瘤胃微生物Real Time PCR定量方法的建立及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究分别以产甲烷菌、原虫和瘤胃细菌为例,根据其16S/18S rDNA序列、ITS序列和特有蛋白的基因序列,利用Real Time PCR技术,分别在种和类的水平上,建立了对瘤胃微生物绝对定量与相对定量的分子生物学方法,为瘤胃微生物的研究提供了一种快速、准确的方法。同时,应用此方法研究了植物油对瘤胃中产甲烷菌数量、氢化细菌数量及原虫数量的影响,探讨了植物油降低瘤胃微生物甲烷产量的途径。
     DNA的提取采用珠磨——酚氯仿法。提取的瘤胃微生物总DNA在20Kb以上,OD_(260)nm/OD_(280nm)均在1.7~1.9,提取效率达87.64%。利用真细菌、古细菌和真菌16S/18S rDNA的通用引物从纯化后瘤胃微生物总DNA中成功扩增出目标条带,表明珠磨式机械破碎法能充分破碎包括细菌、真菌、原虫在内的各种瘤胃微生物,并满足后续实验的要求。
     利用Acc Ⅰ、EcoR Ⅰ、Pst Ⅰ、Pvu Ⅱ、Sac Ⅰ、Sma Ⅰ等6种限制性内切酶将基因组酶切,通过Southern杂交确定M.formicicum的16S rDNA序列在基因组中有2个拷贝。设计了M.formicicum种专一探针,通过在GeneBank中用Blast进行比对,证实该探针特异性很高。对M.formicicum的Real Time PCR反应条件进行了优化,其最佳体系为:引物和探针的浓度分别为0.4μmol/L、0.2μmol/L,MgCl_2 4mmol/L,模板浓度为126ng。检测灵敏度可达到30拷贝/25μL体系。M.formicicum采用Real Time PCR方法测得的数量低于采用传统最大或然数法测得的数量,但两者之间具有很高的相关性(r=0.957,P<0.01),说明采用Real Time PCR的方法能够如实的反映瘤胃微生物数量的变化。
     以ITS为靶序列,采用SYBR Green Ⅰ荧光染料Real Time PCR法成功对M.mazei进行了定量检测,有效检测灵敏度可达300拷贝/25μL体系。同时,以微生物合成甲烷过程中的关键酶mcrA基因为靶基因,采用SYBR Green Ⅰ荧光染料Real Time PCR法,建立了瘤胃总产甲烷菌相对定量方法。利用上述方法,分别对肉牛、奶牛瘤胃中的M.formicicum、总产甲烷菌进行了检测,结果表明所测得的肉牛瘤胃中的M.formicicum、总产甲烷菌的数量远高于奶牛,这可能与肉牛日粮中粗料比例较高有关。同时,采用SYBR Green Ⅰ荧光染料Real Time PCR法成功对B.fibrivolen和R.ablus进行了定量检测。
     日粮中添加4%棉籽油和4%豆油均降低人工瘤胃中微生物的甲烷产量,但二者之间无显著差异。不同时间段内,甲烷产量降低的幅度不同,其中采食后2~4h内甲烷产量降低的幅度最大,与对照组相比,分别降低25.52%和24.26%(P<0.05),4~6h次之,6~8h变化最小。添加4%棉籽油和4%豆油,使人工瘤胃中的M.formicium、总产甲烷菌、Ciliate protozoa、B.fibrivolen和R.ablus的数量均减少。与对照组相比,添加4%棉籽油组和添加4%豆油组,7d中部采样M.formicium、总产甲烷菌、Ciliate protozoa、B.fibrivolen和R.ablus的数量分别减少了100%、100%,91.40%、82.57%,87.50%、96.87%,6.05%、12.94%,71.54%、89.43%,在底部采样中,分别降低了100%、100%,36.49%、40.54%,61.98%、67.55%,11.94%、14.74%,54.62%、43.10%。上述结果显示,植物油主要是通过杀灭瘤胃原虫,从而减少产甲烷菌数量以降低甲烷的生成。
A perfect quantitative method of rumen microorganisms was developed by real time PCR as the example of methanogens, protozoa and rumen bacteria in this paper, on the sequence of 16S /18S rDNA, ITS and the genes of own protein basis. And the detecting and quantitative reaction system of methanogens was established from the angles of species and genera, absolute and relative quantification, known and unknown copy numbers. Furthermore, the regression relation was developed on comparing the method of real time PCR with the method of most probable number. At the same time, the effect of plant oil on the population of methanogens, able-hydrogenated bacteria, ciliate protozoa and methane production was studied by real time PCR, and the approach of plant oil reducing methane production of rumen microorganisms was discussed.The method of DNA extraction by a bead-beating technique and phenol-CHCl_3 was used. The DNA extracted was longer than 20kb, OD_(260nm)/OD_(280nm) of DNA was 1.7-1.9, and the efficiency of the DNA extraction was 87.64%. we got the target 16S rDNA sequences of the PCR-amplification by primers of bacteria, archaea and fungi. This showed that the method of DNA extraction in this paper could well break the cells of rumen microorganisms including bacteria, fungi and protozoa into pieces and could meet needs for other subsequent studies.It was determined by the digestion of genomic DNA with six different restriction endonucleases: AccⅠ, EcoRⅠ, PstⅠ, PvuⅡ, Sacland SmaⅠ and southern hybridization that the copy number of M.formicicum'sl6S rDNA was two. A special probe was designed and it was approved that exclusive sequences was own by aligning in GeneBank. We optimized the reaction condition of M. formicicum. When the concentrations of its primers and probe were 0.4μmol/L, 0.2μmol/L respectively and the concentration of MgCl_2 and templates were 4mmol/L and 1260ng respectively, the real time PCR reaction system of M. formicicum was best. The lowest copy number of M. formicicum which could be detected was 30 in 25μL reaction system. The population of M. formicicum by real time PCR was lower than the population of M. formicicum by the method of most probable number, and the positive correlation between them was very high(r=0.957. P<0.01). This showed the quantitative method by real time PCR could reflect the variation of rumen microorganism's population truly.We successfully detected M. mazei by real time PCR with SYBR GreenI when the sequence of ITS was used as a target sequence, and the lowest copy number of M. formicicum which could be well and truly detected was 300 in 25μL reaction system. At the same time, we successfully developed the method of methanogens' relative quantification by real time PCR with SYBR GreenI when the gene of mcrA was used as a target sequence. Furthermore, it showed that the population of M. formicicum and methanogens from rumen fluid of steers was more than those from rumen fluid of cows by those detection methods, it maybe relative to the diets of steers in which the ratio between concentration and forage was high. We also successfully detected B.fibrivolen and R.ablus by real time PCR with SYBR
引文
1 柴巍中.瘤胃发酵调控的理论、方法、研究现状及最新进展.草食家畜,1994,2:37~43
    2 陈光炯.反刍动物瘤胃饲料蛋白的降解及氨的产生与抑制.动物营养学报,1991,1:1~6
    3 陈庆今等.瘤胃微生物在有机废物处理中的应用研究.微生物学杂志,2001,21(2):41~49
    4 高军肖.植物油(籽)对牛奶共轭亚油酸前体物累积规律影响的研究[硕士学位论文].北京:中国农业科学院,2004
    5 郭嫣秋,胡伟莲,刘建新.瘤胃甲烷菌及生成的调控.微生物学报,2005,45(1):145~148
    6 韩正康等.反刍动物瘤胃的消化和代谢.北京:科学出版社,1988,23~48
    7 胡伟莲等.瘤胃纤毛虫对甲烷菌和甲烷产量的影响.中国畜牧杂志,2004,40(12):39~42
    8 李忠宽等.梅花鹿甲烷能代谢规律的研究.兽类学报,1996,2:100~104
    9 唐伯平,周开业,宋大祥.核rDNA ITS区序列在无脊椎动物分子系统学研究中的应用.动物学杂志,2002,37(4):67~73
    10 陶志华,陈晓东等.乙型肝炎病毒DNA荧光定量PCR的建立与应用.临床检验杂志,2002,20(5):282~284
    11 王建波,张文驹,陈家宽.核rDNA的ITS序列在被子植物系统与进化研究中的应用.植物分类学报,1999,37(4):407~416
    12 王全军等.瘤胃微生物可作为新式酶源.中国饲料,2000,13:28~29
    13 王中华等.瘤胃乙:丙酸比例对绵羊丙酸糖异生和葡萄糖代谢的影响.草食家畜,1999,1:36~39
    14 魏宏阳,王加启.添加游离不饱和脂肪酸或植物油对瘤胃微生物体外发酵及微晶纤维素降解的影响.畜牧兽医学报,2004,35(5):491~497
    15 朱建裕.实时荧光RT-PCR和杂交诱补RT-PCR-ELISA检测李坏死环斑病毒的研究[硕士学位论文].长沙:湖南农业大学.2002
    16 张蓓,沈立松.实时荧光定量PCR的研究进展及其应用.国外医学,2003,24(6):327~329
    17 张立国,张琚.实时定量PCR技术的介绍.生物技术,2003,13(2):39~40
    18 张玲,朱江华等.乙型肝炎病毒核酸定量检测与临床的关系.中华肝脏病杂志,2002,10(1):49
    19 张庆才摘译.瘤胃生态系统的特点及日粮对其影响.国外畜牧科技,1998,25(1):12~15
    20 张瑞福,曹惠等.土壤微生物总DNA的提取和纯化.微生物学报,2003,43(2):277~281
    21 张元庆,孟庆翔.反刍动物瘤胃细菌素研究进展.中国饲料,2004,(18):6~7
    22 张鋆.荧光实时定量PCR技术初探.生命科学趋势,2003,1(4):1~28
    23 赵一章等.产甲烷茵及研究方法.成都:成都科技大学出版社,1997,209~245
    24 赵玉华,杨瑞红,王加启.反刍动物甲烷生成的调控.中国饲料,2005,(3):18~20,30
    25 赵志恒等.现代微生物学.北京:科学出版社,2002,41
    26 郑国展.利用瘤胃微生物酶类增进畜牧业的生产能力.动物营养学报,1999,11(增):61~64
    27 朱伟云.瘤胃微生物.见:冯仰廉编.反刍动物营养学.北京:科学出版社,2004:1~130
    28 Agnes A O et al. Te use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for ruminococcus species and evidence for bacteriocin production. J App Environ Mcrobiol, 1994a, 60 (10): 3688~3698
    29 Agnes A O et al. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. J. Appl. Environ. Mcrobiol, 1994b, 60 (10): 3697~3703
    30 Akin D E et al. Degradation of Bermuda and Orchard grass by species of ruminal bacteria. J Appl Environ Mcrobiol, 1985, 50: 825~830
    31 Alexandersen S, Oleksiewicz M B et al. The early pathogenesis of foot-and-mouth disease in pigs infected by contact: a quantitative time-course study using TaqMan RT-PCR. J Gen Virol, 2001, 82: 747~755
    32 Armstrong G L, Hollingsworth J, Morris J G. Emerging foodborne pathogens: Escherichia coli O157: H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiol Rev, 1996, 18: 29~51
    33 Attwood G T et al. Ammonia-hyperproducing bacteria from New Zealand ruminants. J Appl Environ Mcrobiol, 1998, 64 (5): 1796~1804
    34 Bach H J, Tomanova J, Schloter M and Munch J C. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Methods, 2002, 49: 235~245
    35 Becker S, Boger P, Oehlmann R and Ernst A. PCR bias in ecological analysis: case study for quantitative Taq nuclease assay in analysis of microbial communities. Appl Environ Microbiol, 2000, 66: 4945~4953
    36 Blaxter K L and Czerkawski J L Modifications of the methane production of sheep by supplementation of its diet. Journal of the Science of Food and Agriculture, 1966, 17: 417~421
    37 Bowers H A, Tengs T, Glasgow H B et al. Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Appl Environ Microbiol, 2000, 66: 4641~4648
    38 Briesacher S L et al. Use of DNA probes to monitor nutritional effects on ruminal prokaryotes and Fibrobacter succinogenes S85. J Anim Sci, 1992, 70: 289~295
    39 Bryant M P et al. A note on the flora and fauna in the rumen of steers fed a feedlot bloat-provoking ration and the effect of penicillin. Appl Microbiol, 1961, 9: 511~515
    40 Bryant M P et al. An improved non-selective culture medium for ruminal bacteria and its use in determining the diural variation in numbers of bacteria in the rumen. J Dairy Sci, 1961, 44: 1446~1456
    41 Bryant M P et al. Cultural methods and some characteristics of the more numerous groups of bacteria in the bovine rumen. J Dairy Sci, 1953, 36: 205~217
    42 Bryant M P et al. Effects of diet, time after feeding, and position sampled on the numbers of viable bacteria in the bovine rumen. J Dairy Sci, 1968, 51: 1950~1955
    43 Bryant M P et al. Numbers and some predominant groups of bacteria in the rumen of cows fed different ration. J Dairy Sci, 1953, 36: 218~224
    44 Bryant M P et al. Predominant bacteria in the tureen of cattle on bloat-provoking ladino clover pasture. J Dairy Sci, 1960, 43: 1435-1444
    45 Bryant M P et al. Studies on the composition of the ruminal flora and fauna of young calves. J Dairy Sci, 1958, 41: 1747~1767
    46 Bryant M P et al. Symposium on microbial digestion in ruminant: identification of groups of anaerobic bacteria active in the rumen. J Dairy Sci, 1963, 46: 801~813
    47 Caldwell D et al. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol, 1966, 14 (5): 794~801
    48 Callaway T R, Carneiro De Melo A M S et al. The effect of nisin and monensin on ruminal fermentations in vitro. Current Microbiology, 1997, 35: 90~96
    49 Cheng K J, McAllister TA, Popp J D et al. A review of bloat in feedlot cattle. J Anita Sci, 1998, 76: 299~308
    50 Czerkawski J W. Methane production in ruminants and its significance. World Review of Nutrition and Dietetics, 1969, 11: 240~282
    51 Dehority B A et al. Basal medium for the selective enumeration of rumen bacteria utilizing specific energy sources. J Appl Environ Mcrobiol, 1976, 39: 376~381
    52 Dehority B A, Tirabasso PA, Grifo A P. Most probable number procedure for enumerating ruminal bacteria, including the simultaneous estimation of total and cellulolytic numbers in one medium. App Environ Microbiol, 1989, 55: 2789~2792
    53 Dehority B A. Rumen microbiology. Thrumpton, UK: Nottingham University Press, 2003, 74~121
    54 DeMeye D I and Henderickx H K. The effect of C18unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochimica & Biophysica Acta, 1967, 137: 484~497
    55 Demeyer D I and Van Nevel C J. Methanogenesis, an integrated part of carbohydrate fermentation, and its control. In: Digestion and Metabolism in the ruminant. Proceedings of the Ⅳ International Symposium on Ruminant Physiology. McDonald I W and Warner A C I eds. University of New England Publishing Unit, Armidale, NSW, 1975, 366~382
    56 Dohme F A et al. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett Appl Microbiol, 2001, 32: 47~51
    57 Dumitru R, Palencia H, Schroeder S D et al. Targeting methanpterin biosynthesis to inhibit methanogenesis. J Appl Envir Microbiol, 2003, 69: 7236~7241
    58 Egli C, Thur B et al. Quantitative TaqMan RT-PCR for the detection and differentiation of European and North American strains of porcine reproductive and respiratory syndrome virus. J Virol Methods, 2001, 98: 63~75
    59 Elder R O, Keen J E, Siragusa G R et al. From the cover: correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. PNAS, 2000, 97: 2999~3003
    60 Eschenlauer S C P J et al. Ammonia production by ruminal microorganisms and enumeration, isolation, andcharacterization of bacteria capable of growth on peptides and amino acids from the sheep tureen. J Appl Environ Mcrobiol, 2002, 68 (10): 4925~4931
    61 Finlay B J et al. Some rumen ciliates have endo-symbiotic methanogeens. FEMS Microbiology Letters, 1994, 117: 157~162
    62 Fiorella M. Quantification of Gordona amarae strains in foaming activated sludge and anaerobic digester systems with oligonucleotide hybridization probes. J Appl Environ Mcrobiol, 1998, 64 (7): 2503~2512
    63 Franks A H, Harrnsen H J, Raangs G C et al. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol, 1998, 64: 3336~3345
    64 Garcia C A, Ahmadian A, Gharizdeh B et al. Mutation detection by pyrosequencing: sequencing of exons 5-8 of the p53 tumor suppressor gene. J Gene, 2000, 253 (2): 249~257
    65 Garcia-Lopez P M, Jr Kung Land Odom J M. In vitro inhibition of microbial methane production by 9,10-anthraquinone. J Anita Sci, 1996, 74: 2276~2284
    66 Gardes M, Bruns T D. ITS primers with enhanced specificity for basidiomycetes application to the identification ofmycorrhizae and rusts. Mol Ecol, 1993, 2: 113~118
    67 Gerard C J, Olsson K, Ramanathan R et al. Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementarity determining reaction Ⅲ standards. Cancer Res, 1998, 58: 3957~3964
    68 Gijen, Huub Jet al. Application of tureen microorganisms for a high rate anaerobic digestion of paper mill sludge. J Biological Wastes, 1990, 32 (3): 169~179
    69 Gilchrist F M C et al. Bacteria of the ovine rumen I. The composition of the population on a diet of poor teff hay. J Agric Sci, 1962, 59: 77~83
    70 Ginzinger D G. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol, 2002, 30: 503~512
    71 Grubb J A et al. Variation in colony counts of total viable anaerobic tureen bacteria as influenced by media and cultural method. J Appl Environ Mcrobiol, 1976, 31: 262~267
    72 Gruntzig V, Nold S C, Zhou J and Tiedje J M. Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR. Appl Environ Microbiol, 2001, 67: 760~768
    73 Gurtler V, Stanisich V A. New approaches to typing and identification of bacteria using the 16s-23s rDNA spacer region. Microbiology, 1996, 142: 3~16
    74 Gut M, Leutenegger C M et al. One-tube fluorogenic reverse transcription -polymerase chain reaction for the quantitation of feline coronaviruses. J Virol Methods, 1999, 77: 37~46
    75 Hall S J, Hugenholtz P, Siyambalapitiya N et al. The development and use of real-time PCR for the quantification of nitrifiers in activated sludge. Water Sci Technol, 2002, 46: 267~272
    76 Halpin K, Young P L et al. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol, 2000, 81: 1927~1932
    77 Hancock D D, Rice D H, Thomas L A et al. Epidemiology of Escherichia coli O157 in feedlot cattle. Journal of Food Protection, 1997, 60: 462~465
    78 Harfoot C G and Hazelwood G P. Lipid metabolism in the rumen. In: Hobson P N eds. The Rumen Microbial Ecosystem. 1988, 285~322
    79 Harms G, Layton A C, Dionisi H M et al. Real-time PCR quantifi- cation of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol, 2003, 37: 343~351
    80 Henderson C. The effects of fatty acids on pure cultures of tureen bacteria. Journal of Agricultural Science (Cambridge), 1973, 81: 107~112
    81 Hermansson A and Lindgren P E. Quantification of ammoniaoxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol, 2001, 67: 972~976
    82 Hermansson A and Lindgren P E. Quantification of arnmoniaoxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol, 2001, 167: 972~976
    83 Hermansson A, Per-eric Lindgren. Qutation of ammonia-oxidizing bacteria in arable soil by real-time PCR. J Appl Environ Mcrobiol, 2001, 67: 972~976
    84 Holloway P E and Baker S K. Development of antibodies to rumen methanogens in sheep. Asian-Australian Journal of Animal Science, 2000, 13 (SupC): 264
    85 Holter J B and Yong A J. Methane production in dry and lactating Holstein cows. J Dairy Sci, 1992, 75: 2165~2175
    86 Hoyle B. Renewed concerns over E. coli O157: H7 in ground beef. ASM News, 2000, 66: 331~332
    87 Hristova K R, Lutenegger C M and Scow K M. Detection and quantification of methyl tert-butyl ether-degrading strain PM1 by real-time TaqMan PCR. Appl Environ Microbiol, 2001, 67: 5154-5160
    88 Hunter W J et al. Biohydrogenation of unsaturated fatty acid: biohydrogenation by cell-free preparation of Butyrivibrio fibrisolvens. J Biological Chemistry, 1976, 52: 2241~2247
    89 Ibekwe M, Watt P M et al. Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157: H7 in dairy wastewater wetlands. J Appl Environ Mcrobiol, 2002, 68: 4853~4862
    90 Itabashi H. Effect of salinomycin (SL) or SL plus fumaric acid on rumen fermentation and methane production in cattle. Asian-Australian Journal of Animal Science, 2000, 13 (SupC): 287
    91 Itabashi K et al. The effects tureen ciliate protozoa on energy metabolism and some constituents in rumen fluid and blood plasma of goats. Jpn J Zootech Sci, 1984, 55: 248~256
    92 James B, Rusell et al. Factors that alter rumen microbial ecology. Science, 2001, 292 (11): 1119~1122
    93 Jeng R S, Svircey A M, Myers A L et al. The use of 16S-23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes. J Microbiol Methods, 2001, 44: 69~77
    94 Joblin K N. Ruminal actogens and their potential to lower ruminant methane emissions. Aust J AgricRes, 1999, 50: 1307~1313
    95 Johnson KA and Johnson K E. Methane emissions from cattle. J Anim Sci, 1995, 73: 2483~2492
    96 Johson D E, Hill T M, Carmean B R, Lodman D W and Ward G M. New perspectives on ruminant methane emissions. In: Energy Metabolism of Farm Animals. Wenk E D C and Boessinger M ed. ETH, Zurich, Switzerland, 1991, 376~379
    97 Jouany J P. Manipulation of microbial activity in the rumen. Archives of Animal Nutrition, 1994, 46: 133~153
    98 Kalmakoff M L, Bartlett F et al. Are ruminal bacteria armed with bacteriocins. Journal of Dairy Science, 1996, 79: 2297~2306
    99 Kemp P et al. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep umen, including a new species. Journal of General Microbiology, 1975, 90: 100~114
    100 Kepler C R and Tove S B. Biohydrogenation of unsaturated fatty acids. The Journal of Biological Chemistry, 1967, 242 (24): 5686~5692
    101 Kistner A et al. An improved method for viable counts of the ovine rumen which ferment carbohydrates. J Gen Microbiol, 1960, 23: 565~576
    102 Kistner A et al. Bacteria of the ovine rumen Ⅱ. The functional groups fermenting carbohydrates and lactate on a diet of Lucerne (Medicago sativa) hay. J Agric Sci, 1962, 59: 85~91
    103 Klappenbach J A, Saxman P R, Cole J R and Schmidt T M. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res, 2001, 29: 181~184
    104 Klieve A and Hegarty R S. Opportunities for biological control of methanogensis. Australian Journal of Agricultural Research, 1999, 50: 1315~1319
    105 Knox M R and Harris J E. Isolation and characterization of a bacteriophage of methanobrevibacter smithii strain PS. Abstracts ⅪⅤ International Congress on Microbiology, Manchester, England, 1986, 240
    106 Krause et al. An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in luminal amino acid deamination. J Appl Environ Mcrobiol, 1996, 62 (3): 815~821
    107 Kreuzer M and Kirchgessner M. Investigations on the nutritive defaunation of the rumen of ruminants. Archives of Animal Nutrition, 1987, 37: 489~503
    108 Krumholz L R et al. Association of metnanogenic bacteria with rumen protozoa. Canadian Journal of Microbiology, 1983, 29: 676~680
    109 Lanciotti R S, Kerst A J et al. Rapid detection of west nile virus from human clinical specimens, field-collected mosquitoes and Avian samples by a TaqMan reverse transcriptase -PCR assay. J Clin Microbiol, 2000, 38: 4066~4071
    110 Langendijk P S, Schut F, Jansen G J et al. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol, 1995, 61: 3069~3075
    111 Latham M J et al. Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Appl Microbial, 1972, 24 (6): 871~877
    112 Lee S S, Hsu J T, Mantovani H C et al. The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbio Lett, 2002, 217 (1): 51~55
    113 Leisinger T and Meile L Approaches to gene transfer in methanogenic bacteria. In: Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer. Belaich J P, Brusehi M and Garcia J Led. Plenum Press, New York., 1990, 11~23
    114 Lin C, Raskin L, Stahl D A. Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyses using rRNA-targeted oligonucleotide probes. FEMS Micobiol Ecol, 1997, 22: 281~294
    115 Luton P E, Wayne J M, Sharp R J et al. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 2002, 148: 3521~3530
    116 Luton P E, Wayne J M, Sharp R J et al. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 2002, 148: 3521~3530
    117 Machmuller Aet al. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reprod Nutr Dev, 2003, 43: 41~45
    118 Machmuller A, Ossowski D A, Wanner W et al. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (rusitee). Anim Feed Sci Technol, 1998, 71: 117~130
    119 Machmuller A. et al. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (rusitec). Animal Feed Science and Technology, 1998, 71: 117~130
    120 Machuller A et al. Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Animal feed science and technology, 2000, 85: 41~60
    121 Maekie R I, White B A. Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. J Dairy Sci, 1990, 73 (10): 2971~2995
    122 Macy J M et al. Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. J Appl Environ Mcrobiol, 1982, 44 (6): 1428~1434
    123 Mathieu F, Jouany J P et al. The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reproduction Nutrition and Developmemt, 1996, 36: 271~287
    124 Matsumoto M et al. Defaunation effects of medium-chain fatty acids and their derivatives on goat rumen protozoa. Journal of General and Applied Microbiology, 1991, 37: 439~445
    125 Mclnerney S M. Toxicological and structural studies of the antiprotozoal agent found in Enterolobium cyclocarpus. BSc(Hons) Thesis, University of New England, Armidale, 1995
    126 Miller T L and Wolin M J. Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl-SCoA reductase inhibitors. J Dairy Sci, 2001, 84: 1445~1448
    127 Miller T L. Ecology of methane production and hydrogen sinks in the rumen. In: Engelhardt W et al ed. Rumen physiology: digestion, metabolism, growth and reproduction. Stuttgart: Ferdinnand Enke-Verlag, 1995, 317~321
    128 Moody A, Sellers S et al. Measuring infectious bursal disease virus RNA in blood by muliplex real-time quantitative RT-PCR. J Virol Methods, 2000, 85: 55~64
    129 Murray et al. Methane production in the rumen and lower gut of sheep given Lucerne chaff: effect of level of intake. British J Nutrition, 1978, 39: 337~345
    130 Muyzer G et al. Application of denaturing gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE)in microbial ecology. Antonie Van Leeuwenhoek, 1998, 73: 127~141
    131 Muyzer G et al. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified coding for 16S Rrna. J Appl Environ Merobiol, 1993, 59 (3): 695~700
    132 Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 1998, 73: 127~141
    133 Mygind T et al. Evaluation of real-time quantitative PCR for identification and quantification of Chlamydia pneumoniae by comparison with immunohistochemistry. J Microbiol Methods, 2001, 46: 241
    134 Nagarajia T G and Chengappa M M. Liver abscesses in feedlot: a review. J Anim Sci, 1998, 76: 287~298
    135 Nagle D P. Development of genetic systems in methanogenic atchaebacteria. Developments in Industrial Microbiology, 1989, 30: 43~51
    136 Newbold C G and Chamberlain D G. Lipids as rumen defaunating agents. Proceedings of the Nutrition Society, 1988, 47: 154A
    137 Newbold C J et al. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol, 1995, 21: 230~234
    138 Newbold C J, Hassan E, Wang S M et al. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. British Journal of nutrition, 1997, 78: 237~249
    139 Norris J R et al. Methods in microbiology. ACADEMIC PRESS INC, 1969, Vol3B: 117~149
    140 Olsen G J, Woese C R and Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol, 1994, 176: 1~6
    141 Orpin C G et al. Seasonal changes in the ruminal microflora of the high-attic svalbard reindeer (Rangifer taraandus platyrhynchus). J Appl Environ Mcrobiol, 1985, 50: 144~151
    142 Owens F N, Secrist D S, Hill W J et al. Acidosis in cattle: a review. J Anita Sci, 1998, 76: 275~286
    143 Paster B J et al. Int J Syst Bacteriol, 1993, 43 (1): 107~110
    144 Petra S L et al. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. J Appl Environ Mcrobiol, 1995, 61 (8): 3069~3075
    145 Russell J B, Rychlik J L. Factors that alter rumen microbial ecology. Science, 2001, 292 (11): 1119~1122
    146 Schwiertz A, Le Blay G and Blaut M. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol, 2000, 66: 375~382
    147 Sharp R et al. Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol Ecol, 1998, 26(1): 71~78
    148 Sievert S M. et al. Relative abundance of Achaea and Bacteria along a thermal gradient of a shallow-water hydrothermal vent quantified by rRNA slot-blot hybridization. Microbiology, 2000, 146: 1287~1293
    149 Sinha R N et al. Cellulolytic bacteria in buffalo rumen. J Appl Bacterial, 1983, 54: 1~6
    150 Slyter L L et al. In vivo vs In vitro continuous culture of ruminal microbial populations. J Dairy sci, 1962, 45: 1421~1427
    151 Slyter L L et al. Influence of type and level of grain and diethylstilbestrol on rumen microbial populations of steers fed all-concentrate diets. J Anim Sci, 1970, 31: 996~1002
    152 Slyter L L et al. Microbial species including ureolytic bacteria from the rumen of cattle fed purified diets. J Nutr, 1968, 94: 185~192
    153 Smith I L, Halpin K et al. Development of a fluorogenic RT-PCR assay (TaqMan) for the detection of Hendra virus. J Virol Methods, 2001, 98: 33~40
    154 Springer E, Sachs M S, Woese C R et al. Partial gene sequence for the A subunit of methyl-coenzyme M reductase (mcr I) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol, 1995, 45: 554~559
    155 Stahl D A and Flesher B. Use of Phylogenetically based hybridization probes for studies of ruminal microbial ecology. Applied and Environmental Microbiology, 1988, 54 (5): 1079~1084
    156 Stahl D A et al. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. J Appl Environ Mcrobiol, 1988, 54 (5): 1079~1084
    157 Stahl D A, Flesher B, Mansfield H R et al. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. App Environ Microbiol, 1988, 54: 1079~1084
    158 Stubner S. Enumeration of 16S rDNA of Desultomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen TM detection. J Microbiol Methods, 2002, 50: 155~164
    159 Stumm C K et al. Association of methanogenic bacteria with ovine tureen ciliates. Br J Nutr, 1982, 47: 95~99
    160 Suhanda N, Bird S and Thwaites J. The efficacy of anti-ptotozoan molasses blocks in sheep. Anim Produc Aust, 1998, 22: 390
    161 Sutton et al. Digestion and synthesis in the rumen of sheep given diets supplemented with free and protected oils. British J Nutition, 1983, 49: 419~432
    162 Suzuki M T, Taylor L T and DeLong E F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl Environ Microbiol, 2000, 66: 4605~4614
    163 Sylvester J T, Kamati K R, Yu Z et al. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. The Journal of Nutrition, 2004, 134: 3378~3384
    164 Tajima K, Aminov R I et al. Diet-dependent shifts in the bacterial population of the tureen revealed with real-time PCR. J Appl Environ Mcrobiol, 2001, 67: 2766~2774
    165 Tajima K, Arai S, Ogata K et al. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 2000, 6: 273~284
    166 Takahashi J and Yong B A. Prophylactic effect of L-cysteine on nitrate-induced alterations in respiratory exchange and metabolic rate in sheep. Anim Feed Sci Technol, 1991, 35: 105~113
    167 Takahashi J, Miyagawa T, Kojima Y et al. Effects of Yucca shidigera extract, probiotics, momensin and L-cysteine on rumen methanogensis. Asian-Australian Journal of Animal Science, 2000, 13 (Sup A): 499~501
    168 Theodorou M K, Gill M, King-Spooner et al. Enumeration of anaerobic chytridiomycetes as thallus forming units: novel method for quantification of fibrolytic fungal populations from the digestive tract ecosystem. App Environ Microbiol, 1990, 56: 1073~1078
    169 Ushida K et al. Methane production associated with rumen-ciliated protozoa and its effect on protozoa activity. Lett Appl Microbiol, 1996, 23: 129~132
    170 Van der Honing Y et al. The effect of fat supplementation of concentrates on digestion and utilization of energy by productive dairy cows. Neth J Agric Sci, 1981, 29: 79~92
    171 Vogels G D et al. Association of methanogenic bacteria with tureen ciliates. Appl Environ Microbiol, 1980, 40: 608~612
    172 Warner A C I et al. Enumeration of tureen microorganisms. J Gen Microbial, 1962a, 28: 119~128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700