微波光产生及滤波的若干光调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光网络与无线网络的融合主导现代通信网络技术向大容量、长距离传输的方向发展,Radio over Fiber技术(ROF,无线信号光纤传送)已成为这一前沿领域的热点研究课题,并推动微波技术和光子学融合的新兴交叉学科——微波光子学的迅速发展。用先进的微波光子学技术解决超宽带信息传送问题在无线通信、军事等领域有重要的应用前景而引起了世界各国的重视。本论文围绕微波光子学技术的若干关键功能的物理实现,研究相关的光学调控机制,主要包括微波毫米波的全光产生及微波光子滤波。
     通过光纤激光器的锁模效应,采用单一商用调制器实现了高次谐波的产生;并利用二次谐波锁模和FBG滤波器相结合的方式实现了对多余谐波的滤除。利用在10GHz信号源和强度调制器,通过腔外滤波的谐波锁模和腔内滤波的注入锁模光纤激光器两种方法实现了四倍于调制器驱动频率的毫米波拍频光源;通过拍频产生了相位噪声<-66dBc/Hz@1kHz ,频率为40GHz的毫米波。
     通过级联两个强度调制器实现了高次谐波的产生;利用调制器工作点的设置及对谐波光相移差的控制实现了对多余谐波的滤除。使用10GHz信号源、两个强度调制器和一段可调光延迟线,实现了四倍于调制器驱动频率的毫米波拍频光源;通过拍频产生了谐波抑制比大于20dB、相位噪声<-66dBc/Hz@1kHz ,频率为40GHz的毫米波。
     通过级联调制产生了多个抽头,实现了等频率间隔抽头加色散媒质的微波光子滤波器,并通过调节调制器直流偏置、驱动频率以及谐波光相移,改变了抽头数目、频响曲线的形状以及自由谱区,对通过级联调制和光相移控制实现微波光子滤波器(MPF)的重构和调谐进行了论证;最后,利用光纤中的四波混频效应进一步增加了抽头数目,使MPF的Q值达到20。
     利用光纤双折射效应实现两抽头负系数MPF,在此基础上通过强度调制增加抽头的数目,获得了带有负系数的四抽头和六抽头MPF。
The integration of optical network and wireless network develop the modern communications for the direction of large-capacity and long-distance. Radio over Fiber technology (ROF) has become a hot area of the cutting-edge research and promoted the rapid development of microwave photonics– the cross-disciplinary integration technology of microwave and photonics. The important application prospects for using advanced microwave photonics technology to solve the issue of ultra-wideband transmissions in wireless communications and military raises the prospect of great importance to all countries in the world. In this thesis, revolving around a number of key features of the physical realization in microwave photonics technology, we research related optical regulation and control mechanism, including the all-optical microwave/millimeter wave generation and microwave photonic filter.
     Using harmonic wave mode-locked fiber and fiber Bragg filter grating, we achieve the two output harmonic wave with frequency interval of quadruple modulator driving frequency and realize the generation of millimeter wave by bearing frequency. Through two ways: second harmonic wave mode-locked and filter extra-cavity, injection second harmonic wave mode-locked and filter inner-cavity, we achieve 40GHz millimeter-wave by using a 10GHz signal generator with phase noise of <-66dBc/Hz @ 1kHz.
     By introducing the optical phase shifting regulation and control mechanism in cascaded modulation, the optical carrier wave is suppressed; and combining with the regulation and control of two modulators, 2-order harmonic wave is generated and quadruple driving frequency of millimeter-wave is achieved. By using 10GHz signal generator, we achieve 40GHz millimeter-wave with phase noise of <-66dBc/Hz @ 1kHz and harmonic wave suppression ratio of >20dB.
     Using cascaded modulation, a reconfigurable and tunable MPF is proposed, in which the sidebands generated by a CW light passing through two cascaded MZMs serve as the multi-taps and an optical variable delay line (VDL) between two modulators is introduced to add another way to adjust the tap weightings. The reconfigurability can be achieved by adjusting both the bias voltage, modulation depth of MZMs and the difference of optical phase shifting of every sideband. So a reconfigurable MPF can be realized with arbitrary filter responses. As examples, the response shape of uniform window and hanning window are experimentally demonstrated with five taps. In addition, the tunability of MPF can also be achieved by tuning the driving frequency of MZMs. Finally, the use of fiber-optic four-wave mixing effect for a further increase in the number of the tap so that the Q value of MPF reach 20.
     The realization of negative coefficient taps by using birefringence effect combining with intensity modulation is also demonstrated. Through birefringence effect combining with intensity modulation, we achieved 4 and 6 tap with negative coefficient of MPF.
引文
[1] O'Mahoney, M. J., Simeonidou, D., Yu, A. and Zhou, J., The design of a European optical network, Lightwave Technology, Journal of, 1995, 13(5):817-828.
    [2] Matsuda, T., Kotanigawa, T., Kataoka, T. and Naka, A., 53 × 42.7 Gbit/s L- and U-band WDM signal transmission experiments with in-line hybrid optical amplifiers, Electronics Letters, 2004, 40(6):380-381.
    [3] Miyamoto, Y., Tomizawa, M. and Tada, Y., 43-Gbit/s-chennel-based DWDM System Technologies for the Photonic Transport Network, NTT Technical Review, 2003, 1(8):36-48.
    [4]韦公远,光电子领跑21世纪,世界网络与多媒体,2001, 8.
    [5]宋俊德、战晓苏,无线通信与网络,国防工业出版社, 2008
    [6] Kagami, O., Toyoda, I. and Umehira, M., Technologies for next-generation wireless LANs, NTT Technical Review, 2005, 3(1):31-36.
    [7] Nakajima, N., ROF technologies applied for cellular and wireless systems, Seoul, Korea, Republic of: Inst. of Elec. and Elec. Eng. Computer Society, 2005:11-14.
    [8] Seeds, A. J., Microwave photonics, IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3):877-887.
    [9] Anne Vilcot, Béatrice Cabon, Jean Chazelas. Microwave photonics:from components to applications and systems, Netherlands: Kluwer Academic Publishers, 2003
    [10] Garcia Zuazola, I. J., Elmirghani, J. M. H. and Batchelor, J. C., UWB RoF system for in-vehicle applications, Wroclaw, Poland: Inst. of Elec. and Elec. Eng. Computer Society, 2008.
    [11] Capmany, J., Ortega, B. and Pastor, D., A tutorial on microwave photonic filters, Journal of Lightwave Technology, 2006, 24(1):201-229.
    [12] Gomes, N. J., Morant, M., Alphones, A., Cabon, B., atrice, Mitchell, J. E., Lethien, C., et al., Radio-over-fiber transport for the support of wireless broadband services [Invited], Journal of Optical Networking, 2009, 8(2):156-178.
    [13] Raza, M. H., Zaidi, K. and Zaidi, S. M. H., A review of full-duplex WDM RoF architectures, Wuhan, China: SPIE, 2007, p. The International Society for Optical Engineering (SPIE); Chinese Optical Society (COS); China Institute of Communications (CIC); The People's Government of Wuhan Municipality.
    [14] Horiuchi, Y., ROF application to 3G mobile systems in offices and outdoors, Seoul, Korea, Republic of: Inst. of Elec. and Elec. Eng. Computer Society, 2005, p. 3.
    [15] Cooper, A. J., 'Fibre/radio' for the provision of cordless/mobile telephony services in the access network, Electronics Letters, 1990, 26(24):2054-2056.
    [16]徐坤,林金桐,大都市网络的解决方案——ROF技术,现代电信科技2006,09:2-5
    [17] A. Ng’oma. Radio-over-fibre Technology for broadband wireless communication systems. Proefschrift of Eindhoven University of Technology, 2005
    [18] Fuster, J. M., Marti, J., Corral, J. L., Polo, V. and Ramos, F., Generalized study of dispersion-induced power penalty mitigation techniques in millimeter-wave fiber-optic links, Journal of Lightwave Technology, 2000, 18(7):933-940.
    [19] Yu, J., Jia, Z., Yi, L., Su, Y., Chang, G.-K. and Wang, T., Optical millimeter-wave generation or up-conversion using external modulators, IEEE Photonics Technology Letters, 2006, 18(1):265-267.
    [20] D. Pastor et al., Tunable Microwave Photonic Filter for Noise and Interference Suppression in UMTS Base Stations, 2004. IST LABELS project internal report. [Online]. Available: http://labels.upv.es
    [21] TSG-RAN Working Group 4, Evaluation of up- and downlink adjacent channel performance, 1999. Rec. TSGR4#2(99)048, 3rd Generation Partnership Project (3GPP). [Online]. Available: www.3gpp.org
    [22] Kitayama, K.-I., Architectural considerations of fiber-radio millimeter-wave wireless access systems, Fiber and Integrated Optics, 2000, 19(2):167-186.
    [23] Capmany, J., Ortega, B., Pastor, D. and Sales, S., Discrete-time optical processing of microwave signals, Journal of Lightwave Technology, 2005, 23(2):702-723.
    [24] Capmany, J., Pastor, D. and Ortega, B., Microwave signal processing using optics, Anaheim, CA, United states: Institute of Electrical and Electronics Engineers Inc., 2005, pp. 31-84.
    [25] Jackson, K. P., Newton, S. A., Moslehi, B., Tur, M., Cutler, C. C., Goodman, J. W. and Shaw, H. J., OPTICAL FIBER DELAY-LINE SIGNAL PROCESSING, IEEE Transactions on Microwave Theory and Techniques, 1985, MTT-33(3):193-210.
    [26] Zmuda,H and Toughlian, E. N., Photonics Aspects of Modern Radar.Boston, MA: Artech House, 1994.
    [27] Toda, H., Kuri, T. and Kitayama, K.-I., DWDM millimeter-wave radio-on-fiber systems, Shanghai, China: SPIE, 2005, pp. SPIE - The International Society for Optical Engineering; Chinese Optical Society, COS, China; China Institute of Communications, China.
    [28] Davidson, A. C., Wise, F. W. and Compton, R. C., Low phase noise 33-40-GHz signal generation using multilaser phase-locked loops, IEEE Photonics Technology Letters, 1998, 10(9):1304-1306.
    [29] Xie, X. B., Wu, Y., Hodiak, J. H., Lord, S. M. and Yu, P. K. L., Suppressed-carrier large-dynamic-range heterodyned microwave fiber-optic link, Ogunquit, ME, United states: Institute of Electrical and Electronics Engineers Inc., 2004, pp. 245-248.
    [30] Johansson, L. A. and Seeds, A. J., Fibre-integrated heterodyne optical injection phase-lock loop for optical generation of millimetre-wave carriers, IEEE MTT-S International Microwave Symposium Digest, 2000, 3:1737-1740.
    [31] Vawter, G. A., Mar, A., Hietala, V., Zolper, J. and Hohimer, J., All optical millimeter-wave electrical signal generation using an integrated mode-locked semiconductor ring laser and photodiode, IEEE Photonics Technology Letters, 1997, 9(12):1634-1636.
    [32] Yao, Y., Chen, X., Dai, Y. and Xie, S., Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation, IEEE Photonics Technology Letters, 2006, 18(1):187-189.
    [33] Shen, Y., Zhang, X. and Chen, K., All-optical generation of microwave and millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser, Journal of Lightwave Technology, 2005, 23(5):1860-1865.
    [34] Qi, G., Yao, J., Seregelyi, J., Paquet, S. and Belisle, C., Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique, IEEE Transactions on Microwave Theory and Techniques, 2005, 53(10):3090-3097.
    [35] Dagli, N., Wide-bandwidth lasers and modulators for RF photonics, IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7 II):1151-1171.
    [36]北京世维通光通讯技术有限公司, http://www.swt-oc.com/
    [37] Li, Y., Chen, L., Wen, S. and Fan, D., Optical MM-wave DWDM signal generation with photonic frequency quadruple by only one external modulator, Microwave and Optical Technology Letters, 2008, 50(5):1152-1155.
    [38] Liu, L., Dong, Z., Pi, Y., Lu, J., Chen, L., Yu, J. and Wen, S., Radio-over-fiber system for frequency-quadrupled millimeter-wave generation by external modulator, Zhongguo Jiguang/Chinese Journal of Lasers, 2009, 36(1):148-153.
    [39] Chen, L., Lu, J., Dong, Z., Chen, L. and Yu, J., Radio over fiber system based on two external modulator for optical millimeter generation with photonic frequency quadruple, Zhongguo Jiguang/Chinese Journal of Lasers, 2008, 35(12):1910-1913.
    [40] Zhang, J., Chen, H., Chen, M., Wang, T. and Xie, S., Photonic generation of a millimeter-wave signal based on sextuple-frequency multiplication, Optics Letters, 2007, 32(9):1020-1022.
    [41] P. Shen, N.J. Gomes, P.A. Davies, W.P. Shillue, P.G. Huggard, and B.N. Ellison. High-purity millimeter-wave photonic local oscillator generation and delivery. in Proceedings of the International Topical Meeting on Microwave Photonics(MWP), 2003: 189-192
    [42] Schneider, T., Junker, M. and Hannover, D., Generation of millimetre-wave signals by stimulated brillouin scattering for radio over fibre systems, Electronics Letters, 2004, 40(23):1500-1502.
    [43] Noel, L., Marcenac, D. and Wake, D., Optical millimetre-wave generation technique with high efficiency, purity and stability, Electronics Letters, 1996, 32(21):1997-1998.
    [44] Hunter, D. B. and Minasian, R. A., Tunable microwave fiber-optic bandpass filters, IEEE Photonics Technology Letters, 1999, 11(7):874-876.
    [45]池灏;章献民;沈林放;基于光纤环的可调谐微波光子滤波器,光电子.激光2006(1):17-19
    [46] Hunter, D. B. and Minasian, R. A., Microwave optical filters based on a fibre Bragg grating in a loop structure, Kyoto, Jpn: IEEE, 1996, pp. 273-276.
    [47] You, N. and Minasian, R. A., Novel high-Q optical microwave processor using hybrid delay-line filters, IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7 II):1304-1308.
    [48] Mora, J., Ortega, B., Capmany, J., Cruz, J. L., Andres, M. V., Pastor, D. and Sales, S., Automatic tunable and reconfigurable fiber-optic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings, Optics Express, 2002, 10(22):1291-1298.
    [49] Mora, J., Ortega, B., Andres, M. V., Capmany, J., Pastor, D., Cruz, J. L. and Sales, S., Tunable chirped fibre Bragg grating device controlled by variable magnetic fields, Electronics Letters, 2002, 38(3):118-119.
    [50] Pastor, D., Capmany, J., Sales, S., Munoz, P. and Ortega, B., Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers, IEEE Photonics Technology Letters, 2001, 13(11):1224-1226.
    [51] Hunter, D. B. and Minasian, R. A., Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings, Electronics Letters, 1995, 31(12):1010-1012.
    [52] Hunter, D. B. and Minasian, R. A., Microwave optical filters using in-fiber Bragg grating arrays, IEEE Microwave and Guided Wave Letters, 1996, 6(2):103-105.
    [53] Popov, M., Fonjallaz, P.-Y. and Gunnarsson, O., Compact microwave photonic transversal filter with 40-dB sidelobe suppression, IEEE Photonics Technology Letters, 2005, 17(3):663-665.
    [54] Pastor, D., Ortega, B., Capmany, J., Fonjallaz, P. Y. and Popov, M., Tunable microwave photonic filter for noise and interference suppression in UMTS base stations, Electronics Letters, 2004, 40(16):997-999.
    [55] Pastor, D., Capmany, J. and Ortega, B., Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters, IEEE Photonics Technology Letters, 2001, 13(7):726-728.
    [56] Capmany, J., Pastor, D. and Ortega, B., New and flexible fiber-optic delay-line filters using chirped bragg gratings and laser arrays, IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7 II):1321-1326.
    [57] Fu, H., Ou, H., Zhu, K., Remb, E. and He, S., A tunable and reconfigurable microwave photonic filter based on two cascaded modulators and a dispersive medium, Optics Communications, 2008, 281(22):5550-5554.
    [58] Capmany, J., Pastor, D., Mora, J. and Ortega, B., Microwave photonic filters with negative coefficients: Fundamentals, advantages and recent advances, Sydney, Australia: Institute of Electrical and Electronics Engineers Inc., 2005, pp. 833-834.
    [59] Xiao, F., Juswardy, B. and Alameh, K., Opto-VLSI-based reconfigurable microwave photonic transversal filter with positive and negative coefficients, Gold Coast, QLD, Australia: Inst. of Elec. and Elec. Eng. Computer Society, 2008, pp. 251-254.
    [60] Oh, C. K., Kim, T.-Y., Baek, S. H. and Park, C.-S., A photonic microwave notch filter with a negative coefficient based on cross polarization modulation in a single semiconductor optical amplifier, Banff, AB, Canada: Int. Assoc. of Science and Technology for Development, 2006, pp. 303-306.
    [61] Wang, J., Zeng, F. and Yao, J., All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion, IEEE Photonics Technology Letters, 2005, 17(10):2176-2178.
    [62] Yi, X. and Minasian, R. A., Novel multitap, flat-top microwave photonic filter based on sinusoidal group delay gratings, Journal of Lightwave Technology, 2008, 26(15):2578-2583.
    [63] Mora, J., Martinez, A., Manzanedo, M. D., Capmany, J., Ortega, B. and Pastor, D., Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter, Electronics Letters, 2005, 41(16):921-922.
    [64] Capmany, J., Pastor, D., Martinez, A., Ortega, B. and Sales, S., Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator, Optics Letters, 2003, 28(16):1415-1417.
    [65] Yao, J. and Wang, Q., Photonic microwave bandpass filter with negative coefficients using a polarization modulator, IEEE Photonics Technology Letters, 2007, 19(9):644-646.
    [66]彭江德,光电子技术基础.北京:清华大学出版社. 1998
    [67]曹志刚,钱亚生,现代通信原理.北京:清华大学出版社. 2003
    [68] Qi, G., Yao, J., Seregelyi, J., Paquet, S., Belisle, C., Zhang, X., Wu, K., et al., Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques, Journal of Lightwave Technology, 2006, 24(12):4861-4875.
    [69]张鋆,再生锁模光纤环形激光器[硕士论文],北京:清华大学电子工程系
    [70]王林,于晋龙,马晓红,等.有理数谐波锁模掺铒光纤环形激光器.中国激光, 1999, 26(2):109-112
    [71] W. Kaechele, J.P. Theimer and A.R. Pirich. Rational harmonic mode locking fiber laser. Proc of SPIE, 1997, 3075:21-32
    [72] Agrawal G P. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optices.北京:电子工业出版社. 2002
    [73] Smith, G. H., Novak, D. and Ahmed, Z., Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators, IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8 pt 2):1410-1415.
    [74] Shimotsu, S., Oikawa, S., Saitou, T., Mitsugi, N., Kubodera, K., Kawanishi, T. and Izutsu, M., LiNbO3 optical single-sideband modulator, Baltimore, MD, USA: IEEE, 2000, pp. 214-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700