Chung, J., Conway de Macario E., Dodsworth, J. A., Gillett, W., Graham, D. E., Hackett, M., Haydock, A. K., Kang, A., Land, M. L., Levy, R., Lie, T. J., Major, T. A., Moore, B. C., Porat, I., Palmeiri, A., Rouse, G., Saenphimmachak C.,, Soll D.,, Van Dien, S., Wang, T., Whitman, W. B., Xia, Q., Zhang, Y., Larimer, F. W., Olson, M. V. and Leigh J. A. (2004) Complete Genome Sequence of the Genetically Tractable Hydrogenotrophic Methanogen Methanococcus maripaludis. JBacteriol, 186(20),6956-6969.
    Hess, H. D., Beuret, R. A, Lotscher, M., Hindrichsen, I. K., Machmuller, A., Carulla, J. E., Lascano, C. E and Kreuzer, M. (2004) Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Anim Sci,79,177-189.
    Hess, H. D., Monsalve, L. M., Lascano, C. E., Carulla, J. E., Diaz, T. E. and Kreuzer, M. (2003b) Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust J Agric Res,54(7), 703-713.
    Hess, H.D., Kreuzer, M., Diaz, T.E., Lascano, C.E., Carulla, J.E., Soliva, Carla R. and Machmuller, A. (2003a). Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim Feed Sci Technol,109,79-94.
    Hristov, N. A., McAllister, T. A., Van Herk, F. H., Cheng, K. J., Newbold, C. J. and Cheeke, P. R., (1999). Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. J Anim Sci,77,2554-2563.
    Hu, W. L., Liu, J. X., Ye, J. A., Wu, Y. M. and Guo, Y. Q. (2005a) Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol,120,333-339.
    Hu, W. L., Wang, J. K., Lv, J. M., Guo, Y. Q. and Liu, J. X. (2006) Rapid gas chromatogram determination of methane, organic acid in in vitro ruminal fermentation products. JZhejiang University (Agric& Life Sci)32(2),217-221.
    Hu, W. L., Wu, Y. M., Liu, J. X., Guo, Y. Q. and Ye, J. A. (2005b) Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid. J. Zhejiang University SCI,6B(8),787-792.
    Hugenholtz, P. and Pace, N. R. (1996) Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol,14,190-197.
    IPCC (Intergovernmental Panel on Climate Change),2007. Climate Change 2007. The Scientific Basis. Cambridge University Press, Cambridge, UK.
    Ivan, M., Koenig, K. M., Teferedegne, B., Newbold, C. J., Entz, T., Rode, L. M. and Ibrahim, M. (2004) Effect of the dietary Enterolobium cyclocarpum foliage on the population dynamics of rumen ciliate protozoa in sheep. Small Ruminant Research,52,81-91.
    Jarvis, G. N., Strompl, C., Burgess, D. M., Skillman, L. C., Moore, E. R. and Joblin, K. N. (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol,40, 327-332.
    Joblin, K. N., Matsui, H., Naylor, G. E. and Ushida, K. (2002) Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes. Curr Microbiol,45,46-53.
    John, H., Birnstiel, M. and Jones, K. (1969) RNA:DNA hybrids at the cytogenetical level. Nature, 223,582-587.
    Johnson, K. A. and Johnson, D. E. (1995) Methane emissions from cattle. JAnim Sci,73, 2483-2492.
    Kajikawa, H., Valdes, C., Hillman, K., Wallace, R. J. and Newbold, C. J. (2003) Methane oxidation and its coupled electron-sink reactions in ruminal fluid. Lett Appl Microbiol,36, 354-357.
    Klita, P. T., Mathison, G. W., Fenton, T. W. and Hardin, R. T. (1996) Effects of alfalfa root saponins on digestive function in sheep. JAnim Sci,74,1144-1156.
    Kocherginskaya, S. A., Aminov, R. I. and White, B. A. (2001) Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. Anaerobe,7,119-134.
    Koike, S. and Kobayashi, Y. (2001) Development and use of competitive PCR assays for the rumen cellulolytic bacteria:Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefacies. FEMS Microbiol Lett,204,361-366.
    Krause, D. O. and Russell, J. B. (1996b) An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination. Appl Environ Microbiol,62, 815-821.
    Krause, D. O., Dalrymple, B. P., Smith, W. J., Mackie, R. I. and McSweeney, C. S. (1999) 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens:design of a signature probe and its application in adult sheep. Microbiol,145,1797-1807.
    Kreuzer, M., Kirchgessner, M., Miiller, H.L.1986 Effect of defaunation on the loss of energy in wethers fed different quantities of cellulose and normal or steamflaked maize starch. Animal Feed Science and Technology,16,233 241.
    Kung L. Jr., Hession A. O. and Bracht J. P. (1998) Inhibition of sulfate reduction to sulfide by 9,10-anthraquinone in in vitro ruminal fermentations. J Dairy Sci,81,2251-2256.
    Kuritza, A. P. and Salyers, A. A. (1985) Use of a species-specific DNA hybridization probe for enumeration of Bacteroides vulgatus in human feces. Appl Environ Microbiol,50,958-964.
    Lange, M. and Ahring, B. K. (2001) A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea. FEMS Microbiol Rev,5(12),553-571.
    Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C. Kamphuis, G. R., Wilkinson, M. H. Welling, G. W. (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. With genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol,61(8),3069-3075.
    Lee, N., Nielsen, P. H., Andreasen, K. H., Juretschko, S., Nielsen, J. L., Schleifer, K. H. and Wagner, M.(1999) Combination of fluorescent hybridization and microaudiography-a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol,65, 1289-1297.
    Leedle, J. A. Z. and Greening, R. C. (1988) Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high or low forage diets once daily. Appl Environ Microbiol, 54,502-506.
    Lila, Z.A., Mohammed, N., Kanda, S., Kamada,T. and Itabashi, H. (2003) Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J Dairy Sci 86, 3330-3336.
    Liles, M. R., Manske, B. F., Bintrim, S. B., Handelsman, J. and Goodman, R. M. (2003) A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol,69,2684-2691.
    Lin, C., Raskin, L. and Stahl, D. A. (1997) Microbial community structure of gastrointesinal tracts of domestic animals:comparative analyses using rRNA targetted oligonucleotide probes. FEMS Microbiol Ecol,22,281-294.
    Liu, J. X., Yuan, W. Z., Ye, J. A. and Wu, Y. M. (2003) Effect of tea (Camellia sineis) saponin addition on rumen fermentation in vitro. Tropical Subtropical Agroecosystem,3,561-564.
    Livak, K. J. and Schmittgen, T. D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-DDCt Method. Methods,25,402-408.
    Londry, K. L. and Des Marais, D. J. (2003) Stable carbon isotope fractioning by sulfate-reducing bacteria. Appl Environ Microbiol,69,2942-2949.
    Lopez, S., McIntosh, F. M., Wallace, R. J. and Newbold, C. J. (1999) Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Anim. Feed Sci Technol,78, 1-9.
    Lovley, D. K., Greening, R. C. and Ferry, J. G. (1984) Rapidly growing rumen methanogenic organism that synthesizes co-enzyme M and has a high affinity for formate. Appl Environ Microbiol,48,81-87.
    Luton, P.E., Wayne, J.M., Sharp, R.J. and Riley, P.W. (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 148,3521-3530.
    Machmuller, A., Dohme, F., Soliva, C. R., Wanner, M. and Kreuzer, M. (2001) Diet composition affects the level of ruminal methane suppression by medium-chain fatty acids. Aust JAgric Res, 52,713-722.
    Machmuller, A., Ossowski, D. A. and Kreuzer, M. (2000) Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Anim Feed Sci Tech,85,41-60.
    Machmuller, A., Soliva, C. R. and Kreuze, M. (2003a) Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Repro Nutri Develop,43,41-55.
    Machmuller, A., Soliva, C. R. and Kreuzer, M. (2003b) Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. Br J Nutr,90,529-540.
    Mackie, R. I. and White, B. I. (1990) Recent advances in rumen microbial ecology and metabolism:potential impact on nutrient output. J Dairy Sci,73(10),2971-2995.
    Mackie, R. I., McSweeney, C. S. and Aminov, R. I. (2001) Rumen. In Encyclopedia of Life Sciences.
    Makkar, H. P. S. and Becker, K. (1997) Degradation of Quillaja saponins by mixed culture of rumen microbes. Lett Appl Microbiol,25,243-245.
    Makkar, H. P. S., Francis, G. and Becker, K. (2007) Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal,1(9),1371-1391.
    Makkar, H. P.S. (2005) In vitro gas method for evaluation of feeds containing phytochemicals-a review. Anim Feed Sci Technol,123-124,291-302.
    Makkar, H. P.S. and Becker, K. (1998) Moringa oleifera seed meal and proteins on rumen fermentation in vitro. Annual report. Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany.
    Makkar, H. P.S. and Becker, K. (2000) Beneficial effects of saponins on animal production. In Saponins in food and feedstuffs and medicinal plants (ed. W Oleszek and A Marston), pp 281-286. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    Makkar, H. P.S. and McSweeney, C. S. (2005) Methods in gut microbial ecology for ruminants. Springer, Dordrecht, The Netherlands.
    Mauricio, R. M., Mould, F. L., Dhanoa, M. S., Owen, E., Channa, K. S. and Theodorou, M. K. (1999) A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim Feed Sci Technol,79,321-330.
    May, C., Payne, A. L., Stewart, P. L. and Edgar, J. A. (1995) A delivery system for agents. International Patent Application No. PCT/AU95/00733.
    McEwan, N. R., Abecia, L., Regensbogenova, M., Adam, C. L., Findlay, P. A. and Newbold, C. J. (2005) Rumen microbial population dynamics in response to photoperiod. Lett Appl Microbiol, 41,97-101.
    McSweeney, C. S., Denman, S. and Mackie, R. I. (2005) Rumen bacteria. Methods in Gut Microbial Ecology for Ruminants. Eds. Makkar, H. P. S. and McSweeney, C. S. Springer, Netherlands.
    Michalet-Doreau, B., Fernandez, I. and Fonty, G. (2002) A comparison of enzymatic and molecular approaches to characterize the cellulolytic microbial ecosystems of the rumen and the cecum. JAnim Sci,80,790-796.
    Miller, T. L., M.J. Wolin, Z. Hongxue, and M. P. Bryant. (1986) Characteristics of methanogens isolated from bovine rumen. Appl Environ Microbiol,51,201-202.
    Moe, P. W. and Tyrrell, H. F. (1979) Methane production in dairy cows. J Dairy Sci,62, 1583-1588.
    Morvan, B., F. Bonnemoy, G. Fonty, and P. Gouet. (1996) Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr Microbiol,32,129-133.
    Moss, A. R., Jouany, J. and Newbold, J. (2000) Methane production by ruminants:its contribution to global warming. Ann Zootech,49,231-253.
    Muetzel, S., Hoffmann, E. M. and Becker, K. (2003) Supplementation of barley straw with Sesbania pachcarpa leaves in vitro:effects on fermentation variables and rumen microbial concentration structure quantified by ribosomal RNA-targeted probes. Br J Nutr,89,445-453.
    Muyzer, G., Waal, E. C. and Uitterlinden, A. G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16S rRNA. Appl Environ Microbiol,59,695-7001.
    Navas-Camacho, A., Cortes, J., Gutierrez, E. (2001) Dietary supplementation with saponins to improve rumen function and animal performance in the tropics. In:Ibrahim, M. (Compiler), International Symposium on Silvopastoral Systems,2nd Congress on Agroforestry and Livestock Production in Latin America. CATIE, San Jose, Costa Rica, pp 380-385.
    Newbold, C. J., Hassan, S. M., Wang, J. M., Ortega, M. E. and Wallace, R. J. (1997) Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br J Nutr, 78,237-249.
    Ningrat, R. W. S., Garnsworthy, P. C. and Newbold, C. J. (2002) Saponin fractions in Sapindus rarak:effects on rumen microbes. Reproduction Nutrition Development,42 (suppl.1), S82.
    Odenyo, A. A., Mackie, R. I., Stahl, D. A., White, B. A. (1994) The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria:pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl Environ Microbiol,60, 3697-3703.
    Odenyo, A. A., Osuji, P. O. and Karanfil, O. (1997) Effect of multipurpose tree (MPT) supplements on ruminal ciliate protozoa. Anim Feed Sci Technol,67,169-180.
    Okhuma, M. and Kudo, T. (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus.Reticulitermes speratus. Appl Environ Microbiol,62, 461-468.
    Oleszek, W. (1996) Alfalfa saponins:structure, biological activity and chemotaxonomy. In:Waller, G.R.,Yamasaki, K. (Eds.), Saponins Used in Food and Agriculture. Plenum Press, New York, pp 155-170.
    Oppermann, R. A., Nelson, W. O. and Brown, R. E. (1957) In vitro studies on methanogenic rumen bacteria. J Dairy Sci,40,779-788.
    Orpin, C. G.and Joblin, K. N. (1997) The rumen anaerobic fungi. In:Hobson, P. N. ed. The Rumen Microbial Ecosystem. London:Academic and Professional, Publishers.140-195.
    Osbourn, A. (1996) Saponins and plant defence-a soap story. Trends Plant Sci.,1,4-9.
    Ouverney, C. C. and Fuhrman, J. A. (1999) Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol,65,1746-1752.
    Ozutsumi, Y., Takenaka, A. and Itabashi, H. (2006) Real-time PCR detection of the effects of protozoa on rumen bacteria in cattle. Curr Microbiol,52,158-162.
    Pardue, M. L. and Gall, J. G. (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci, USA,6464,600-604.
    Patterson, J. A. and Hespell, R. B. (1979) Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri. Curr Microbiol,3,79-83.
    Paynter, M. J. B. and Hungate, R. E. (1968) Characterization of Methanobacterium mobilis, sp.n., isolated from the bovine rumen. JBacteriol,95,1943-1951.
    Pen, B., Sar, C., Mwenya, B., Kuwaki, K., Morikawa, R. and Takahashi, J. (2006) Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Anim Feed Sci Tech,129,175-186.
    Polz, M. F., Bertillson, S., Acinas, S. G. and Hunt, D. (2003) A(r)ray of hope in analysis of the function and diversity of microbial communities. Biol Bull,204,196-199.
    Rainey, P. B. and Preston, G. M. (2000) In vivo expression technology strategies:valuable tools for biotechnology. Curr Opin Biotechnol,11,440-444.
    Regensbogenova, M., Pristas, P., Javorsky, P., Moon-van der stay, S. Y., van der stay, G. W. M., Hackstein, J. H. P, Newbold, C. J. and McEwan, N. R. (2004) Assessment of ciliates in the sheep rumen by DGGE. Lett Appl Microbiol,39,144-147.
    Reilly, K. and Attwood, G. T:(1998) Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl Environ Microbiol,64(3),907-913.
    Roderick I.Mackie, Bryan A.White, and Marvin P.Bryant. (1992) Methanogenesis,Biochemistry. Encyclopedia of Microbiology,3:97-109
    Rokbi, B., Seguin, D., Guy, B., Mazarin, V., Vidor, E., Mion, F., Cadoz, M. and Quentin-Millet, M. J. (2001) Assessment of Helicobacter pylori gene expression within mouse and human gastric mucosae by real-time reverse transcriptase PCR. Infect Immun,69,4759-4766.
    Rondon, M. R., August, P. R., Betterman, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., Tiong, C. L., Gilman, M., Osburne M. S., Clardy, J., Handelsman, J. and Goodman, R. M. (2000) Cloning the soil metagenome:a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol,66,2541-2547.
    Roszak, D. B., Grimes, D. J. and Colwell, R. R. (1984) Viable but nonrecoverable stage of
    Salmonella enteritidis in aquatic systems. Can JMicrobiol,30,334-338.
    Russell, J. B. and Rychlik, J. L. (2001) Factors that alter rumen microbial ecology. Science, 292(11),1119-1122.
    Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. and Arnheim, N. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science,230(4732),1350-1354.
    Sauer, F. D. and Teather, R. M. (1987) Changes in oxidation reduction potentials and volatile fatty acid production by rumen bacteria when methane synthesis is inhibited. J Dairy Sci,70, 1835-1840.
    Schmittgen, T. D. (2001) Real-time quantitative PCR. Methods,25(4),383-385.
    Schofield, P. and Pell, A. N. (1995) Measurement and kinetic analysis of the neutral detergent-soluble carbohydrate fraction of legumes. JAnim Sci,73(11),3455-3463.
    Sharp, R., Ziemer, C. J., Stern, M. D.and Stahl, D. A. (1998) Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol Ecol,26,71-78.
    Shi, Y. and Weimer, P. J. (1997) Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substractexcess and substratelimilted conditions. Appl Environ Microbiol,63,743-748.
    Shi, Y., Odt, C. L. and Weimer, P. J. (1997) Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl Environ Microbiol,63,734-742.
    Sievert, S. M., Ziebis, W., Kuever, J. and Sahm, K. (2000). Relative abundance of Achaea and bacteria along a thermal gradient of a shallow-water hydrothermal vent quantified by rRNA slot-blot hybridization. Appl Environ Microbiol,66,375-382.
    Skillman, L. C., Toovey, A. F., Williams, A. J. and Wright, A. D. G. (2006) Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between Entodinium populations in sheep offered a hay-based diet. Appl Environ Microbiol,72, 200-206.
    Slesarev, A.I., Mezhevaya, K. V., Makarova, K. S., Polushin, N. N., Shcherbinina, O. V., Shakhova, V. V., Belova, G. I., Aravind, L., Natale, D. A., Rogozin, I. B., Tatusov, R. L., Wolf, Y. I., Stetter, K. O., Malykh, A. G., Koonin, E. V., and Kozyavkin, S. A. (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proceedings of the National Academy of Sciences,99(7),4644-4649.
    Sliwinski, B. J., Kreuzer, M., Wettstein, H. R. and Machmiiller, A. (2002a) Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins and associated emissions of nitrogen and methane. Archiv fur Tierernahrung,56,379-392.
    Sliwinski, B. J., Soliva, C. R., Machmuller, A. and Kreuzer, M. (2002b) Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation. Anim Feed Sci Technol,101, 101-114.
    Smith, D. R., Douchette-Stamm, L. A., Deloughery, C., Lee, H., Dubois, J., Aldredge, T., Aldrede, T., Bashirzadeh, R., Cook, R., Gilbert, K., Harrison, D., Hoang, L., Keagle, P., Lumm, W., Pothier, B., Qiu, D., Spadafora, R., Vicaire, R., Wang, Y., Wierzbowski, J., Gibson, R., Jiwani, N., Caruso, A., Bush, D., Safer, H., Patwell, D., Prabhakar, S., McDougall, S., Shimer, G., Goyal, A., Pietrokovski, S., Church, G. M., Daniels, C. J., Mao, J. I., Rice, P., Nolling, J. and Reeve, J. N. (1997) Complete genome sequence of Methanobacterium thermoautotrophicum ΔH:Functional analysis and comparative genomics. JBacteriol,179,7135-7155.
    Smith, P. H. and Hungate, R. E. (1958) Isolation and characterization of Methanobacterium ruminantium n. sp. J Bacteriol,75,713-718.
    Soliva, C. R. Meile, L., Hindrichsen, I. K., Kreuzer, M. and Machmiiller, A. (2004) Myristic acid supports the immediate inhibitory effect of lauric acid on ruminal methanogens and methane release. Anaerobe,10(5),269-276.
    Soliva, C. R., Hess, H. D. and Meile, L. (2003) Suppression of ruminal methanogenesis by dietary means:apprent inconsistency between methane release and counts of microbes involved in methanogenesis. Trop Subtrop Agroecosyst,3,209-213.
    Sparling, R. and Daniels L. (1987) The specificity of growth inhibition of methanogenic bacteria by bromoethanesulfonate. Can JMicrobiol,33,1132-1136.
    Springer, E., Sachs, M. S., Woese, C. R. and Boone, D. R. (1995) Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcr(?)) as a phylogenetic tool for the family Methanosarcinaceae. Int. J. Syst. Bacteriol.45,554-559.
    Stahl, D. A., Flesher, B., Mansfield, H. R. and Montgomery, L. (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol, 54,1079-1084.
    Stevenson, D. M. and Weimer, P. J. (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol,75(1),165-174.
    Stumm, C. K., Gijzen, H. J. and Vogels, G. D. (1982) Association of methanogenic bacteria with ovine rulnen ciliates. Br J Nutr,47,95-99.
    Sylvester, J. T., Karnati, S. K. R., Yu, Z., Morrison, M. and Firkins, J. L. (2004) Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. JNutr,134, 3378-3384.
    Tajima, K., Aminov, R. I, Nagamine, T., Matsui, H., Makamura, M. and Benno, Y. (2001a) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol,6,2766-2774.
    Tajima, K., Aminov, R.I., Nagamine, T., Ogata, K., Nakamura, M., Matsui, H. and Benno, Y. (1999) Molecular bacteria diversity of the rumen as determined by sequence analysis of 16S rRNA libraries. Microbiol Ecol,27,159-169.
    Tajima, K., Nagamine, T., Matsui, H., Nakamura, M. and Aminov, R. I. (2001b). Phylogenetic analysis of archael 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett,200,67-72.
    Tatsuoka, N., Mohammed, N., Mitsumori, M., Hara, K., Kurihara, M. and Itabashi, H. (2004) Phylogenetic analysis of methyl coenzyme-M reductase detected from the bovine rumen. Lett Appl Microbiol,39 (3),257-260.
    Teferedegne, B. (2000) New perspectives on the use of tropical plants to improve ruminant nutrition. Proceedings of Nutrition Society,59,209-214.
    Teferedegne, B., McIntosh, F., Osuji, P. O., Odenyo, A., Wallace, R. J. and Newbold, C. J. (1999) Influence of foliage from different accessions of the subtropical leguminous tree, Sesbania sesban, on ruminal protozoa in Ethiopian and Scottish sheep. Anim Feed Sci Technol,78, 11-20.
    Thalib, A., Widiawati, Y., Hamid, H., Suherman, D. and Sabrani, M. (1996) The effects of saponin from Sapindus rarak fruit on rumen microbes and performance of sheep. Jurnal Ilmu Ternak dan Veteriner,2,17-20.
    Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B. and France, J. (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol,48,185-197.
    Tokura M., K. Ushida, K. Miyazaki, Y. Kojima (1997) Methanogens associated with rumen ciliates FEMS Microbiology Ecology 22 (2),137-143
    Tokura, M., Chagan, I., Ushida, K. and Kojima, Y. (1999) Phylogenetic Study of Methanogens Associated with Rumen Ciliates. Curr Microbiol,39(3),123-128.
    Tokura, M., Ushida K, Miyazaki, K. and Kojima, Y. (1997) Methanogens associated with rumen ciliates. FEMS Microbiol Ecol,22,137-143.
    Tomkins, N. W. and Hunter, R. A. (2004) Methane reduction in beef cattle using a novel antimethanogen. Anim Prod Aust,25,329.
    Ungerfeld, E. M., Rust, S. R., and Rurnett R. (2007) Increase in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis. Can J Microbiol,53, 496-503.
    Ungerfeld, E. M., Rust, S. R., Boone, D. R. and Liu, Y. (2004) Effects of several inhibitors on pure cultures of ruminal Methanogens. J Appl Microbiol,97,520-526.
    Ushida, K. and Jouany, J. P. (1996) Methane production associated with rumen-ciliated protozoa and its efect on protozoan activity. Lett Appl Microbiol,23,129-132.
    Van Nevel, C. J. and Demeyer, D.I. (1995) Feed additives and other interventions for decreasing methane emissions, in:Wallace R.J., Chesson A. (Eds.), Biotechnology in Animal Feeds& Animal Feeding, VCH, Weinheim, pp.329-349.
    Van Soest, P. J., Robertson, J. B. and Lewis, B. (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci,74,3583-3597.
    Vermorel, M. and Jouany, J. P. (1989) Effects of rumen protozoa on energy utilization by wethers of two diets based on ammonia-treated straw supplemented or not with maize. Asia-Aust JAnim Sci,2,475-476.
    Vinogradov, E., Egbosimba, E. E., Perry, M. B., Lam, J. S. and Forsberg, C. W. (2001) Structural analysis of the carbohydrate components of the other membrane of the lipopolysaccharide-lacking cellulolytic ruminal bacterium Fibrobacter succinogenes S85. Eur J Biochem 268,3566-3576.
    Vogels, G. D., Hoppe, W. F. and Stumm, C. K. (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol,40,608-612.
    Wallace, R. J., Arthaud, L. and Newbold, C. J. (1994) Influence of Yucca schidigera extract on ruminal ammonia concentrations and ruminal microorganism. Appl Environ Microbiol,60, 1762-1767.
    Wallace, R. J., McEwan, N. R., McIntosh, F. M., Teferedegne, B. and Newbold, C. J. (2002) Natural products as manipulators of rumen fermentation. Asian-Australasian JAnim Sci,15, 1458-1468.
    Walter, J., Heng, N. C. K., Hammes, W. P., Loach, D. M., Tannock, G. W. and Hertel, C. (2003) Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl Environ Microbiol,69,2044-2051.
    Wang, Y., McAllister, T. A., Newbold, C. J., Cheeke, P. R. and Cheng, K. J. (1997) Effects of Yucca Extract on Fermentation and Degradation of Saponins in the Rusitec. Proceedings of Western Section, American Society of Animal Science, Vol.48. Nashville, Tennessee, USA, pp 149-152.
    Wang, Y., McAllister, T. A., Yanke, L. J., Xu, Z. J. and Cheeke, P. R. (2000) Effects of steroidal saponin from Yucca schidigera extract on ruminal microbes. J Appl Microbiol,88,887-896.
    Whitelaw, F. G., Eadie, J. M, Bruce, L. A. Shand, W. J. (1984) Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. Br J Nutr,52, 261-275.
    Whitford, M. F., Teather, R. M. and Forster, R. J. (2001) Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol,1(5),1-5.
    Williams, A. G., Joblin, K. N. and Fonty, G. (1995) Internations between the rumen chytrid fungi and other microorganisms. In:Mountfort D O and Orpin C G, ed. Anaeobic Fungi:Biology, Ecology and Function. New York:Marcel Dekker, Inc.
    Wilson, K. H. and Blitchington, R. B., (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol,62,2273-2278.
    Wina, E. (2005) The utilization of Sapindus rarak DC. Saponins to improve ruminant production through rumen manipulation. Masters, University of Hohenheim, Stuttgart, Germany.
    Wina, E., Muetzel, S. and Becker, K. (2005) The impact of saponins or saponincontaining plant materials on ruminant production-a review. J Agri Food Chem,53,8093-8105.
    Wina, E., Muetzel, S. and Becker, K. (2006) The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short-and long-term feeding of Sapindus rarak saponins. J Appl Microbiol,100(1),114-122.
    Wina, E., Muetzel, S., Hoffman, E., Makkar, H. P. S. and Becker, K. (2005b) Effect of secondary compounds in forage on rumen microorganisms qualified by 16S and 18S rRNA. In Applications of gene-based technologies for improving animal production and health in developing countries (ed. HPS Makkar and GJ Viljoen), pp 397-410. Springer, Dordrecht, The Netherlands.
    Wina, E., Muetzel, S., Hoffmann, E., Makkar, H. P. S. and Becker, K. (2005c) Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim Feed Sci Technol,121,159-174.
    Wolin, M. J. and Miller, T. L. (2005) Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors.2nd International Conference on Greenhouse Gases and Animal Agriculture. Publication Series, Institute of Animal Science, ETH Zurich,(CR Soliva, J Takahashi and M Kreuzer. eds) 27,71-77.
    Wolin, M. J., Miller, T. L. and Stewart, C. S. (1997) Microbe-microbe interations. In "The Rumen Microbial Ecosystem" eds:Hobson, P. N. and Stewart, C. S. pp.467-491. Blackie Academic and Professional, London.
    Wood, J. M., Kennedy, F. S. and Wolfe, R. S. (1968) The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochem,7,1707-1713.
    Wood, J. M., Moura, I., Moura, J. J., Santos, M. H., Xavier, A. V., LeGall, J. and Scandellari, M. (1982) Role of vitamin B12 in methyl transfer for methane biosynthesis by Methanosarcina barkeri. Science,216,303-305.
    Wright, A. D. G., Williams, A. J., Winder, B., Christopherson, C. T., Rodgers S. L. and Smith, K. D. (2004) Molecular diversity of rumen methanogens from sheep in western Australia. Appl Environ Microbiol,70,1263-1270.
    Yanagita, K., Kamagata, Y., Kawaharasaki, M., Suzuki, T., Nakamura, Y. and Minato, H. (2000) Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem,64, 1737-1742.
    Yuan, Z. P., Zhang, C. M., Zhou, L., Zou, C. X., Guo, Y. Q., Li, W. T., Liu, J. X and Wu, Y. M. (2007) Inhibition of methanogenesis by tea saponin and tea saponin plus disodium fumarate in sheep. JAnim Feed Sci,16,560-565.
    Zhang, C. M., Guo, Y. Q., Yuan, Z. P., Wu, Y. M., Wang, J. K., Liu, J. X. and Zhu, W. Y. (2008) Octadeca-carbon fatty acids affect microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Technol. (in press)
    Zhu, W. Y., Williams, B. A., Konstantinov, S. R., Tamminga, S., De Vos, W. M., Akkermans, A. D. (2003) Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe,9,175-180.
    Zoetendal, E. G., Akkermans, A. D. L. and de Vos, W. M. (1998) Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol,64,3854-3859.
    Zoetendal, E. G., Collier, C. T., Koike, S., Mackie, R. I. and Gaskins, H. R. (2004) Molecular ecological analysis of the gastrointestinal microbiota:a review. JNutri,134,465-472.
    陈小连(2007)稻草与补充料组合影响瘤胃纤维消化和微生物生态的效应研究.浙江大学博士学位论文.
    成艳芬,毛胜勇,裴彩霞,刘建新,朱伟云(2006)共存于厌氧真菌分离培养液中瘤胃甲烷菌的检测及其多样性分析.微生物学报,46(6),879-883.
    单丽伟,冯贵颖,范三红.(2003)产甲烷菌研究进展.微生物学杂志,23(6),42-46.
    黄庆生,王加启.(2005)添加不同酵母培养物对瘤胃纤维分解菌群和纤维素酶活的影响.畜牧兽医学报,36(2),144-148.
    姚文,朱伟云,韩正康,Akkermans, A. D. L., Williams, B., Tamminga, S. (2004)应用变性梯度凝胶电泳和16S rDNA序列分析对山羊瘤胃细菌多样性的研究.中国农业科学,37,1374-1378.
    张元庆,魏吉安,孟庆翔.(2006).不同植物细胞壁的体外发酵特征及其对甲烷产生的贡献.畜牧兽医学报,37(10),992-998.
    张鋆.(2003)荧光实时定量PCR技术初探.生命科学趋势,1(4),1-28.
    赵玉华,王加启.(2006)利用实时定量PCR对瘤胃甲酸甲烷杆菌定量方法的建立与应用.中国农业科学,39(1),161-169.
    朱伟云,姚文,毛胜勇.(2003)变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化.微生物学报,43,503-508.
    朱伟云.(2004).瘤胃微生物.In:冯仰廉,ed.反刍动物营养学.北京:科学出版社.1-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700