MICE超导耦合磁体失超过程与失超保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际离子化冷却μ介子实验(Muon Ionization Cooling Experiment,简称MICE)是验证中微子工厂和μ介子对撞机可行性的关键技术预研性工作之一。作为MICE实验装置中的重要组件之一的超导耦合螺线管磁体将提供约2.6T的中心磁场,以控制位于其内部的射频腔内的μ介子束流。超导磁体的失超会导致磁体线圈内部的过热和过电压,从而可能对磁体造成永久性损害,失超过程的研究及失超保护系统的设计是超导磁体设计的关键内容之一。以商用铜基铌钛超导线绕制、环氧树脂浸渍的耦合磁体拟采用线圈分段并结合骨架诱发失超效应(quench-back)的被动失超保护方式。本文以MICE超导耦合螺线管磁体为研究对象,建立了失超过程的数值模拟模型,深入地研究了失超过程中主要参数的变化规律,设计了合理可行的失超保护系统。本文的研究结果对耦合磁体及类似螺线管磁体的失超保护系统设计具有重要的理论指导意义和实际应用价值。主要研究内容包括:
     为了设计合理的耦合磁体失超保护电路,对耦合磁体的失超过程进行了半经验数值模拟研究。在经典的基于失超传播速度的失超模拟方法中考虑了骨架的诱发失超效应,为耦合磁体失超过程的模拟建立了一个半经验数值模型。采用已成功运行的一个实验超导磁体的失超过程实验结果,经与模型计算结果比较,验证了模型的正确性。用该模型研究了磁体分段数目、保护电阻值和绑扎带材料对于耦合磁体失超过程的影响,为耦合磁体设计了合理的失超保护电路。
     为了深入理解耦合磁体的失超过程和骨架内的涡流及其引起的诱发失超效应,对耦合磁体的失超过程进行了进一步的有限元模拟研究。基于ANSYS耦合场分析功能,考虑了骨架的诱发失超效应,建立了失超过程瞬态耦合热电磁有限元模型。应用该模型计算了耦合磁体失超过程,比较了有限元模型与半经验模型的计算结果,验证了该有限元模型的正确性。利用该模型进一步分析了失超过程中骨架的诱发失超效应,并指出了有限元模型与半经验模型的优缺点。
     已公开的失超模拟方法对于磁体内部的过热计算比较准确,对于过电压计算非常保守,为此本文提出了分段螺线管磁体失超过程过电压的一个较准确计算方法。准确的过电压计算需要分析磁体内部的电压分布。将磁体看做是以匝为单元组成的电路,每匝同时具备电阻与电感属性。失超过程中各匝的电感不变,电阻随匝温度而变。根据每匝的瞬态温度和电流,可计算出磁体内部沿导线方向的电阻电压、电感电压以及合电压分布。提出了分段螺线管线圈失超过程中最大内电压、层间电压及匝间电压的较准确的计算方法。用该方法研究了分段螺线管线圈内部失超过程过电压以及分段数目对磁体内电压的影响。
     冷二极管组件是MICE超导耦合磁体失超保护系统的关键组件,工作在温度4.2~4.8K,磁场1.5~2.5T环境下。耦合磁体的励磁、卸载以及失超保护电路的模拟、分析与设计均需要了解冷二极管组件的低温工作特性。搭建了一套二极管组件低温性能测试系统,测试了室温和液氮温度下二极管的正反向通电特性和二极管组件在大电流下的工作特性。利用耦合磁体的试样线圈的测控系统,测试了~10K温度下二极管的工作特性。
International Muon Ionization Cooling Experiment– MICE is one of the advanced research tasks on key technology to verify the feasibility of neutrino factory and muon collider. The superconducting coupling solenoid magnet, as one of the key components in the MICE equipment, is to produce a magnetic field about 2.6T along the beam center line to control the muon beam in the RF cavity located inside them. Quench of superconducting magnet will induce over heating and over voltage in the coil of the magnet and result in permanent damage to the magnet, so the study on quench process and design of the quench protection system are both key aspects for the superconducting magnet design. The coupling magnet wound with commercial copper matrix NbTi conductor and impregnated with epoxy resin is designed to be passivly quench protected by coil subdivision combined with quench-back effect of the mandrel. This dissertation takes the MICE superconducting coupling solenoid magnet as the research object, built its quench process numerical simulation model, studied the variation of its main parameters during quench process in detail and designed its reasonable and feasible quench protection system. The research results of this dissertation will provide theoretical and practical application guidance for the quench protection system design of the coupling magnet and similar solenoid magnets. The main research contents in this dissertation are as follows:
     In order to design reasonable quench protection circuit for the coupling magnet, the quench process of the coupling magnet was studied by semi-empirical numerical simulation. Considering the quench-back effect from mandrel in the classical quench simulation method based on quench propagation method, a semi-empirical numerical model for simulation of the quench process of the coupling magnet was built. According to the experimental results of the quench process of a successfully operated experimental superconducting magnet, compared with the calculated results of the model, the model was verified. The model was applied to study the effect of subdivision number, protection resistance, material of banding on the quench process of the coupling magnet, and a reasonable quench protection circuit was designed for the coupling magnet.
     In order to throughly understand the quench process of the coupling magnet, the eddy current in the mandrel and the quench-back effect induced, the quench process of the coupling magnet was further studied by finite element simulation. Based on the coupled field analysis function of ANSYS, considering quench-back effect of the mandrel, a transient coupled thermal and electromagnetic finite element model for the quench process was build. The model was applied to calculate the quench process of the coupling magnet, the calculated results by the finite element model were compared with the calculated results by the semi-empirical model and the finite element model was verified. The quench-back effect of mandrel was further studied by this model, and the advantage and disadvantage of the finite element model and the semi-empirical model were pointed out.
     The calculation results of the over heating in the magnet is roughly accurate by the open quench simulation methods, but that of the over voltage is very conservative,and a more accurate calculation method for the over voltage in the sub-divided solenoid during quench process is presented in this dissertation. The accurate calculation of the over voltage needs to analyze the voltage distribution in the magnet. The magnet is treated as a circuit comprised of turn unit, and each turn has property of resistance and inductance simultaneously. During quench process the inductance of each turn does not vary and the resistance of each turn varies with the temperature of the turn. According to the transient temperature and current of each turn, the distribution of the resistive voltage, inductive voltage and resultant voltage along the conductor in the magnet were calculated. The more accurate calculation method for the maximum internal voltage, layer-to-layer voltage and turn-to-turn voltage in the sub-divided solenoid during quench process was presented. This method was applied to study the over voltage in the sub-divided solenoid during quench process and the effect of the subdivision number on the over voltage.
     Cold diode assembly is a key component of the quench protection system for the coupling magnet, and it works in the temperature range of 4.2~4.8K and at the magnetic field of 1.5~2.5T. All the simulation, analysis and design of the charging, discharging and quench protection circuit of the coupling magnet must be based on the cryogenic performance of the cold diode assembly. A set of cryogenic test system for the diode assembly was built. The forward and the reverse electrifying characteristic of the diode at room temperature and liquid nitrogen temperature, as well as the cryogenic performance of the cold diode assembly under larger forward current condition were measured. Utilizing the measurement and control system of the prototype coil for the coupling magnet, the cryogenic performance of the cold diode at ~10K was tested as well.
引文
1.张闯.国际粒子加速器的前沿.物理. 2008, 37(5): 289~297
    2. M.S. Zisman. Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics. IEEE Transactions on Applied Superconductivity. 2008, 18(2): 82~91
    3. M.M. Alsharo’a, C.M. Ankenbrandt, M. Atac, et al. Recent Progress in Neutrino Factory and Muon Collider Research within the Muon Collaboration. Physical Review Special Topics-Accelerators and Beams. 2003, 6(081001): 1~52
    4.方守贤,梁岫茹.神通广大的射线装置——带电粒子加速器.清华大学出版社. 2001: 51~64
    5. D. Neuffer. Introduction to Muon Cooling. Nuclear Instruments and Methods in Physics Research A. 2004, 532(2): 26~31
    6. MICE: An International Muon Ionization Cooling Experiment, Technical Design Report. Available: http://www.isis.rl.ac.uk/accelerator/MICE.
    7. D.Z. Huang, D.M. Kaplan, M.S. Zisman. Status of MICE: The International Muon Ionization Cooling Experiment. Proceedings of LINAC08, Victoria, BC, Canada. 2008, 229~231
    8. B. Wang, B. Wahre, C. Taylor. The Design and Construction of the MICE Spectrometer Solenoids. IEEE Transactions on Applied Superconductivity. 2009, 19(3): 1348~1351
    9. S.P. Virostek, M.A. Green, D. Li, et al. Preliminary Test Results for the MICE Spectrometer Superconducting Solenoids. IEEE Transactions on Applied Superconductivity. 2009, 19(3): 1364~1367
    10. M.A. Cummings, S. Ishimoto. Progress on the Liquid Hydrogen Absorber for the MICE cooling channel. Proceeding of 2005 Particle Accelerator Conference. Knoxville. Tennessee. 2005. 1772~1774
    11. S.Q. Yang, W. Law, R.S. Senanayake, et al. Progress on the Focus Coil for the MICE Channel. Proceeding of 2005 Particle Accelerator Conference. Knoxville, Tennessee. 2005, 3417~3419
    12. D. Li, S. Virostek, M. Zisman, et al, 201 MHz Cavity R&D for MUCOOLand MICE. Proceeding of European Particle Accelerator Conference. 2006: 1367~1369
    13. Engineering Design of MICE/MUCOOL Coupling Solenoid Magnet. Harbin Institute of Technology. 2008
    14. L. Wang, H. Wu, L.K. Li et al. The Helium Cooling System and Cold Mass Support System for the MICE Coupling Solenoid. IEEE Transactions on Applied Superconductivity. 18(2): 941~944
    15.李兰凯. MICE超导耦合磁体低温系统及电流引线设计.哈尔滨工业大学硕士学位论文. 2007
    16. M.A. Green. Calculating of the Jc B T surface for Niobium Titanium Using a Reduced-State Model. IEEE Transactions on Magnetics, 1989, 25(2): 2119~2122
    17.王秋良.高磁场超导磁体科学.科学出版社. 2008: 302~304
    18. M.N. Wilson. Superconducting Magnets. Clarendon Press. 1983:200~232
    19. M.A. Green, H. Witte. Quench Protection and Power Supply Requirements for the MICE Focusing and Coupling Magnets, MICE Note 114, LBNL-57580, May 2005, Available: http://www.mice.iit.edu.
    20.南和礼.超导磁体设计基础.国防工业出版社, 2007: 122~127 106~121
    21. The Members of the g-2 Collaboration. The g-2 Storage Ring Superconducting Magnet System. IEEE Transactions on Magnetic 1994, 30(4): 2423~2426
    22. G. Bunce, W.M. Morse, J. Benante, et al. Test Results of the g-2 Superconducting Solenoid Magnet System. IEEE Transactions on Applied Superconductivity. 1997, 7(2): 626~629
    23.徐厚昌,朱银锋,吴维越. FAIR工程中CR二极超导磁体样机的结构分析,低温与超导. 2009, 37(4): 41~44
    24.秦经刚,武玉,于敏. GSI收集环二极磁体实验的数值模拟计算.低温与超导. 2009. 36(6): 30~33
    25.龙风,刘方,施毅. FAIR超导二极磁体实验失超保护系统设计与分析.核聚变与等离子体物理. 2008. 28(4): 333~336
    26. A.Yamamoto. Superconducting Magnets Advanced in Particle Physic. Nuclear Instruments and Methods in Physics Research A. 2000, 453: 445~454
    27. M.A. Green. High Energy Physics Particle Detector Magnets. LBNL-40185. Available: http://escholarship.org/uc/item/97z599x0
    28. M.A. Green. Quench Protection and Design of Large High Current Density Superconducting Magnets. IEEE Transactions on Magnetics. 1981, 17(5): 1793~1798
    29. M.A. Green. Quench Back in Thin Superconducting Solenoid Magnets. Cryogenics. 1984, 24: 3~10
    30. M.A. Green. The Role of Quench Back in Quench Protection of a Thin Superconducting Solenoid. Cryogenics. 1984, 24: 659~668
    31. CMS Magnet Project Technical Design Report. CMS Design Team. 1997
    32. P. Fazilleau, D. Campi, B. Cure et al. Analysis and Design of the CMS Magnet Quench Protection. IEEE Transactions on Applied Superconductivity. 2006, 16(2): 1753~1756
    33.徐庆金.高能物理探测器超导磁体的热分析及电流引线的研究.中国科学院研究生院博士学位论文. 2006
    34.汤洪明. BEPCII SCQ、SSM超导磁体系统低温工作特性研究.哈尔滨工业大学博士学位论文. 2006
    35. B. Wang, B. Wahre, C. Taylor, et al. Design, Development and Fabrication for BESIII Superconducting Muon Detector Solenoid. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 1263~1266
    36. C.H. Joshi, Thermal and Electrical Characteristics of Adiabatic Superconducting Solenoids during a Spontaneous Transition to the Resistive State. Ph.D. dissertation, Massachusetts Institute of Technology, USA. 1987
    37. I.R. Dixon, W.D. Markiewicz, P. Murphy, et al. Quench Detection and Protection of the Wide Bore 900 MHz NMR Magnet at the National High Magnetic Field Laboratory. IEEE Transactions on Applied Superconductivity. 2004, 14(2): 1260~1263
    38. C.S. Hwang. Design of a Superconducting Multipole Wiggler for Synchrotron Radiation. IEEE Transactions on Applied Superconductivity. 2003, 13(2): 1209~1212
    39. C.S. Hwang. Design and Construction Performance of a Compact Cryogen-Free Superconducting Wavelength Shifter. IEEE Transactions on Applied Superconductivity. 2002, 12(1): 686~690
    40. C.S. Hwang. Design, Construction, and Performance Testing of a 6.5T Superconducting Wavelength Shifter. IEEE Transactions on Applied Superconductivity. 2007, 17(2): 1229~1234
    41. B. Wang. The Design and Construction of the MICE Spectrometer Solenoids. IEEE Transactions on Applied Superconductivity. 2009, 19(3): 1348~1351
    42. C.A. Swenson, Y.M. Eyssa, W. Denis, et al. Quench Protection Heater Design for Superconducting Solenoids. IEEE Transactions on Magnetics. 1996, 32(4): 2659~2662
    43. Y. M. Eyssa, W. Denis, C. A. Swenson, et al Quench Heat Simulation for Protection of Superconducting Coils. IEEE Transactions on Applied Superconductivity. 1999, 9(2): 1117~1120
    44. F. Sonnemann, R. Schmidt. Quench Simulation for Superconducting Elements in the LHC Accelerator. Cryogenics. 2000, 40: 519~529
    45. F. Rodriguez, F. Sonnemann. Quench Heater Studies for the LHC Magnets. Proceedings of the 2001 Particle Accelerator Conference. 2001, Chicago. US. 3451~3453
    46. P. Bauer, L. Imbasciati, G..Ambrosio, et al. Quench Protection Calculations for Fermilab’s Nb3Sn High Field Magnets for VLHC– Part 1, Technical Division Note TD-01-003, 2001
    47. P. Bauer, L. Imbasciati, G..Ambrosio, et al. Quench Protection Calculations for Fermilab’s Nb3Sn High Field Magnets for VLHC– Part 2, Technical Division Note TD-01-004, 2001
    48. L. Imbasciati, G. Ambrosio, P. Bauer. Quench Heater Design Considerations for VLHC Magnets, Technical Division Note TD-01-022, 2001
    49. L. Imbasciati. Studies of Quench Protection in Nb3Sn Superconducting Magnets for Future Particle Accelerators. Ph.D. dissertation, Vienna Technical University, Austria. 2003
    50. L. Imbasciati, P. Bauer, G. Ambrosio, et al. Quench Protection of High Field Nb3Sn Magnets for VLHC. Proceeding of the 2001 Particle Accelerator Conference, Chicago. 2001, 3454~3456
    51. A. Yamamoto, Y. Makida, K. Tanaka, et al. Development towards Ultra-thin Superconducting Solenoid Magnets for High Energy Particle Detectors. Nuclear Physics B. 1999, 78: 565~570
    52. ATLAS Central Solenoid Technical Design Report. ATLAS Design Team. 1997
    53. A. Yamamoto, Y. Makida, R. Ruber, et al The ATLAS Central Solenoid. Nuclear Instruments and Methods in Physics Research A. 2008, 584: 53~74
    54. A. Yamamoto, T. Kondo, Y. Doi, et al. Design and Development of the ATLAS Central Solenoid Magnet. 1999, 9(2): 852~855
    55. Y. Iwasa. Stability and Protection of Superconducting Magnets - A Discussion. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 1615~1620
    56. H. Joshi, Y. Iwasa. Predication of Current Decay and Terminal Voltages in Adiabatic Superconducting Magnets. Cryogenics. 1988, 29: 157~167
    57. Y. Iwasa. Case Studies in Superconducting Magnets, Plenum Press, 1994: 347~372
    58. C.H. Joshi, Y. Iwasa, J. E. C. Williams. Prediction of Quench Characteristics in Multi-sectioned Adiabatic Solenoids. IEEE Transactions on Magnetics. 1988, 24(2): 1559~1562
    59. T. Tominaka, N. Hara, K.Kuroda. Estimation of Maximum Voltage of Superconducting Magnet Systems During a Quench. Cryogenics. 1991, 31: 566~569
    60. T. Tominaka, K. Mori, N. Maki. Quench Analysis of Superconducting Magnet System. IEEE Transactions on Magnetics. 1992, 28(1): 727~730
    61. Hagedorn, F. Rodriguez-Mateos. Modeling of the Quenching Process in Complex Superconducting Magnet Systems. IEEE Transactions on Magnetics. 1992, 28(1):366~369
    62. P. Bauer, A. Zlobin, M. Lamm, et al. Concept for a Quench Calculation Program for the Analysis of Quench Protection Systems for Superconducting High Field Magnets, Fermilab, Technical Division Note TD-00-027, 2000
    63. S.W Kim, Quench Simulation of Multi-strand Cable by an Equivalent Circuit, Fermilab, Technical Division Note TD-00-022, 2000
    64. S.W Kim, Quench Simulation Program for Superconducting Accelerator Magnets, Proceedings of the 2001 Particle Accelerator Conference. 2001, Chicago, US: 3457~3459
    65. S.W Kim, Material Properties for Quench Simulation (Cu, NbTi and Nb3Sn),Fermilab, Technical Division TD-00-041, 2000
    66. S.W Kim, Inductance Calculations for Parallel Strands and Cables, Fermilab, Technical Division TD-00-042, 2000
    67. V. Picaud, P. Hiebel, J.M Kauffmann Superconducting Coils Quench Simulation, the Wilson’s Method Revisited. IEEE Transactions on Magnetics. 2002, 38(2): 1253~2002
    68. L. Rossi, M. Sorbi. QLASA: A Computer Code for Quench Simulation in Adiabatic Multicoil Superconducting Windings. Istituto Nazionale di Fisica Nucleare. http://www.lnf.infn.it/sis/preprint/pdf/INFN-TC-04-13.pdf
    69.雷沅忠,韩朔.梯级电流密度超导螺线管磁体的失超动态过程和分段保护.电工技术学报. 1988, 3:12~15
    70. Y.Z. Lei, S. Han. Quenching Dynamic Process and Protection by Shunt Resistor of Solenoid Superconducting Magnets with Graded Current Density. IEEE Transactions on Magnetics. 1988, 24(2): 1197~1200
    71.南和礼.绝热超导磁体失超过渡过程的数值模拟研究.低温物理学报. 2000, 22(4): 299~305
    72. V. Kadambi, B. Dorri. Current Decay and Temperatures During Superconducting Magnet Coil Quench. Cryogenics. 1986, 26: 157~164
    73. S. Pissanetzky, D. Latypov. Full Featured Implementation of Quench Simulation in Superconducting Magnets. Cryogenics. 1994, 34(10): 795~804
    74. Y.M. Eyssa, W. Denis Markiewicz, Quench Simulation and Thermal Diffusion in Epoxy Impregnated Magnet system. IEEE Transactions on Applied Superconductivity. 1995, 5(2): 487~490
    75. Y.M. Eyssa, W. Denis Markiewicz and John Miller, Quench, Thermal, and Magnetic Analysis Computer Code for Superconducting Solenoids. IEEE Transactions on Applied Superconductivity. 1997, 7(2): 159~162
    76. Y.M. Eyssa, Z. Melhem. Effect of AC Loss on Quench Propagation in Impregnated Magnets. IEEE Transactions on Applied Superconductivity. 2000, 10(1): 1380~1383
    77. Q.L. Wang, C.S. Yoon, J.L. He, et al. Quench Characteristics in the Multi-sectioned Superconducting Magnet Impregnated with Epoxy Resin. Physica C. 2001, 354: 77~82
    78. R. Yamada, E. Marscin, A. Lee, et al. 2-D/3-D Quench Simulation UsingANSYS for Epoxy Impregnated Nb3Sn High Field Magnets. IEEE Transactions on Applied Superconductivity. 2003, 13(2): 1696~1699
    79. R. Yamada, E. Marscin, A. Lee, etc 3D ANSYS Quench Simulation of Cosine Theata Nb3Sn High Field Dipole Magnets. IEEE Transactions on Applied Superconductivity. 2004, 14(2): 291~294
    80. E. Marscin, R. Yamada, A. Lee. 2D/3D ANSYS Quench Simulation Manual. Technical Devision Notes, 2002, TD-02-031
    81. S. Caspi, L. Chiesa, P. Ferracin, et al. Calculating Quench Propagation with ANSYS. IEEE Transactions on Applied superconducting. 2003, 13(2): 1714~1717
    82. S. Farinon. Magnet Design and Optimization: The INFN-Genova Experience Using ANSYS. Cryogenics. 2007, 47: 577~582
    83. G.J.C Aird, J Simkin, S.C Taylor, et al. Coupled Transient Thermal and Electromagnetic Finite Element Simulation of Quench in Superconducting Magnets, Proceedings of ICAP 2006, Chamonix, France
    84. N. Schwerg, B. Auchmann, S. Russenschuck. Quench Simulation in an Integrated Design Environment for Superconducting Magnets. IEEE Transactions on Magnetics.2008, 44(6): 934~937
    85. T. Peng, C. L. Gu, K. Rosseel, et al. Advanced Numerical Simulation of Pulsed Magnets with a Finite Element Method. Measurement Science and Technology. 2005. 16: 562~568
    86. Q.J. Xu, S.K. Huang, Z.A. Zhu, et al. Numerical Study on Quench Process and Protection of BESIII Supercoducting Detector Magnet. Cryogenics. 2007, 47: 292~299
    87. K.H. Mess. The Test of the Quench Protection Diodes for HERA. European Particale Accelerator Conference. Rome. 1988: 1275~1277
    88.林良真, K.H. Mess, E. Schuld.二极管在HERA超导磁体失超保护中的应用.电工电能新技术. 1990, 1: 33~39.
    89. K. Dahlerup, R. Denz, J.L. Gomez, et al. The Protection System for the Superconducting Element of the Large Hadron Collider at CERN. Particle Accelerator Conference. New York, 1999: 3200~3202
    90. D. Bruno, W. Eng, P.K. Feng, et al. RHIC Magnet Electrical System. Nuclear Instruments and Methods in Physics Research A. 2003, 499: 316~348
    91. C.J. Yeager, S.S. Courts. A Review of Cryogenic Thermometry and Common Temperature Sensors. IEEE Sensors Journal, 2001, 1(4): 352~360
    92.刘恩科.半导体物理学.西安交通大学出版社. 1988. 96~98
    93. R.R. Ward, W.J. Dawson, L. Zhu, et al. Power Diode for Cryogenic Operation. Power Electronics Specialist Conference, PESC’03. IEEE 34 Annual, 2003, 4: 1891~1896
    94.易昌练, H. Brechna, J. Alff.硅整流二极管在低温下的电特性.低温工程. 1988, 4: 44~49
    95. S. Yamamoto, T. Yamada, M. Iwamoto. Quench Protection of Persistent Current Switches Using Diodes in Cryogenic Temperature. Power Electronics Specialists Conference, PESC’88. IEEE 19 Annual, 1988: 321~325
    96. K.E. Robins, W.B. Sampson, M.G. Homas. Superconducting Magnet Quench Protection for Isabelle. IEEE Transactions on Nuclear Science. 1977, 24(3): 1318~1319
    97. R.E. Schwall. Protection System for Inductively Coupled Magnets. IEEE Transactions on Magnetics. 1991, 27(2): 1700~1703
    98. M. Urata, T. Kuriyama, T. Yazawa, et al. A 6 T Refrigerator-Cooled NbTi Superconducting Magnet with 180 mm Room Temperature Bore. IEEE Transactions on Applied Superconductivity. 1995, 5(2): 169~172
    99. V.I. Datskov. Design and Tests of a Superconducting Magnet with a Cryocooler for the Ion Source Decris-Sc. Proceedings of RuPAC XIX. Dubna. Russia, 2004: 432~434
    100. K.I. Sasaki. T. Nakamoto, N. Higashi, et al. Test Results of Superconducting Combined Function Prototype Magnets for the J-PARC Neutrino Beam Line. IEEE Transactions on Applied Superconductivity. 2006, 16(2):158~163
    101. ANSYS Release 9.0 Documentation. ANSYS, Inc. 2004
    102.李录贤.国松直.王爱琴.无限元方法及其应用.力学进展. 2007, 37(2): 161~174
    103. J.S. Wang. A Nodal Analysis Approach for 2D and 3D Magnetic-Circuit Coupled Problems. IEEE Transactions on Magnetics. 1996, 32(3): 1074~1077
    104. P.J. Leonard, D. Rodger, Voltage Forced Coils for 3D Finite-elementelectromagnetic Models. IEEE Transactions on Magnetics. 1988, 24(6): 2579~2581
    105. T. Nakata, N. Takahashi, K. Fujiwara, et al. 3-D Finite Element Method for Analyzing Magnetic Fields in Electrical Machines Excited from Voltage Sources. IEEE Transactions on Magnetics. 1988, (24)6: 2582~2584
    106. T. Dreher, G. Meunier. 3D Modeling of Electromagnets Fed by Alternating Voltage Sources. IEEE Transactions on Magnetics. 1993, 29(2): 1341~1344
    107. G.. Krainz. Quench Protection and Powering in a String of Superconducting Magnets for the Large Hadron Collider. Ph.D dissertation, University of Technology Graz, Austria, 1997
    108. K. Seo, M. Morita. Guidelines for LTS Magnet Design Based on Transient Stabiligy. Cryogenics. 2006, 46:354~361
    109. M. Oshima, R.J. Thome, R.W. Mann, et al. PQUENCH - a 3-D Quench Propagation Code Using a Logical Coordinate System. IEEE Transactions on Magnetics.1991, 27(2): 2096~2099
    110. L. Li, High Performance Pulsed Magnet: Theory, Design and Construction, Ph.D. Dissertation, Katholieke Universiteit Leuven, Belgium, 1998
    111.成大先.机械设计手册单行本-联接与紧固.北京.化学工业出版社. 2004. 4-61~4-63.
    112.岂兴明,周建兴,矫津毅. LabVIEW 8.2中文版入门与典型实例.北京.人民邮电出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700