离心沉积技术制备梯度金属多孔材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近代工艺的发展,在过滤分离行业中对金属多孔材料的要求具有较高的过滤精度、较大透气系数。但是传统孔结构的金属多孔材料过滤精度与透气系数是一对此消彼长的矛盾,梯度孔结构的金属多孔材料可以较好的实现高精度一大透气。其结构特点是在粗大孔径的金属多孔基体上附着一层小孔径梯度层,大孔径的金属多孔基体可保证材料有大的透过能力,梯度层使材料具有较小的孔径、较高的过滤精度。但是目前对梯度金属多孔材料的研究还处于一个起步阶段,尤其是离心沉积制备技术制备工艺,工艺参数对材料性能的影响,以及梯度层与基体的匹配性研究相对较少,而这些问题影响着梯度金属多孔材料的广泛应用,急需解决,因此本文围绕这些问题展开研究工作。
     本文采用离心沉积技术制备梯度金属多孔材料,以Φ50×20×2mm(直径×长度×厚度),中流量平均孔径为10.2μm,透气系数为120m~3/m~2·Kpa·h的金属多孔材料作为基体,聚乙烯醇溶液作为分散剂,球形不锈钢粉末和镍粉作为梯度层粉末,初步探讨了离心沉积制备梯度层的成形工艺条件以及工艺参数对梯度金属多孔材料性能的影响。着重研究了梯度金属多孔材料梯度层与基体的匹配性以及梯度层最佳匹配厚度。结论如下:
     1.采用离心沉积技术制备梯度层的工艺条件为:当在分散剂浓度为5%,离心机转速为不得小于2000rpm,离心沉积时间不得小于3min;当离心机的转速为5000rpm时,分散剂的浓度不得小于4%。
     2.在离心机的转速为5000rpm,分散剂浓度为5%的试验条件下,沉积时间对梯度层的最大孔径没有影响;在离心机的转速为5000rpm,离心沉积时间为5min的试验条件下,随着分散剂的浓度的增大,梯度金属多孔材料最大孔径和透气系数同时增大,但是透气系数变化不显著。
     3.根据试验结果,对于中流量平均孔径为10.2μm的金属多孔基体而言,采用离心机的转速为5000rpm,分散剂浓度为5%,的沉积时间为5min的制备工艺,制备最佳匹配梯度层粉末粒度应当小于16.3μm,大于0.2。
     4.采用离心沉积技术制备梯度金属多孔材料,在离心机转速为5000rpm,分散剂浓度为5%,沉积时间为5min的试验条件下,在中流量平均为10.2μm的金属多孔基体管内制备的梯度层存在最佳匹配厚度,且与粉末粒度和基体中流量平均孔径存在如下关系:h=6D_p+D_m
It is requirements of porous metals with high accuracy of the filter and the good permeability in the filter separation with the development of modern technology.But high filter accuracy and good permeability is the illogicality in the tradition porous metals,Gradient porous matel can be very easy to solve this contradiction by structural innovation.The pore structure of gradient porous metals is that a high porous metal offering good permeability is used as a substate on which thin layers with lower and finer porosities are applied by coating the substate with a layer. However,it is the still in a preliminary stage in study on the gradient porous metals, especially in study on preparation of centrifugal deposition process,process parameters infection on the properties of metals and gradient layer matching with the substrate was scanty,The urgent solution of those problem was studied on this paper.
     This paper prepared by centrifugal technology Gradient metals deposition porous materials toφ50×20×2mm(diameter×length×thickness),the mean flow pore size of 10.2μm,permeability of 120 m~3/m~2·Kpa·h metal porous material as the substrate,Polyvinyl alcohol solution as a dispersant,spherical stainless steel powder and nickel powder as the gradient layers powder,.Preliminary study of the centrifugal deposition gradient of the forming process conditions and parameters of the gradient of metal properties of porous metals.Focusing on the gradient porous metal's gradient layer match the substrate and the best matching thickness of gradient layer.The conclusions as following:
     1、The gradient layer would not prepared by centrifugal deposition when the suspension concentration less than 4%,the centrifugal speed under 2000rpm and deposition less than 5min。
     2、Moreover,with the suspension of the increase in the concentration membrane of maximum pore size and permeability increased at the same time,but the permeability coefficient changes are not very obviously.Gradient layer porosity in the same condition,with the powder particle size increases.The same size of the powder porosity increased with decreasing speed centrifugal. there is no influenced on maximum pore size but influenced on the permeability of Membrane when the deposition time more than 3min.
     3、In the same substance of porous metal tube,on the experiments of suspension concentration is 5%,centrifugal speed is 5000rpm and deposition time is 5 min,there is an optimal thickness of gradient layer which is preparation of centrifugal disposition.and the optimal thickness with powder size and the mean flow pore size of substance are as follows:h=6D_p +D_m
引文
[1]王凡,匡星,杨佳慧,况春江等.金属过滤介质高温除尘的实验研究[J].过滤与分离,2006,16(3).
    [2]奚正平,汤慧萍,朱纪磊,张健.金属多孔材料在能源环保中的应用[J].稀有金属材料与工程,2006,35(s2).
    [3]奚正平,汤慧萍,朱纪磊,廖际常.热管及热管用金属多孔材料[J].稀有金属材料与工程,2006(S2).
    [4]汤慧萍,烧结金属多孔材料研究现状与发展趋势[A],2006年北京国际材料周,多孔材料分会特约报告[C],2006,6,29.
    [5]汪强兵,汤慧萍,奚正平.多孔金属膜研究进展[J].材料导报,2004,6.
    [6]顾临,邱世庭,赵扬.烧结金属多孔滤材技术综述[J].流体机械,2002,30(2).
    [7]Porier D R,Geigerm G H.Transport phenomena in materials processing.Second edition[J],TMS,Warrendale,PA,1994.
    [8]刘培生.多孔材引论[M]北京:清华大学出版,2004.
    [9]邱可昂.我国烧结过滤材料的研制应用与展望[J].稀有金属材料与工程.1991,3.
    [10]方玉诚,王浩,周勇,况春江.粉末冶金多孔材料新型制备与应用技术的探讨[J].稀有金属,2005,29(5).
    [11]孙纪国,王浩,尘军.粉末冶金多孔材料性能研究[J].导弹与航天运载技术,2006,4.
    [12]汪强兵,汤慧萍,奚正平,张健,李增峰.煤气化技术用金属多孔材料研究进展[J].稀有金属材料与工程,2006,35(s2).
    [13]汤慧萍,谈萍,奚正平,汪强兵.烧结金属多孔材料研究进展[J].稀有金属材料与工程,2006,35(s2).
    [14]周照耀,吴峥强,邵明,李元元.烧结金属多孔材料孔隙的研究[J].粉末冶金工业,2005,15(4).
    [15]Ma Baoguo,ZhuHongbo,Dong Rongzhen.Development of a high Sound Absorption Material Cemcom[J].Jurnal of Wuhan University of Tecnology-Mater.Sci.Ed.,2002,17(4).
    [16]谈萍,汤慧萍,王建永,廖际常.金属多孔材料制备技术研究进展[J].稀有金属材料与工程,2006,35(s2).
    [17]方玉诚,王浩,周勇,况春江.粉末冶金多孔材料新型制备与应用技术的探讨[J].稀有金属,2005,29(5).
    [18]邱可昂.我国烧结过滤材料的研制应用与展望[J].稀有金属材料与工程.1991,3
    [19]梁永仁,杨志懋,丁秉钧.金属多孔材料应用及制备的研究进展[J].稀有金属材料与工程,2006.(s2).
    [20]王晓林.金属多孔材料吸声板的优化模型[J].声学学报(中文版),2007,2.
    [21]汤慧萍,奚正平,廖际常,朱纪磊.金属多孔材料表面燃烧器的发展现状[J].稀有金属材料与工程,2006,(S2).
    [22]李淑平.金属多孔材料高温气体过滤除尘过程的研究[D].北京化工大学,2004
    [23]赵东元,朱海峰,金碧辉.多孔材料[J].中国基础科学,2005,3
    [24]毛宗强等.燃料电池[M].化学工业出版社,2005,4(1):1.
    [25]刘先曙.“百孔千疮”的新型多孔材料[J].百科知识,2002,8
    [26]余根新.高孔隙率金属材料的进展[J].粉末冶金技术,1985,2
    [27]杨素媛.过滤净化用多孔金属材料的开发应用与进展[J].中国稀土学报,2003,(S1)
    [28]刘义祥,金属多孔材料在消防技术中的应用[J].消防技术与产品信息,1998,10.
    [29]汤慧萍,王建永.烧结金属多孔材料的发展趋势[A].2004年中国材料研讨会论文摘要集[C],2004.
    [30]http://www.jiusi.com/mozhishi/mf.htm
    [31]邢卫红,许南平,时均.膜科学与技术[M].北京:化学工业出版社,1997,17:1.
    [32]王耀明,薛友祥,朱妹,张联盟.高温烟尘净化用孔梯度陶瓷膜材料的设计与制备[J].硅酸盐通报,2006,25(6).
    [33]张永锋,王郁,许振良.膜技术在废水处理中的应用[J].上海环境科学,2002,21(2).
    [34]徐南平,时钧.陶瓷分离膜的发展历史与趋势[J].中国粉体技术,1997,(03).
    [35]曾庆梅,潘见,谢慧明,杨毅,徐慧群.无机陶瓷微滤膜对梨汁的澄清和除菌效果研究[J].农业工程学报,2004,(05).
    [36]曾庆梅,谢慧明,潘见,杨毅.几种澄清方法对梨汁理化和感官等指标的影响[J].食品科学,2004,(12).
    [37]郭红珍,杨潞芳.膜分离技术在果蔬加工中的应用[J].食品研究与开发,2003,(04).
    [38]朱科学,周惠明.陶瓷膜分离技术及其在食品工业中的应用[J].食品科技,2002,(05).
    [39]吴章平,李桂水,楼文君.无机膜错流微滤技术在菠萝汁澄清中的实验研究[J].过滤与分离,2004,(04).
    [40]Be-Jen Wang,Tsao-Chen Wei,Zer-Ran Yu.Effect of operating temperature on component distribution of West Indian cherry juice in a microfiltration system.LWT.2005,38:683-89.
    [41]张长银.新型精滤用陶瓷分离膜及其应用[J].医药工程设计,1995,(06).
    [42]朱科学,周惠明.陶瓷膜分离技术及其在食品工业中的应用[J]食品科技,2002,(05).
    [43]Tragardh G.Wablagren PE.Removal of bacteria from beerusing cross flow micro filtration[M].In:prolst Intl Conf Inorganic Membranes.Mont pellier:1990.291-295.
    [44]张华,乔颖慧,张玉华.无机陶瓷膜在水处理中的初步应用[J].环境研究与监测,2006,19(2).
    [45]汪强兵,汤慧萍,奚正平.多孔金属膜研究进展[J].材料导报,2004,06.
    [46]张芳,徐晓虹.具有孔梯度的多孔陶瓷材料[J].建材发展,2003,4.
    [47]Jana Andertovaa;Jiri Havrda.Radek Tlaskal Functional Gradient Alumina Ceramics With Controlled Porosity[J].Key Engineering Materials Vol,333(2007)pp.223-226.
    [48]Wilhelm A.Meulenberg,Josef Mertens,Martin Bram,Hans-Peter Buchkremer,Detlef St"over.Graded porous TiO_2 membranes for microfiltration[J].Journal of the European Ceramic Society,Vol,26(2006):pp449-454.
    [49]D.Prinz,V Amhold,H-P Buchkremer al.Graded High-Porous Microfilters by Powder Metallurgical Coating Tecniques[J].Materials Science Forum,Vol,308-311(1999):pp59-64.
    [50]易佑宁.阶梯状孔梯度陶瓷材料性能的研究和探讨[J].江苏陶瓷,2003,3
    [51]NeumanP,RohligR,KohstoBA,etal.Matellic membranes[J].Filtration,1998,35,pp40-42.
    [52]Jong-Oh Kim,Jong-Tae Jung,Jinwook Chung.Treatment performance of metal membrane microfiltration and electrodialysis integrated system for wastewater reclamation[J].Desalination,202(2007)pp343-350
    [53]Yimin Sang,Qingbao Gu,Tichang Sun,Fasheng Li,Cunzhen Liang.Filtration by a novel nanofiber membrane and alumina adsorption to remove copper(Ⅱ)from groundwater[J].Journal of Hazardous Materials,Vol153,Issues 1-2,1 May 2008,p860-866
    [54]胡海修,胡蓉,胡连超,刘晓东,陈汉林.金属膜陶瓷膜净水技术实验研究[J].后勤工程学院学报,2006,3
    [55]李伟英,汤浅晶,李富生,高乃云,范瑾初,木村春男.金属过滤膜去除微粒子的 研究[J].中国给水排水,2004,10.
    [56]刘勤生,苗惠,邢跃,张学芳,苏莹.金属膜过滤食品煎炸用油效果的研究[J].食品与机械,2003,02.
    [57]徐庆阳,陈宁,方正星,申雅维.金属膜对L-缬氨酸发酵液过滤的研究[J].天津科技大学学报,2006,01.
    [58]刘延琳.膜过滤技术在酿酒水处理中的应用[J].酿酒科技,1998,06.
    [59]汪强兵.多孔金属膜制备工艺研究[D].西安建筑科技大学,2004.
    [60]赵东元,朱海峰,金碧辉.多孔材料[J].中国基础科学,2005,3.
    [61]张芳,徐晓虹.累托石合成孔梯度多孔陶瓷的研究[J].佛山陶瓷,2002,61(4)
    [62]张梅,杨绪杰,陆路德,等.溶胶-凝胶法制备纳米二氧化钛[J].化工新型材料,2002,30(1):35-37.
    [63]唐竹兴,王树海,陈达谦,等.注凝成型微孔梯度陶瓷材料制备新工艺的研究(Ⅰ)[J].硅酸盐通报,2001,2.
    [64]张芳,徐晓虹.孔梯度泡沫陶瓷的制备[J].武汉化工学院学报,2004,24(4).
    [65]左孝青,刘荣佩,张召亮,张强.离心铸造铝-铬自生梯度复合材料梯度结构研究[J].昆明理工大学学报(理工版),2003,28(4).
    [66]宁青菊,曹波俏,于成龙.功能孔梯度陶瓷材料的制备及其特性[J].陕西科技大学学报,2004,22(5).
    [67]李忠宏,仇农学,杨祖培,杨公明.不锈钢基体上TiO_2陶瓷膜的制备[J].农业工程学报,2005,25(9).
    [68]http://www.gkn-filters.com/products_en/sika-roas/index.html.
    [69]http://www.mottcorp.com/resource/pdf/hiflow_nickel.pdf
    [70]http://www.pall.com/pdf/GDS110.pdf
    [71]Y.Kinemuchi,K.Watari,S.Uchimura.Grading porous ceramics by centrifugal sintering.Acta Materialia[J],51(2003)pp.3225-3231
    [72]P.Maarten Biesheuvel,Victor Breedveld,Amoud P.Higler,Henk Verweij.Graded membrane supports produced by centrifugal casting of a slightly polydisperse suspension.Chemical Engineering Science[J],56(2001)pp.3517-3525
    [73]Stefan Berres,Raimund Burger.On gravity and centrifugal settling of polydisperse suspensions forming compressible sediments[J].International Journal of Solids and Structures,40(2003)pp.4965-4987
    [74]汤慧萍,奚正平,汪强兵.悬浮粒子烧结法制备微孔钛滤膜[A].科技、工程与经济社会协调发展-中国科协第五届青年学术年会论文集[C],2004
    [75]汪强兵,汤慧萍,奚正平,杨保军,葛渊,王建永,谈萍.非对称不锈钢分离膜的制 备[J].稀有金属材料与工程,2007,S3.
    [76]Ve'ronique Falk,Umberto D'Ortona.A polydisperse sedimentation and polydisperse packing model[J].Powder Technology,128(2002)229-235.
    [77]Stefan Berres,Raimund Burger,Elmer M.Tory,Applications of polydisperse sedimentation models[J].Chemical Engineering Journal,111(2005),p.105-117
    [78]丘可昂,董领锋.过滤器的中流量孔径与孔径分布的估计[J].稀有金属材料与工程,1993,02.
    [79]丘可昂.多孔体的渗透性的特征和平均孔径的测量[J].稀有金属材料与工程,1990,(2).
    [80]丘可昂.气泡法测量孔径分布[J].稀有金属材料与工程,1976,04.
    [81]粉末冶金多孔材料,下册[M].冶金工业出版社.宝鸡有色金属研究所1978.11.
    [82]刘培生.多孔材料孔径及孔径分布的测定方法[J].钛工业进展,2006,02.
    [83]刘培生.多孔材料孔率的测定方法[J].钛工业进展,2005,06.
    [84]丘可昂.极小气孔多孔体渗透性的测量[J].稀有金属材料与工程,1989,03.
    [85]杨保军,奚正平,汤慧萍,汪强兵.梯度金属多孔材料孔结构控制的研究[J].稀有金属材料与工程,2007,(S3)
    [86]汪强兵,汤慧萍,奚正平,葛渊,李增峰,王建永,杨保军.不锈钢分离膜在果汁生产中的应用研究[J].过滤与分离,2007,17,4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700