青藏高原沱沱河地区成矿背景及铅锌成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沱沱河地区位于青藏高原腹地的羌塘地体内,该地体自古生代以来经历了漫长而复杂的演化过程,这一过程可分为二个明显不同的阶段:其一,古特提斯演化阶段和印度-欧亚大陆碰撞与青藏高原形成阶段。金沙江构造岩浆岩带完整的记录了古特提斯洋从初始扩展到俯冲消减的全过程,因此沱沱河地区晚古生代-早中生代的构造岩浆演化与金沙江缝合带密切相关;其二,开始于65Ma左右的印度-欧亚板块对接碰撞、新特提洋的关闭,大陆俯冲碰撞阶段。这两次大的构造体制的转变造就了区内主要构造岩浆活动,也导致了研究区铅锌的成矿。
     本次工作对研究区与成矿有关的岩浆岩进行了岩石学、地球化学、锆石U-Pb年代学和锆石Hf同位素的研究。获得的晚古生代-早中生代岩浆岩有:巴斯湖北闪长岩(281±1Ma)、查曲怕查流纹质晶屑熔结凝灰岩(258±1Ma)、纳保扎陇流纹质晶屑玻屑熔结凝灰岩(244±1Ma)、八十八道班辉长岩(216±1Ma)。岩石地球化学和锆石Hf同位素的研究表明,巴斯湖北闪长岩和八十八道班辉长岩为岛弧火山岩,其原始岩浆应起源于受俯冲板片脱水熔融交代的亏损地幔楔;结合前人的研究成果,认为西金乌兰-玉树大洋俯冲消减早于早二叠世,碰撞后伸展发生在晚三叠世,表明早二叠世至晚三叠世期间,金沙江缝合带西段与金沙江缝合带东段的地球动力学背景是一致的。获得新生代岩浆岩有:那日利亚粗面安山岩-粗面岩(39.6Ma)、那日利亚正长斑岩(37.6Ma)、扎拉夏格涌晶屑凝灰岩(34.9Ma)、扎木曲正长斑岩(32Ma),岩浆活动跨越始新世和渐新世;这些岩石的地球化学分析结果显示其形成于高压的环境,结合研究区新生代时期的构造背景,认为它们的形成与加厚下地壳密切相关,那日利亚粗面安山岩-粗面岩为拆沉下地壳熔融遭受地幔物质交代的产物、那日利亚正长斑岩、扎拉夏格涌晶屑凝灰岩和扎木曲正长斑岩是软流圈上涌加热下地壳导致部分熔融的结果。下地壳源岩富K是造成这些岩石富碱的主要原因。这些数据表明沱沱河地区所处的高原北部大陆在40~32Ma一直处于持续增厚的状态,且主要的岩浆活动为下地壳物质再循环。
     在野外工作和室内研究的基础上,对研究区内典型矿床的成矿地质特征和成因类型进行了研究。
     确定了多才玛、孔介、楚多曲、雀莫错、那保扎陇铅锌矿为新生代中低温热液脉型铅锌矿。这些矿床的铅锌矿化受穿层、陡倾的断裂构造控制,而非前人认为的受层间构造控制;同位素的研究结果表明:成矿的铅来源于新生代加厚下地壳起源的火成岩,而与地层的铅同位素组成有较大的差别;硫以及氢、氧均主要来源于岩浆,显示出强烈的岩浆和深源属性;成矿流体为中低温、中低盐度和低密度的流体,晚期有大气水的加入;矿床受陡倾穿层断裂(张性断裂)、热穹窿(富碱岩浆流体)和岩性(碳酸盐岩)“三位一体”的控制;综合研究认为成因类型为的中低温热液脉型矿床,而非前人认为的MVT铅锌矿。
     根据成矿流体的中高温、低盐度、低密度特征,以及面型蚀变和细脉浸染型矿化特征,确定那日尼亚、扎拉夏格涌铅锌矿为新生代斑岩型铅锌矿,新生代加厚下地壳起源的富碱火山岩和斑岩提供了成矿物质和成矿热源;他们和中低温热液脉型铅锌矿是相同物质来源、相同热源、不同围岩条件和不同深度的成矿产物。
     本次工作还新发现一类产于闪长岩顶部的细网脉型铅锌矿-巴斯湖北铅锌矿,该矿床具有高温、低盐度的流体特征,矿化类型类似于斑岩型矿床,与后者相比成矿岩体为深成岩、成矿深度更大;成矿时代即闪长岩成岩时代(281Ma)或稍晚,是区内晚古生代成矿作用的代表。
     八十八道班、郭仓乐玛-宗陇巴铅锌矿位沱沱河河谷阶地之中,赋矿围岩为晚更新世砂砾,方铅矿在这类矿床中有两种沉积形式:一是晶形完好的方铅矿和砂砾石一起沉积,显示近源快速沉积的特征;二是以复杂的形态‘镶嵌’在砂砾的接触缝隙之间,显示其搬运距离稍远的特征。综合分析认为其为砂矿型铅矿,为高原快速差异抬升和干旱环境下风化剥蚀独有的产物,成矿物质可能来源于沱沱河北岸脉状铅锌矿体。
     在成矿地质背景分析和典型矿床研究的基础上,总结了沱沱河地区铅锌成矿地质特征:研究区的碳酸盐地层为热液脉型铅锌矿的形成提供了良好的在成矿环境和赋矿空间;火山岩地层为斑岩型矿床的孕育创造了条件;区域性断裂对整个沱沱河地区成矿控制作用明显,这些断裂是导矿构造,同时也是容矿构造;晚古生代-早中生代和晚始新世-早渐新世两期岩浆活动为区内铅锌形成提供了物质来源和成矿热源以及成矿流体。
     总结了区域铅锌矿成矿的时间规律、空间分布规律,并对保存条件和剥蚀深度进行了分析总结;依据矿床类型、成矿特征及空间分布特征,将研究区由北向南依次划分为沱沱河北侧扎木曲-扎拉夏格涌斑岩型铜铅锌多金属矿带、郭仓勒玛-八十八道班砂矿型铅矿带、那保扎陇-孔介斑岩型-热液脉型铅锌银矿带和楚多曲-日陇玛铅锌银钨锡铁矿带,提出了进一步的找矿方向。
The Tuotuohe region is located in the Qiangtang massif, in the hinterland of the Qinghai–Tibet Plateau.The Qiangtang massif, an integral part of the Tethys structural domain, underwent a prolonged andcomplicated course of development, especially in terms of its history of ocean–continent conversion. Thereare two distinct phases in its development: the first involves the evolution of Tethys, and the second thecollision between the Indian and Asian continents, which caused the formation of the Qinghai–TibetPlateau.
     In this paper, we present new zircon U–Pb ages, whole-rock major and trace element analyses, andzircon Hf isotopic data for the Early Permian–Late Triassic and Cenozoic magmatic rocks in the Tuotuoheregion of the western segment of the Jinshajiang suture.
     Zircons from the Early Permian–Late Triassic magmatic rocks of the Tuotuohe region areeuhedral–subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios (0.4–4.6),indicating a magmatic origin. The zircon U–Pb ages obtained using LA–ICP–MS are281±1Ma,258±1Ma,244±1Ma, and216±1Ma, which indicate magmatism in the Early Permian–Late Triassic. A dioritefrom Bashihubei (BSHN)has SiO2=57.18–59.97wt%, Al2O3=15.70–16.53wt%, and total alkalis (Na2O+K2O)=4.46–6.34wt%, showing the rock belongs chemically to the calc-alkaline and metaluminousseries. A gabbro from Bashibadaoban (BSBDB)belongs to the alkaline series, and is poor in SiO2(45.46–54.03wt%)but rich inAl2O3(16.19–17.39wt%)and total alkalis (Na2O+K2O=5.48–6.26wt%).The BSHN diorite and the BSBDB gabbro–diorite both display an enrichment in LREEs and LILEs anddepletion in HFSEs, and they have no obvious Eu anomaly; they have relatively low MgO contents(2.54–4.93wt%), Mg#values of43to52, and low Cr and Ni contents (8.07–33.6ppm and4.41–14.2ppm,respectively), indicating they differentiated from primitive mantle magmas. They have low Nb/U, Ta/U,and Ce/Pb ratios (1.3–9.6,0.2–0.8, and0.1–18.1, respectively), and their initial Hf isotopic ratios rangefrom+9.6to+16.9(BSHN diorite)and+6.5to+12.6(BSBDB gabbro–diorite), suggesting their primarymagmas were derived mainly from the partial melting of a mantle wedge that had been metasomatized bysubduction fluids. Taking all the new data together, we conclude that the western and eastern segment of the Jinshajiang suture regions underwent identical processes of evolution in the Early Permian–LateTriassic: oceanic crust subduction before the Early Permian, continental collision during the Early–MiddleTriassic, and post-collisional extension from the Late Triassic.
     Zircons from the Cenozoic magmatic rocks of the Tuotuohe region, with high Th/U ratios, have agesobtained using LA–ICP–MS of39.6Ma,37.6Ma,34.9Ma, and32Ma, which indicate magmatism in theEocene–Oligocene. Rock geochemical analysis results show that they formed under high pressureenvironment. Combined Cenozoic tectonic setting of the study area, we believe that they are closely relatedto the lower crustal thickening. The Nariliya (NRNY)Trachyandesite-trachyte was a product of thedelaminated lower crustal melting and suffered by mantle. Asthenosphere upwelling and lithospheredelamination were the main causes of the NRNY orthophyre, Zhalaxiageyong (ZLXGY)crumbs tuff, andZhamuqu orthophyre magma activity. K-rich source rocks of the lower crust are the main cause of thesealkali-rich rocks. These data indicate that the Tuotuohe region has been in continuous thickening of thestate in40~32Ma and the main magmatic activity was lower crust recycling.
     Based on the field work and laboratory study, we are approaching a new understanding of the genesistypes and characteristics of deposits in studying the area:
     (1)The Duocaima, Kongjie, Chuduoqu, Quemocuo and Labaozhalong lead and zinc deposits wereepithermal vein-type. These lead-zinc deposits were controlled by steeply dipping faults instead layerstructure controlled by the previous. The results of Pb isotopes indicated that major metallogenetic matterscame from the Cenozoic igneous, and not from the formations. Sulfur, hydrogen and oxygen mainly camefrom magma, showing a strong and deep magma source property. The ore-forming fluid is low temperature,low salinity and low density, and atmospheric water added in later. Steeply dipping fracture, thermal dome(alkali-rich magmatic)and lithology (carbonates)were the main ore-control factors. Comprehensive studiessuggest that the type of the deposits was epithermal vein-type deposits, rather than MVT lead-zinc.
     (2)According to the high temperature,low salinity, low density characteristics of ore-formingfluid,and the planar alteration and veinlet disseminated mineralization characteristics,we determined thatthe NRNY and ZLXGY Pb-Zn deposits were Cenozoic porphyry type Pb-Zn deposits. Cenozoic Alkali richporphyry and volcanic rock, which originated from thickened lower crust, provided ore-forming materialand heat source. Origin of Cenozoic Alkali rich porphyry rock and volcano provided ore-forming materialand low temperature heat source; heat them and hydrothermal vein type lead zinc ore is the product of thesame material, the same source of metallogenic heat source, different rock conditions and depth. Theporphyry and hydrothermal vein type lead zinc deposits have the same metallogenetic matters and heatsource, and different rock conditions and metallogenic depth.
     (3)We found a new type of lead-zinc deposit in this work–Bashihubei (BSHN)lead-zinc deposit,called ‘veinlet type located at the top of diorite’. The fluid characteristics of the ore deposit arecharacterized by high temperature, low salinity. And the mineralization type is similar to the porphyrydeposits, but metallogenetic rock is plutonic rocks and mineralization metallogenic greater depth. Themetallogenic epoch of BSHN lead-zinc deposit was281Ma or slightly later, which is metallogenicrepresentative during Late Paleozoic within the study area.
     (4)Eighty-eight station (BSBDB)and Guocanglema-Zonglongba (GCLM)lead-zinc deposits arelocated in Tuotuohe valley terrace, and the host rock is late Pleistocene gravel. The galena has two kinds ofdeposition form in this kind of deposit: one have the complete crystal form, which was product ofsynsedimentary together with sand and gravel, which is featured by proximity of its origin and rapiddeposition. And the others have complicated form of 'mosaic' between the contact gap of gravel, which isfeatured by the slightly further distance. Based on a synthetical analysis of metallogenic characteristics, thedeposits are placer lead as the product of plateau fast differential uplift and denudation in the aridenvironment of weathering. The metallogenic materials of which may be derived from the upper orebody ofporphyry Pb-Zn deposits in the north of Tuotuohe River.
     With a basic analysis on the metallogenic geologic settings, the genetic types and geological featuresof each type of Pb-Zn deposits in Tuotuohe region are studied. The Carbonate formations in the study areaprovide a good environment and ore in space for the formation of hydrothermal vein-type lead-zincmineralization, and the volcanic strata bred to create the conditions for porphyry lead-zinc deposits. Theregional fracture obviously controlled the mineralization of Tuotuohe region, and these faults are not onlythe guided mine construction, but also the host structures. Late Paleozoic-Mesozoic and early late Eocene-Early Oligocene magmatic activities in the region provided the material source, ore-forming fluids andheat for forming the lead and zinc mineralization.
     This paper summarized the law of the regional lead-zinc mineralization distribution in time and spatial,and the storage conditions and erosion depth were analyzed and summarized; and analyzed the preservationconditions of the Pb-Zn deposits in Tuotuohe region. According to the deposit types, mineralizationcharacteristics and spatial distribution, We divided into four mineralization zones in Tuotuohe region fromnorth to south: Zhamuqu-Zhalaxiageyong Porphyry Cu-Pb-Zn polymetallic ore belt in the north shore ofthe Tuotuohe river, Guochanglema-Bashibadaoban placer Pb ore belt, Nabaozhalong-Kongjie Porphyry andhydrothermal vein type Pb-Zn-Ag polymetallic ore belt with and Chuduoqu-Rilongma Pb-Zn–Ag-W-Snpolymetallic ore belt. Finally, the paper presents further prospecting direction of the study area.
引文
①青海省地质调查院.中华人民共和国区域地质调查报告——沱沱河幅(1:250000),2005年5月
    1成都理工大学地质调查院,中华人民共和国区域地质调查报告——乌兰乌拉湖幅(1:250000),2003年6月
    ①成都理工大学地质调查院,中华人民共和国区域地质调查报告——乌兰乌拉湖幅(1:250000),2003年6月
    ②青海省地质调查院.中华人民共和国区域地质调查报告——沱沱河幅(1:250000),2005年5月
    ①青海省地质调查院.中华人民共和国区域地质调查报告——沱沱河幅(1:250000),2005年5月
    [1] Abe, Natsue, Arai, Shoji, Yurimoto, Hisayoshi.(1998). Geochemical characteristics of the uppermostmantle beneath the Japan island arcs: implications for upper mantle evolution. Physics of the Earthand Planetary Interiors,107(1),233-248.
    [2] Amelin, Yuri, Lee, Der-Chuen, Halliday, Alex N, Pidgeon, Robert T.(1999). Nature of the Earth'searliest crust from hafnium isotopes in single detrital zircons. Nature,399(6733),252-255.
    [3] Andersen, Tom.(2002). Correction of common lead in U–Pb analyses that do not report204Pb.Chemical geology,192(1),59-79.
    [4] Barazangi, Muawia, Ni, James.(1982). Velocities and propagation characteristics of Pn and Snbeneath the Himalayan arc and Tibetan plateau: Possible evidence for underthrusting of Indiancontinental lithosphere beneath Tibet. Geology,10(4),179-185.
    [5] Beard, JS, Bergantz, GW, Defant, MJ, Drummond, MS.(1993). Origin and emplacement of low-Ksilicic magmas in subducting setting. Paper presented at the Penrose Conference Report, GSATODAY.
    [6] Bizzarro, Martin, Simonetti, Antonio, Stevenson, Ross K, David, Jean.(2002). Hf isotope evidence fora hidden mantle reservoir. Geology,30(9),771-774.
    [7] Blichert-Toft, Janne, Albarède, Francis.(1997). The Lu-Hf isotope geochemistry of chondrites and theevolution of the mantle-crust system. Earth and Planetary Science Letters,148(1),243-258.
    [8] Boynton, W.V.(1984). Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson,P.(Ed.), Rare Earth Element Geochemistry. Amsterdam: Elsevier.
    [9] Burnham, C Wayne.(1979). Magmas and hydrothermal fluids. Geochemistry of hydrothermal oredeposits,2,71-136.
    [10] Chung, S.L., Chu, M.F., Zhang, Y., Xie, Y., Lo, C.H., Lee, T.Y., Wang, Y.(2005). Tibetan tectonicevolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-ScienceReviews,68(3-4),173-196.
    [11] CLARK BURCHFIEL, B, Royden, LH.(1991). Tectonic of Asia50years after the death of EmileArgand. Eclogae Geologicae Helvetiae,84(3),599-629.
    [12] Clayton, Robert N.(1963). Carbon isotope abundance in meteoritic carbonates. Science,140(3563),192-193.
    [13] Cornell, DH, Schütte, SS, Eglington, BL.(1996). The Ongeluk basaltic andesite formation inGriqualand West, South Africa: submarine alteration in a2222Ma Proterozoic sea. PrecambrianResearch,79(1),101-123.
    [14] Defant, Marc J, Drummond, Mark S.(1990). Derivation of some modern arc magmas by melting ofyoung subducted lithosphere. Nature,347(6294),662-665.
    [15] Drummond, MS, Defant, MJ, Kepezhinskas, PK.(1996). Petrogenesis of slab-derivedtrondhjemite–tonalite–dacite/adakite magmas. Transactions of the Royal Society of Edinburgh: EarthSciences,87(1-2),205-215.
    [16] Edwards, CMH, Morris, JD, Thirlwall, MF.(1993). Separating mantle from slab signatures in arclavas using B/Be and radiogenic isotope systematics.
    [17] Eiler, J M, Crawford, Anthony, Elliott, Tim, Farley, Kenneth A, Valley, John W, Stolper, Edward M.(2000). Oxygen isotope geochemistry of oceanic-arc lavas. Journal of Petrology,41(2),229-256.
    [18] Elhlou, S, Belousova, E, Griffin, WL, Pearson, NJ, O’reilly, SY.(2006). Trace element and isotopiccomposition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta,70(18),A158.
    [19] Faure, Gunter.(2001). Origin of igneous rocks: the isotopic evidence: Springer.
    [20] Frey, FA, Green, DH, Roy, SD.(1978). Integrated models of basalt petrogenesis: a study of quartztholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimentalpetrological data. Journal of petrology,19(3),463-513.
    [21] Friedman, I., O'Neil, J.R.(1977). Compilation of stable isotope fractionation factors of geochemicalinterest. In M. Fleischer (Ed.), Data of Geochemistry (pp.440): United States Geological Survey.
    [22] Gill, James B.(1981). Orogenic andesites and plate tectonics (Vol.390): Springer-Verlag Berlin.
    [23] Grant, James A.(1986). The isocon diagram; a simple solution to Gresens' equation for metasomaticalteration. Economic Geology,81(8),1976-1982.
    [24] Griffin, WL, Pearson, NJ, Belousova, E, Jackson, SE, Van Achterbergh, E, O’Reilly, Suzanne Y, Shee,SR.(2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zirconmegacrysts in kimberlites. Geochimica et Cosmochimica Acta,64(1),133-147.
    [25] Grove, Timothy L, Elkins-Tanton, Linda T, Parman, Stephen W, Chatterjee, Nilanjan, Müntener,Othmar, Gaetani, Glenn A.(2003). Fractional crystallization and mantle-melting controls oncalc-alkaline differentiation trends. Contributions to Mineralogy and Petrology,145(5),515-533.
    [26] Hans Wedepohl, K.(1995). The composition of the continental crust. Geochimica et CosmochimicaActa,59(7),1217-1232.
    [27] Hewett, DF.(1971). Coronadite; modes of occurrence and origin. Economic Geology,66(1),164-177.
    [28] Hoefs, Jochen.(2009). Stable isotope geochemistry: Springer.
    [29] Hofmann, Albrecht W.(1988). Chemical differentiation of the Earth: the relationship between mantle,continental crust, and oceanic crust. Earth and Planetary Science Letters,90(3),297-314.
    [30] Hofmann, AW, Jochum, KP, Seufert, M., White, WM.(1986). Nb and Pb in oceanic basalts: newconstraints on mantle evolution. Earth and Planetary Science Letters,79(1),33-45.
    [31] Irvine, TNj, Baragar, WRAf.(1971). A guide to the chemical classification of the common volcanicrocks. Canadian Journal of Earth Sciences,8(5),523-548.
    [32] Jian, P., Liu, D., Sun, X.(2008). SHRIMP dating of the Permo-Carboniferous Jinshajiang ophiolite,southwestern China: Geochronological constraints for the evolution of Paleo-Tethys. Journal of AsianEarth Sciences,32(5),371-384.
    [33] Kay, RW.(1978). Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal ofVolcanology and Geothermal Research,4(1),117-132.
    [34] Kelemen, Peter B.(1995). Genesis of high Mg#andesites and the continental crust. Contributions toMineralogy and Petrology,120(1),1-19.
    [35] Kepezhinskas, Pavel, McDermott, Frank, Defant, Marc J, Hochstaedter, Alfred, Drummond, Mark S,Hawkesworth, Chris J, Bellon, Herve.(1997). Trace element and SrNdPb isotopic constraints ona three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta,61(3),577-600.
    [36] Konstantinovskaia, Elena A, Brunel, Maurice, Malavieille, Jacques.(2003). Discovery of thePaleo-Tethys residual peridotites along the Anyemaqen–KunLun suture zone (North Tibet). ComptesRendus Geoscience,335(8),709-719.
    [37] La Flèche, MR, Camire, G, Jenner, GA.(1998). Geochemistry of post-Acadian, Carboniferouscontinental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada. ChemicalGeology,148(3),115-136.
    [38] Lepvrier, Claude, Maluski, Henri, Van Vuong, Nguyen, Roques, Delphine, Axente, Valerica, Rangin,Claude.(1997). Indosinian NW-trending shear zones within the Truong Son belt (Vietnam)40Ar/39ArTriassic ages and Cretaceous to Cenozoic overprints. Tectonophysics,283(1),105-127.
    [39] Li, Ya Lin, Wang, Cheng Shan, Zhao, Xi Xi, Yin, An, Ma, Chao.(2012). Cenozoic thrust system,basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. GondwanaResearch,22(2),482-492.
    [40] Liang, Qi, Jing, Hu, Gregoire, D Conrad.(2000). Determination of trace elements in granites byinductively coupled plasma mass spectrometry. Talanta,51(3),507-513.
    [41] Liu, Fulai, Wang, Fang, Liu, Pinghua, Liu, Chaohui.(2012). Multiple metamorphic events revealed byzircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau.Gondwana Research,24(1),429-450.
    [42] Liu, Yongsheng, Hu, Zhaochu, Gao, Shan, Günther, Detlef, Xu, Juan, Gao, Changgui, Chen, Haihong.(2008). In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS withoutapplying an internal standard. Chemical Geology,257(1),34-43.
    [43] Ludwig, Kenneth R.(2003). User's manual for Isoplot3.00: A geochronological toolkit for MicrosoftExcel: Kenneth R. Ludwig.
    [44] Macdonald, Ray, Hawkesworth, CJ, Heath, E.(2000). The Lesser Antilles volcanic chain: a study inarc magmatism. Earth-Science Reviews,49(1),1-76.
    [45] Maniar, Papu D, Piccoli, Philip M.(1989). Tectonic discrimination of granitoids. Geological societyof America bulletin,101(5),635-643.
    [46] Marini, L., Moretti, R., Accornero, M.(2011). Sulfur isotopes in magmatic-hydrothermal systems,melts, and magmas. Reviews in Mineralogy and Geochemistry,73(1),423-492.
    [47] McNamara, Daniel E, Owens, Thomas J, Silver, Paul G, Wu, Frances T.(1994). Shear waveanisotropy beneath the Tibetan Plateau. Journal of Geophysical Research: Solid Earth (1978–2012),99(B7),13655-13665.
    [48] Metcalfe, Ian.(1998). Palaeozoic and Mesozoic geological evolution of the SE Asian region:multidisciplinary constraints and implications for biogeography. Biogeography and geologicalevolution of SE Asia,25-41.
    [49] Mingram, B, Trumbull, RB, Littman, S, Gerstenberger, H.(2000). A petrogenetic study of anorogenicfelsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust andmantle-derived components. Lithos,54(1),1-22.
    [50] Nasdala, Lutz, Hofmeister, Wolfgang, Norberg, Nicholas, Martinson, James M, Corfu, Fernando, D rr,Wolfgang, Reiners, Peter W.(2008). Zircon M257‐a Homogeneous Natural Reference Material forthe Ion Microprobe U‐Pb Analysis of Zircon. Geostandards and Geoanalytical Research,32(3),247-265.
    [51] Owens, Thomas J, Zandt, George.(1997). Implications of crustal property variations for models ofTibetan plateau evolution. Nature,387(6628),37-43.
    [52] Pearce, Julian A, Harris, Nigel BW, Tindle, Andrew G.(1984). Trace element discriminationdiagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25(4),956-983.
    [53] Pearce, Julian A.(1982). Trace element characteristics of lavas from destructive plate boundaries.Orogenic andesites and related rocks,528-548.
    [54] Peccerillo, Angelo, Taylor, S R_.(1976). Geochemistry of Eocene calc-alkaline volcanic rocks fromthe Kastamonu area, northern Turkey. Contributions to mineralogy and petrology,58(1),63-81.
    [55] Petford, N., Atherton, M.(1996). Na-rich partial melts from newly underplated basaltic crust: theCordillera Blanca Batholith, Peru. Journal of Petrology,37(6),1491-1521.
    [56] Phillips, William John.(1972). Hydraulic fracturing and mineralization. Journal of the GeologicalSociety,128(4),337-359.
    [57] Powell, C McA, Conaghan, PJ.(1975). Tectonic models of the Tibetan Plateau. Geology,3(12),727-731.
    [58] Puig, Alvaro.(1988). Geologic and metallogenic significance of the isotopic composition of lead ingalenas of the Chilean Andes. Economic Geology,83(4),843-858.
    [59] Rapp, R.P., Watson, E.B.(1995). Dehydration melting of metabasalt at8–32kbar: Implications forcontinental growth and crust-mantle recycling. Journal of Petrology,36(4),891-931.
    [60] Rapp, R.P., Watson, E.B., Miller, C.F.(1991). Partial melting of amphibolite/eclogite and the origin ofArchean trondhjemites and tonalites. Precambrian Research,51(1),1-25.
    [61] Rapp, RP, Shimizu, N., Norman, MD, Applegate, GS.(1999). Reaction between slab-derived meltsand peridotite in the mantle wedge: experimental constraints at3.8GPa. Chemical geology,160(4),335-356.
    [62] Reagan, M. K., Gill, J. B..(1989). Coexisting calcalkaline and high-niobium basalts from TurrialbaVolcano, Costa Rica: Implications for residual titanates in arc magma sources. Journal of GeophysicalResearch: Solid Earth,94(B4),4619-4633.
    [63] Robinson, Brian W, Kusakabe, Minoru.(1975). Quantitative preparation of sulfur dioxide, forsulfur-34/sulfur-32analyses, from sulfides by combustion with cuprous oxide. Analytical Chemistry,47(7),1179-1181.
    [64] Sajona, Fernando G, Maury, René C, Bellon, Hervé, Cotten, Joseph, Defant, Marc J, Pubellier,Manuel.(1993). Initiation of subduction and the generation of slab melts in western and easternMindanao, Philippines. Geology,21(11),1007-1010.
    [65] S derlund, Ulf, Patchett, P Jonathan, Vervoort, Jeffrey D, Isachsen, Clark E.(2004). The176Lu decayconstant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earthand Planetary Science Letters,219(3),311-324.
    [66] Spurlin, M.S., Yin, A., Horton, B.K., Zhou, J., Wang, J.(2005). Structural evolution of theYushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet.Bulletin of the Geological Society of America,117(9-10),1293-1317.
    [67] Stacey, JS t, Kramers,1JD.(1975). Approximation of terrestrial lead isotope evolution by a two-stagemodel. Earth and Planetary Science Letters,26(2),207-221.
    [68] Stern, Charles R.(2011). Subduction erosion: rates, mechanisms, and its role in arc magmatism andthe evolution of the continental crust and mantle. Gondwana Research,20(2),284-308.
    [69] Sun, S-S, McDonough, W_F.(1989). Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society, London, Special Publications,42(1),313-345.
    [70] Taylor Jr, HUGH P.(1997). Oxygen and hydrogen isotope relationships in hydrothermal mineraldeposits. Geochemistry of hydrothermal ore deposits,3,229-302.
    [71] Titley, SR, Thompson, RC, Haynes, FM, Manske, SL, Robison, LC, White, JL.(1986). Evolution offractures and alteration in the Sierrita-Esperanza hydrothermal system, Pima County, Arizona.Economic Geology,81(2),343-370.
    [72] Todt, W, Cliff, RA, Hanser, A, Hofmann, AW.(1993). Re-calibration of NBS lead standards using a202Pb+205Pb double spike. Paper presented at the Terra Abstr.
    [73] Townley, Brian K, Godwin, Collin I.(2001). Isotope characterization of lead in galena from oredeposits of the Aysen Region, southern Chile. Mineralium Deposita,36(1),45-57.
    [74] Turner, S, Arnaud, N, LIU, Jiaqi, Rogers, N, Hawkesworth, C, Harris, N, Deng, Wanming.(1996).Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning ofthe lithosphere and the source of ocean island basalts. Journal of Petrology,37(1),45-71.
    [75] Veevers, JJ, Saeed, A, Belousova, EA, Griffin, WL.(2005). U–Pb ages and source composition byHf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand fromsouthwestern Australia and a review of the paleogeographical and denudational history of the YilgarnCraton. Earth-Science Reviews,68(3),245-279.
    [76] Wang, Dongbing, Wang, Liquan, Yin, Fuguang, Sun, Zhiming, Wang, Baodi, Zhang, Wanping.(2012). Timing and nature of the Jinshajiang Paleo-Tethys: Constraints from zircon U-Pb age and Hfisotope of the Dongzhulin layered gabbro from Jinshajiang ophiolite belt, northwestern Yunnan. ActaPetrologica Sinica,28(5),1542-1550.
    [77] Wang, Hongzhen, Mo, Xuanxue.(1995). An outline of the tectonic evolution of China. Episodes,18,6-6.
    [78] Wyllie, P.J.(1977). Crustal anatexis: an experimental review. Tectonophysics,43(1),41-71.
    [79] Xiao, L, Zhang, HF, Clemens, JD, Wang, QW, Kan, ZZ, Wang, KM, Liu, XM.(2007). Late Triassicgranitoids of the eastern margin of the Tibetan Plateau: geochronology, petrogenesis and implicationsfor tectonic evolution. Lithos,96(3),436-452.
    [80] Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q., Rapp, R.P.(2002). Origin of Mesozoic adakitic intrusiverocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?Geology,30(12),1111-1114.
    [81] Yu, Jin-Hai, O’Reilly, Suzanne Y, Wang, Lijuan, Griffin, WL, Zhang, Ming, Wang, Rucheng, Shu,Liangshu.(2008). Where was South China in the Rodinia supercontinent?: evidence from U–Pbgeochronology and Hf isotopes of detrital zircons. Precambrian Research,164(1),1-15.
    [82] Zartman, RE, Doe, BR.(1981). Plumbotectonics—the model. Tectonophysics,75(1),135-162.
    [83] Zengqian, Hou, Hongwen, Ma, Zaw, Khin, Yuquan, Zhang, Mingjie, Wang, Zeng, Wang, Renli, Tang.(2003). The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting ineastern Tibet. Economic Geology,98(1),125-145.
    [84] Zhang, Hongfei, Parrish, Randall, Zhang, Li, Xu, Wangchun, Yuan, Honglin, Gao, Shan, Crowley,Quentin G.(2007). A-type granite and adakitic magmatism association in Songpan–Garze fold belt,eastern Tibetan Plateau: implication for lithospheric delamination. Lithos,97(3),323-335.
    [85] Zhang, Hongfei, Zhang, Li, Harris, Nigel, Jin, Lanlan, Yuan, Honglin.(2006). U–Pb zircon ages,geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern TibetanPlateau: constraints on petrogenesis and tectonic evolution of the basement. Contributions toMineralogy and Petrology,152(1),75-88.
    [86] Zindler, Alan, Hart, Stan.(1986). Chemical geodynamics. Annual review of earth and planetarysciences,14,493-571.
    [87]白云山,李莉,牛志军,姚华舟,段其发.(2006).羌塘中部各拉丹冬二长花岗岩体同位素地质年代学和地球化学研究.地球学报(03),217-225.
    [88]白云山.(2003).羌塘中部雀莫错—波尔藏陇巴一带基性超基性岩群的基本特征及构造属性.Paper presented at the青藏高原及邻区地质与资源环境学术讨论会,中国四川成都.
    [89]边千韬,沙金庚,郑祥身.(1993).西金乌兰晚二叠—早三叠世石英砂岩及其大地构造意义.地质科学(04),327-335.
    [90]边千韬,郑祥身.(1991).西金乌兰和冈齐曲蛇绿岩的发现.地质科学(03),304.
    [91]陈建林,许继峰,王保弟,康志强.(2010).青藏高原拉萨地块新生代超钾质岩与南北向地堑成因关系.岩石矿物学杂志(04),341-354.
    [92]陈文,张彦,陈克龙,张雪亭,王清利,金贵善.(2005).青海玉树哈秀岩体成因及40Ar/39Ar年代学研究.岩石矿物学杂志(05),393-396.
    [93]陈衍景,肖文交,张进江.(2008).成矿系统:地球动力学的有效探针.中国地质,35(6).
    [94]邓万明.(1993).青藏北部新生代钾质火山岩微量元素和Sr、Nd同位素地球化学研究.岩石学报(04),379-387.
    [95]丁林,张进江,周勇,邓万明,许荣华,钟大赉.(1999).青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征.岩石学报(03),408-420.
    [96]董彦辉,王强,许继峰,资锋.(2008).羌塘地块北部东月湖始新世高Mg#埃达克质火山岩的成因以及构造意义.岩石学报(02),291-302.
    [97]段其发,王建雄,白云山,姚华舟,何龙清,张克信,李俊.(2009).青海南部蛇绿岩中辉长岩锆石SHRIMP U-Pb定年和岩石地球化学特征.中国地质(02),291-299.
    [98]段其发,杨振强,王建雄,白云山,牛志军,姚华舟.(2006).青藏高原北羌塘盆地东部二叠纪高Ti玄武岩的地球化学特征.地质通报(Z1),156-162.
    [99]段志明.(2005).青藏高原腹地唐古拉山新生代地质事件及其对印—亚板块碰撞作用的响应.博士,成都理工大学.
    [100]冯光英,刘燊,钟宏,冯彩霞,齐有强,杨毓红,杨朝贵.(2011).辽西建昌碱性粗面岩的年代学及岩石成因研究.矿物学报,31(3),380-390.
    [101]高合明,於崇文.(1994).斑岩铜矿床中脉体形成的动力学.地质论评,40(6),508-512.
    [102]高山,金振民.(1997).拆沉作用及其壳—幔演化动力学意义.地质科技情报,16(001),1-9.
    [103]何世平,李荣社,王超,辜平阳,于浦生,时超,查显锋.(2013).昌都地块宁多岩群形成时代研究:北羌塘基底存在的证据.地学前缘(05),15-24.
    [104]何世平,李荣社,王超,张宏飞,计文化,于浦生,时超.(2011).青藏高原北羌塘昌都地块发现~4.0Ga碎屑锆石.科学通报(08),573-585.
    [105]何世平,李荣社,王超,张宏飞,计文化,于浦生,时超.(2013).青藏高原拉萨地块发现古元古代地体.地球科学(中国地质大学学报)(03),519-528.
    [106]侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.(2007). LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10),2595-2604.
    [107]侯增谦,高永丰,孟祥金,曲晓明,黄卫.(2004).西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报(02),239-248.
    [108]侯增谦,潘桂棠,王安建,莫宣学,田世洪,孙晓明,李振清.(2006b).青藏高原碰撞造山带: Ⅱ.晚碰撞转换成矿作用.矿床地质(05),521-543.
    [109]侯增谦,曲晓明,杨竹森,孟祥金,李振清,杨志明,李光明.(2006c).青藏高原碰撞造山带: Ⅲ.后碰撞伸展成矿作用.矿床地质(06),629-651.
    [110]侯增谦,杨竹森,徐文艺,莫宣学,丁林,高永丰,杨志明.(2006a).青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质(04),337-358.
    [111]侯增谦.(2010).大陆碰撞成矿论.地质学报(01),30-58.
    [112]简平,刘敦一,孙晓猛.(2003).滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋壳演化的同位素年代学制约.地质学报(02),217-228+291-292.
    [113]简平,汪啸风,何龙清,王传尚.(1999).金沙江蛇绿岩中斜长岩和斜长花岗岩的U-Pb年龄及地质意义.岩石学报(04),590-593.
    [114]金贵善.(2006).西金乌兰—金沙江缝合带西段部分岩浆岩地质年代学及地球化学特征.硕士,中国地质科学院.
    [115]赖绍聪,刘池阳.(2001).青藏高原北羌塘榴辉岩质下地壳及富集型地幔源区——来自新生代火山岩的岩石地球化学证据.岩石学报(03),459-468.
    [116]李光明.(2000).藏北羌塘地区新生代火山岩岩石特征及其成因探讨.地质地球化学(02),38-44.
    [117]李洪普,陈学明,左志勇,窦全成,芦文泉.(2012).三江成矿带开心岭矿区尕的考组火山活动与多金属矿的成矿关系.西北地质,45(1),71-78.
    [118]李洁,陈文,雍拥,陈岳龙,孙敬博,张彦,杨莉.(2012).青海玉树地区扎喜科岩体形成时代,地球化学特征及构造意义研究.地球学报,5,012.
    [119]李善平,马海州,沈存祥,魏海成.(2008).青藏高原北羌塘盆地结扎乡一带二叠系尕笛考组火山岩的特征及构造环境.西北地质(02),31-40.
    [120]李善平,潘彤,李永祥,王磊,温得银,王树林,王钦元.(2010).青藏高原北羌塘盆地多彩地区蛇绿岩地球化学特征及构造环境.中国地质(06),1592-1606.
    [121]李天福,马鸿文.(1998).钾质火山岩的成因研究.地学前缘(03),133-143.
    [122]李亚林,王成善,伊海生,刘志飞,李勇.(2006).西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起.地质学报(08),1118-1130+1234.
    [123]李勇,王成善,伊海生.(2003).西藏金沙江缝合带西段晚三叠世碰撞作用与沉积响应.沉积学报(02),191-197.
    [124]李勇,伊海生,王成善.(1999).青藏高原北部晚三叠世Epigondollella动物群的发现及其地质意义.地质论评(06),628.
    [125]李勇,周荣军, L, Densmore A, A, Ellis M,黎兵.(2006).青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应.沉积学报(02),153-164.
    [126]李政.(2008).青海省沱沱河地区茶曲帕查铅锌矿床的成因研究.硕士,北京科技大学.
    [127]林金辉.(2003).藏北高原新生代高钾钙碱性系列火山岩与壳—幔相互作用.博士,成都理工大学.
    [128]刘斌,沈昆.(1999).流体包裹体热力学:地质出版社.
    [129]刘栋,赵志丹,朱弟成,王青,隋清霖,刘勇胜,莫宣学.(2011).青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学.岩石学报(07),2045-2059.
    [130]刘飞宇,巫建华,刘帅.(2009).赣杭带早白垩世粗面岩锆石SHRIMP U-Pb年龄及其意义.东华理工大学学报:自然科学版,32(004),330-335.
    [131]刘建峰,迟效国,赵秀羽,赵芝,董春艳,黎广荣,赵院东.(2009).青藏高原北部新生代走构油茶错、纳丁错火山岩年代学、地球化学特征及其构造意义.岩石学报(12),3259-3274.
    [132]刘燊,胡瑞忠,迟效国,李才,冯彩霞,王天武.(2003).羌塘岩带碰撞后超钾质火山岩地球化学特征及成因探讨.大地构造与成矿学(02),167-175.
    [133]刘燕学,王光辉,江小均,侯增谦,李政,宋玉财,王晓虎.(2011).“三江”北段沱沱河盆地古近纪—新近纪沉积格架与盆地演化分析.岩石矿物学杂志(03),381-390.
    [134]刘银.(2011).当江—多彩俯冲型蛇绿岩及其岩浆弧特征.硕士,中国地质大学(北京).Available from Cnki
    [135]刘志飞,王成善,伊海生,刘顺.(2001).藏北可可西里盆地老第三纪沉积物源区分析及其高原隆升意义.地球科学(01),1-6.
    [136]刘志飞,王成善.(2001).青藏高原北部可可西里盆地第三纪风火山群沉积环境分析.沉积学报(01),28-36.
    [137]路远发,战明国,陈开旭.(2000).金沙江构造带嘎金雪山岩群玄武岩铀-铅同位素年龄.中国区域地质(02),155-158.
    [138]毛景文,赫英,丁悌平.(2002).胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据.矿床地质(02),121-128.
    [139]莫宣学,潘桂棠.(2006).从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘(06),43-51.
    [140]莫宣学,赵志丹,邓晋福,董国臣,周肃,郭铁鹰,王亮亮.(2003).印度—亚洲大陆主碰撞过程的火山作用响应.地学前缘(03),135-148.
    [141]莫宣学,赵志丹,周肃,董国臣,廖忠礼.(2007).印度-亚洲大陆碰撞的时限.地质通报(10),1240-1244.
    [142]潘保田,徐叔鹰.(1989).青海高原东部晚第四纪自然环境演化探讨.科学通报,34(7),534-536.
    [143]潘桂棠,徐强,侯增谦,王立全,杜德勋,莫宣学,江新胜.(2003).西南'三江(多岛弧造山过程成矿系统与资源评价:北京*地质出版社.
    [144]青海省地质调查院.(2005).1:25万沱沱河幅区域地质调查报告.1-291.
    [145]芮宗瑶,李荫清.(2002).初论成矿流体及金属矿物富集系统.矿床地质,21(1),83-90.
    [146]邵跃.(1984).矿床元素原生分带的研究及其在地球化学找矿中的应用[J].地质与勘探,2,47-55.
    [147]史仁灯.(2007).班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约.科学通报,52(2),223-227.
    [148]宋玉财,侯增谦,李政,杨天南,刘燕学,杨竹森,刘群.(2009).沱沱河茶曲帕查Pb(-Zn)矿:大陆碰撞背景下盆地流体活动的产物.矿物学报(S1),186-187.
    [149]孙崇仁,地质.(1997).青海省岩石地层:中国地质大学出版社.
    [150]孙德有,吴福元,高山,路孝平.(2005).吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约.地学前缘,12(2).
    [151]滕吉文,杨立强,刘宏臣,闫雅芬,杨辉,张洪双,田有.(2009).岩石圈内部第二深度空间金属矿产资源形成与集聚的深层动力学响应.地球物理学报(7),1734-1756.
    [152]田世洪,杨竹森,侯增谦,杨天南,张洪瑞,刘燕学,俞长捷.(2011).青海玉树东莫扎抓和莫海拉亨铅锌矿床与逆冲推覆构造关系的确定——来自粗晶方解石Rb-Sr和Sm-Nd等时线年龄证据.岩石矿物学杂志(03),475-489.
    [153]涂光炽.(1989).关于富碱侵入岩.矿产与地质,13(3),1-4.
    [154]王秉璋,罗照华,曾小平,王毅志,祁生胜.(2008).青海三江北段治多地区印支期花岗岩的成因及锆石U—Pb定年.中国地质(02),196-206.
    [155]王成善,朱利东,刘志飞.(2004).青藏高原北部盆地构造沉积演化与高原向北生长过程.地球科学进展,19(3),373-381.
    [156]王冬兵,王立全,尹福光,孙志明,王保弟,张万平.(2012).滇西北金沙江古特提斯洋早期演化时限及其性质:东竹林层状辉长岩锆石U-Pb年龄及Hf同位素约束.岩石学报(05),1542-1550.
    [157]王舫,刘福来,刘平华.(2013).云南“三江”变质杂岩带多期花岗质岩浆事件及其构造意义.岩石学报(06),2141-2160.
    [158]王国芝,王成善.(2001).西藏羌塘基底变质岩系的解体和时代厘定.中国科学: D辑,31(B12),77-82.
    [159]王永文,李善平,王发明.(2004).西金乌兰构造混杂带中基底变质岩的特征和意义.西北地质(01),40-44.
    [160]王召林.(2009).三江北段玉树地区复合造山与成矿作用研究.博士,中国地质科学院.
    [161]魏启荣,李德威,王国灿,郑建平.(2007).青藏高原北部查保马组火山岩的锆石SHRIMP U-Pb定年和地球化学特点及其成因意义.岩石学报(11),2727-2736.
    [162]吴福元,葛文春,孙德有,郭春丽.(2003).中国东部岩石圈减薄研究中的几个问题. Paperpresented at the中国科学院地质与地球物理研究所2003学术年会,中国北京.
    [163]吴福元,李献华,杨进辉,郑永飞.(2007).花岗岩成因研究的若干问题.岩石学报,23(6),1217-1238.
    [164]吴珍汉,吴中海,胡道功,彭华,张耀玲.(2009).青藏高原北部中新统五道梁群湖相沉积碳氧同位素变化及古气候旋回.中国地质(05),966-975.
    [165]吴珍汉,叶培盛,胡道功,陆露.(2011).青藏高原羌塘盆地南部古近纪逆冲推覆构造系统.地质通报(07),1009-1016.
    [166]肖龙,许继峰.(2004).深部过程对埃达克质岩石成分的制约.岩石学报,20(2),219-228.
    [167]肖序常.(2010).青藏高原的碰撞造山作用及效应:地质出版社.
    [168]许继峰,王强.(2003). Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例.地学前缘(04),401-406.
    [169]许志琴,杨经绥,李海兵.(2007).造山的高原--青藏高原的地体拼合、碰撞造山及隆升机制.北京:地质出版社.
    [170]许志琴,杨经绥,李文昌,李化启,蔡志慧,闫臻,马昌前.(2013).青藏高原中的古特提斯体制与增生造山作用.岩石学报(06),1847-1860.
    [171]许志琴,杨经绥,梁凤华,戚学祥,刘福来,曾令森,陈松永.(2005).喜马拉雅地体的泛非-早古生代造山事件年龄记录.岩石学报(01),3-14.
    [172]姚凤良,孙丰月(Eds.).(2005).矿床学教程.北京:地质出版社.
    [173]易平乾,汪元奎,顾瑛.(2007).沱沱河地区多金属成矿规律初步探讨.青海国土经略(1),35-38.
    [174]于峻川.(2013).滇西“三江”地区微陆块板内火山岩地球化学特征及其构造意义.博士,中国地质大学(北京). Available from Cnki
    [175]裕生,祥儒,地质学.(1998).青藏高原岩石圈结构演化和动力学:广东科技出版社.
    [176]翟庆国,李才,王军,陈文.(2009).藏北羌塘戈木错北部新生代钾质火山岩~(40)Ar/~(39)Ar定年.地质通报(09),1221-1228.
    [177]张长青,李厚民,代军治,杨兴朝,李莉,毛景文,娄德波.(2006).铅锌矿床中矿石铅同位素研究.矿床地质(S1),213-216.
    [178]张开均,王启飞,夏邦栋,卢辉楠,章炳高,张光辉.(2002).羌塘中部后中新世叠瓦式逆冲推覆构造.南京大学学报(自然科学版)(02),266-269.
    [179]张能,李剑波,杨云松,那福超.(2012).金沙江缝合带弯岛湖蛇绿混杂岩带的岩石地球化学特征及其构造背景.岩石学报(04),1291-1304.
    [180]张旗,金惟俊,王元龙,李承东,王焰,贾秀勤.(2006).大陆下地壳拆沉模式初探.岩石学报,22(2),265-276.
    [181]赵仁夫,朱迎堂,周庆华,王满仓,李建新,孙南一.(2004).青海玉树地区三叠纪地层之下角度不整合面的发现及意义.地质通报(Z1),616-619.
    [182]赵志丹,莫宣学, NOMADE, Sebastien, RENNE, Paul R,周肃,董国臣,廖忠礼.(2006).青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报(04),787-794.
    [183]赵志丹,莫宣学,董国臣,周肃,朱弟成,廖忠礼,孙晨光.(2007).青藏高原Pb同位素地球化学及其意义.现代地质(02),265-274.
    [184]钟大赉.(1998).滇川西部古特提斯造山带:科学出版社.
    [185]周永章.(1994).热液围岩蚀变过程中数学不变量的寻找及元素迁移的定量估计.科学通报,39(11),1026-1028.
    [186]朱炳泉.(1998).地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化:科学出版社.
    [187]朱同兴,张启跃,冯心涛,董瀚,于远山,李鸿睿.(2010).西藏羌塘中部才多茶卡蓝闪石~(40)Ar/~(39)Ar年代学及地质意义.地质学报(10),1448-1456.
    [188]朱迎堂,伊海生,王强,杨延兴,郭通珍,彭伟.(2004).青海西金乌兰还东河中二叠世埃达克岩的发现及其意义.沉积与特提斯地质(02),30-34.
    [189]朱迎堂.(2006).可可西里—巴颜喀拉三叠纪沉积盆地的形成及演化.博士,成都理工大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700