枯草芽孢杆菌表面展示人生长激素及其口服功效评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人生长激素(human growth hormone,hGH)是一种重要的非糖基化蛋白质激素。它包含有191个氨基酸分子,由人脑垂体中的生长激素细胞进行合成、存储和分泌,是人类出生后促生长的最主要激素和体内代谢途径的最重要调节因子。hGH生理功能主要包括:促进软骨、骨和组织的生长;调节代谢作用,促进脂肪分解和蛋白质合成;调节机体免疫,维持机体的正常运转。天然人生长激素非常稀少,因此,采用基因工程方法大规模生产hGH对满足临床大量需求具有重要的意义。目前,临床上使用的hGH主要是采用以E.coli为宿主通过重组DNA技术制造的生长激素(简称rhGH)。然而,用大肠杆菌表达易形成包涵体,且需要通过变性、复性操作,工艺复杂,活性低,导致商品化产品rhGH产品成本非常昂贵。故而rhGH在医学上虽然用途前景很广,但当前仍无法大范围推广应用。
     枯草芽孢杆菌是一种革兰氏阳性非致病性的益生菌,当它处于营养缺乏或其它环境胁迫的不良条件下能形成抗逆性的休眠体—芽孢。因为芽孢具有强烈的抗逆性,能够在极端的温度、辐射和毒性化学物质等不利的环境下长期存活。因此,芽孢成为在极端环境中运载外源蛋白或具有活性的生物大分子的有效载体。本研究的目的是通过枯草芽孢表面展示技术将hGH展示在芽孢表面,构建具有营养功能的表面展示hGH蛋白的重组芽孢。本研究的主要内容和结果如下:
     (1)以携带人生长激素hgh基因的载体为模板和PCR扩增出人生长激素基因hgh的编码序列,并进行测序和数据库比对鉴定。
     (2)将hgh克隆到质粒pET30a上,使hgh基因前端连接肠激酶位点基因,构建中间桥梁质粒pET30a-hGH。
     (3)将带有肠激酶位点hgh基因克隆到质粒pJS700上,使其与枯草芽孢杆菌芽孢衣壳蛋白基因cotC融合,构建融合表达CotC-hGH的整合型重组质粒pJS700-hGH。
     (4)用质粒pJS700-hGH转化转化枯草芽孢杆菌感受态细胞,筛选得到重组菌株并诱导该菌株产生芽孢,Western blot和免疫荧光实验进一步鉴定hGH成功的展示在芽孢表面。
     (5)用芽孢表面展示hGH的重组芽孢口添五龄家蚕六天后,分析家蚕的生理生化指标,结果发现,口添芽孢的家蚕体重变化、蛹体重、体重转换效率等显著优于对照。进一步取家蚕血液进行Western blot实验,证实家蚕体内产生的CotC-hGH融合蛋白被精确切除并加工成小肽hGH,并且hGH蛋白可以被消化吸收到家蚕血淋巴。
     (6)进一步用重组芽孢表面展示hGH的芽孢小鼠口服实验,持续灌胃42天,摘眼球取血分析口服重组芽孢对小鼠血清生长激素含量及小鼠血清生化常规指标的影响。结果表明低剂量口服重组芽孢不会给小鼠胃肠道带来不适,但是口服大剂量重组芽孢会影响小鼠各项生理指标。
     研究表明,利用枯草芽孢杆菌表面展示生物活性的hGH为当前的人生长激素制造开辟了新途径,同时为研究和应用hGH的药品和保健品奠定良好的基础。
Human growth hormone (hGH), containing191amino acids, is an important non-glycosylated protein hormone. HGH is correlated with synthesis, storage and secretion of growth hormone in the cells of human pituitary, and it is the major hormone and significant regulating hormone in metabolic pathways in vivo after birth. The physiological functions of hGH mainly includes promoting growth of bone, cartilage and tissue, regulating metabolism, promoting synthesis and lipolysis of protein, regulating immune and maintaining normal operation of body. In the clinical application, hGH can be used to cure growth retardation in children and insufficient growth hormone in adults. HGH is also related to the treatment of cardiovascular disease, the burns, and surgical patients after major surgery. Currently, hGH is used clinically mainly by recombinant DNA technology with the host of E.coli to produce the growth hormone (referred rhGH). However, it involves in purification, denaturing and refolding of recombinant proteins complex. However, the cost may well be very expensive in producing rhGH commercially. Furthermore, hGH has great potency in medicine. It is nevertheless still difficult to be applied on a large scale.
     The distinguishing feature of the non-pathogenic Gram-positive bacterium Bacillus subtilis is that it produces a dormant endospore called spore under the conditions of nutritional deficiency or other threatening the environment. A mature sopre offers unique resistance properties and can survive in extreme temperature, radiation, and toxic chemicals for hundreds or thousands of years. Therefore, spores become an effective vehicle for delivery of exogenous proteins and bioactive macromolecules. The purpose of this study is to display hGH on the spore surface by surface display technology and construct a nutritional recombinant spore. The main researches and results of this study are as follows:
     (1) The human growth hormone gene (hgh) was obtained by PCR amplification with the template hgh gene cDNA bought from the Protech corp. Then hgh gene was identified by sequencing and database alignment.
     (2) Then, the purified hgh gene was cloned into pET-30a to construct recombinant plasmid pET30-hGH, which finally brought a enterokinase site (Asp-Asp-Asp-Asp-Lys) in the front of the hgh gene.
     (3) To construct fusion expression CotC-hGH integrated recombinant plasmid pJS700-hGH, hgh was cloned into plasmid pJS700and fused with spore capsid protein gene cotC.
     (4) Plasmid pJS700-hGH was transformed into Bacillus subtilis competent cells. A recombinant Bacillus subtilis strain, which displayed hGH on the spore surface, has been successfully constructed and identified by Western blot and immunofluorescence.
     (5) Two kinds of silkworm during the5th instar period were inoculated by the oral route with recombinant spores of hGH-displaying.6days later, the results of physiological and biochemical analysis of the silkworm demonstrated significant changes in body weight, pupae weight, body mass conversion efficiency etc. Further Western blot experiments of silkworm blood showed that CotC-hGH fusion protein was precisely cut and processed into small peptide hGH, and hGH protein can be digested and absorbed into the silkworm hemolymph.
     (6) Groups of mice were inoculated by the oral route with recombinant spores of hGH-displaying.42days later, blood samples were collected to determine serum human growth hormone level. The results indicated that intragastric administration of mice with spores did not cause much gastrointestinal discomfort and oral administration of high dose recombinant spores can increase the serum hGH level in vivo effectively.
引文
[1]Lewis UJ, Sinha YN, Lewis GP. Structure and properties of members of the hGH family:a review. Endocr J,2000,47 Suppl:S1-8.
    [2]Segura J, Gutierrez-Gallego R, Ventura R, et al. Growth Hormone in Sport:Beyond Beijing 2008. Therapeutic Drug Monitoring,2009,31(1):3-13.
    [3]Cronin MJ. Pioneering recombinant growth hormone manufacturing:pounds produced per mile of height. J Pediatr,1997,131(1 Pt2):S5-7.
    [4]Boguszewski CL. Molecular heterogeneity of human GH:from basic research to clinical implications. J Endocrinol Invest,2003,26(3):274-288.
    [5]Kohler M, Thomas A, Puschel K, et al. Identification of Human Pituitary Growth Hormone Variants by Mass Spectrometry. Journal of Proteome Research,2009,8(2):1071-1076.
    [6]Ho Y, Shewchuk BM, Liebhaber SA, et al. Distinct Chromatin Configurations Regulate the Initiation and the Maintenance of hGH Gene Expression. Molecular and Cellular Biology,2013,33(9):1723-1734.
    [7]Venken K, Moverare-Skrtic S, Kopchick JJ, et al. Impact of androgens, growth hormone, and IGF-I on bone and muscle in male mice during puberty. Journal of Bone and Mineral Research,2007,22(1): 72-82.
    [8]Svensson J, Lall S, Dickson SL, et al. Effects of growth hormone and its secretagogues on bone. Endocrine,2001,14(1):63-66.
    [9]Sjogren K, Bohlooly YM, Olsson B, et al. Disproportional skeletal growth and markedly decreased bone mineral content in growth hormone receptor-/-mice. Biochemical and Biophysical Research Communications,2000,267(2):603-608.
    [10]Ramaseshadri P, Farkas R, Palli SR. Recent Progress in Juvenile Hormone Analogs (JHA) Research. Advances in Insect Physiology, Vol 43:Insect Growth Disruptors,2012,43:353-436.
    [11]Rahman NA, Rao CV. Recent progress in luteinizing hormone/human chorionic gonadotrophin hormone research. Molecular Human Reproduction,2009,15(11):703-711.
    [12]Junnila RK, Wu Z, Strasburger CJ. The role of human growth hormone's C-terminal disulfide bridge. Growth Horm IGF Res,2013,23(3):62-67.
    [13]Jespersen GR, Matthiesen F, Pedersen AK, et al. A thiol functionalized cryogel as a solid phase for selective reduction of a cysteine residue in a recombinant human growth hormone variant. J Biotechnol, 2014,173:76-85.
    [14]Junnila RK, Wu Z, Strasburger CJ. The role of human growth hormone's C-terminal disulfide bridge. Growth Hormone & Igf Research,2013,23(3):62-67.
    [15]Li CH. Human growth hormone:1974-1981. Mol Cell Biochem,1982,46(1):31-41.
    [16]Kossiakoff AA. The structural basis for biological signaling, regulation, and specificity in the growth hormone-prolactin system of hormones and receptors. Cell Surface Receptors,2004,68:147-157.
    [17]Cattini PA, Yang XY, Jin Y, et al. Regulation of the human growth hormone gene family:Possible role for Pit-1 in early stages of pituitary-specific expression and repression. Neuroendocrinology, 2006,83(3-4):145-153.
    [18]Cho YM, Lewis DA, Koltz PF, et al. Regulation of parathyroid hormone-related protein gene expression by epidermal growth factor-family ligands in primary human keratinocytes. Journal of Endocrinology,2004,181(1):179-190.
    [19]Gardmo C, Persson B, Mode A. Cloning of a novel growth hormone-regulated rat complementary deoxyribonucleic acid with homology to the human alpha 1 B-glycoprotein, characterizing a new protein family. Endocrinology,2001,142(6):2695-2701.
    [20]Stacey M, Lin HH, Hilyard K.L, et al. Human epidermal growth factor (EGF) module-containing mucin-like hormone receptor 3 is a new member of the EGF-TM7 family that recognizes a ligand on human macrophages and activated neutrophils. Journal of Biological Chemistry,2001,276(22): 18863-18870.
    [21]Junnila RK, Kopchick JJ. Significance of the disulphide bonds of human growth hormone. Endokrynol Pol,2013,64(4):300-305.
    [22]Pekic S, Popovic V. GH therapy and cancer risk in hypopituitarism:what we know from human studies. Eur J Endocrinol,2013,169(5):R89-97.
    [23]Strobl JS, Thomas MJ. Human growth hormone. Pharmacol Rev,1994,46(1):1-34.
    [24]Milewicz T, Rys J, Wojtowicz A, et al. Overexpression of P53 protein and local hGH, IGF-I, IGFBP-3, IGFBP-2 and PRL secretion by human breast cancer explants. Neuro Endocrinol Lett, 2011,32(3):328-333.
    [25]Isaksson OG, Lindahl A, Nilsson A, et al. Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth. Endocr Rev,1987,8(4):426-438.
    [26]Nilsson A, Isgaard J, Lindahl A, et al. Effects of unilateral arterial infusion of GH and IGF-I on tibial longitudinal bone growth in hypophysectomized rats. Calcif Tissue Int,1987,40(2):91-96.
    [27]Svensson J, Ohlsson C, Jansson JO, et al. Treatment with the oral growth hormone secretagogue MK-677 increases markers of bone formation and bone resorption in obese young males. Journal of Bone and Mineral Research,1998,13(7):1158-1166.
    [28]Ohlsson C, Bengtsson BA, Isaksson OG, et al. Growth hormone and bone. Endocr Rev,1998,19(1): 55-79.
    [29]Quigley CA. Growth hormone treatment of non-growth hormone-deficient growth disorders. Endocrinology and Metabolism Clinics of North America,2007,36(1):131-139.
    [30]Xu JF, Okada S, Tan L, et al. Human growth hormone expressed in tobacco cells as an arabinogalactan-protein fusion glycoprotein has a prolonged serum life. Transgenic Research,2010,19(5): 849-867.
    [31]Stevens A, Clayton P, Tato L, et al. Pharmacogenomics of insulin-like growth factor-I generation during GH treatment in children with GH deficiency or Turner syndrome. Pharmacogenomics Journal, 2014,14(1):54-62.
    [32]Westwood M, Tajbakhsh SH, Siddals KW, et al. Reduced Pericellular Sensitivity to IGF-I in Fibroblasts From Girls With Turner Syndrome:A Mechanism to Impair Clinical Responses to GH. Pediatric Research,2011,70(1):25-30.
    [33]Milewicz T, Rys J, Wojtowicz A, et al. Overexpression of P53 protein and local hGH, IGF-I, IGFBP-3, IGFBP-2 and PRL secretion by human breast cancer explants. Neuroendocrinology Letters, 2011,32(3):328-333.
    [34]Ding J, Sullivan DA. The Effects of Insulin-like Growth Factor 1 and Growth Hormone on Human Meibomian Gland Epithelial Cells. JAMA Ophthalmol,2014.
    [35]Jorgensen JOL, Moller L, Krag M, et al. Effects of growth hormone on glucose and fat metabolism in human subjects. Endocrinology and Metabolism Clinics of North America,2007,36(1):75-86.
    [36]Ottosson M, Vikman-Adolfsson K, Enerback S, et al. Growth hormone inhibits lipoprotein lipase activity inhuman adipose tissue. J Clin Endocrinol Metab,1995,80(3):936-941.
    [37]Hausman GJ, Wright JT, Latimer A, et al. The influence of human growth hormone (GH) and thyroxine (T4) on the differentiation of adipose tissue in the fetus. Obes Res,1993,1(5):345-356.
    [38]Takahashi S, Satozawa N. The 20-kD human growth hormone reduces body fat by increasing lipolysis and decreasing lipoprotein lipase activity. Hormone Research,2002,58(4):157-164.
    [39]Wasterlain AS, Braun HJ, Harris AH, et al. The systemic effects of platelet-rich plasma injection. Am J Sports Med,2013,41(1):186-193.
    [40]Wahl P, Zinner C, Achtzehn S, et al. Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Horm IGF Res,2010,20(5):380-385.
    [41]Bidlingmaier M, Strasburger CJ. Growth hormone. Handb Exp Pharmacol,2010,(195):187-200.
    [42]Whatmore AJ, Tajbakhsh S, Zeef L, et al. Changes in gene expression profiles in response to GH in Turner syndrome:Comparison between in vivo and in vitro responses. Hormone Research,2008,70: 19-29.
    [43]Clayton P, Chatelain P, Tato L, et al. A pharmacogenomic approach to the treatment of children with GH deficiency or Turner syndrome. European Journal of Endocrinology,2013,169(3):277-289.
    [44]Kireev RA, Vara E, Tresguerres JA. Growth hormone and melatonin prevent age-related alteration in apoptosis processes in the dentate gyrus of male rats. Biogerontology,2013,14(4):431-442.
    [45]Nilsson AG, Svensson J, Johannsson G. Management of growth hormone deficiency in adults. Growth Hormone & Igf Research,2007,17(6):441-462.
    [46]Rudman D, Feller AG, Nagraj HS, et al. Effects of human growth hormone in men over 60 years old. N Engl J Med,1990,323(1):1-6.
    [47]Rudman D, Cohan ME. Nutritional causes of renal impairment in old age. Am J Kidney Dis, 1990,16(4):289-295.
    [48]Stavrou S, Kleinberg DL. Diagnosis and management of growth hormone deficiency in adults. Endocrinology and Metabolism Clinics of North America,2001,30(3):545-550.
    [49]Tato L, Clayton P, Kim DH, et al. Genomic markers improve the prediction of short-term IGF-I response to growth hormone (GH) in girls with Turner syndrome (TS):the PREDICT study. Hormone Research,2009,72:379-379.
    [50]Perls T. The different paths to age one hundred. Ann N Y Acad Sci,2005,1055:13-25.
    [51]Tonshoff B, Blum WF, Mehls O. Derangements of the somatotropic hormone axis in chronic renal failure. Kidney Int Suppl,1997,58:S106-113.
    [52]Fainstein Day P, Fagin JA, Vaglio RM, et al. Growth hormone-insulin-like growth factor-I axis in adult insulin-dependent diabetic patients:evidence for central hypersensitivity to growth hormone-releasing hormone and peripheral resistance to growth hormone. Horm Metab Res,1998,30(12): 737-742.
    [53]Gong FY, Deng JY, Shi YF. Effect of interleukin-1 beta on growth hormone gene expression and its possible molecular mechanism in rat MtT/S somatotroph cells. Chin Med Sci J,2008,23(4):193-201.
    [54]Moss JL, Crosnoe LE, Kim ED. Effect of rejuvenation hormones on spermatogenesis. Fertil Steril, 2013,99(7):1814-1820.
    [55]陈蓓,朱威.人生长激素研究进展.生物学杂志,2004,21(1):9-11.
    [56]Irwin DJ, Abrams JY, Schonberger LB, et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol, 2013,70(4):462-468.
    [57]Blizzard RM. History of growth hormone therapy. Indian Journal of Pediatrics,2012,79(1):87-91.
    [58]Kim MJ, Park HS, Seo KH, et al. Complete Solubilization and Purification of Recombinant Human Growth Hormone Produced in Escherichia coli. PLoS One,2013,8(2):186-190.
    [59]Valassi E, Brick DJ, Johnson JC, et al. Effect of Growth Hormone Replacement Therapy on the Quality of Life in Women with Growth Hormone Deficiency Who Have a History of Acromegaly Versus Other Disorders. Endocrine Practice,2012,18(2):209-218.
    [60]Blizzard RM. History of Growth Hormone Therapy (Reprint from Growth Genetic and Hormones, vol 21,2005). Indian Journal of Pediatrics,2012,79(1):87-91.
    [61]蓝航莲.家蚕蛹表达人生长激素蛋白及其生物活性的研究:杭州:浙江大学,2009.
    [62]Murad H, Ali B, Makeya R, et al. Prokaryotic overexpression of TEV-rhGH and characterization of its polyclonal antibody. Gene,2014,542(1):69-76.
    [63]东秀珠,蔡妙英.常见细菌系统鉴定手册.科学出版社,2001.
    [64]Barak I, Ricca E, Cutting SM. From fundamental studies of sporulation to applied spore research. Molecular Microbiology,2005,55(2):330-338.
    [65]Eijlander RT, de Jong A, Krawczyk AO, et al. SporeWeb:an interactive journey through the complete sporulation cycle of Bacillus subtilis. Nucleic Acids Res,2014,42(Database issue):D685-691.
    [66]Gao YL, Ju XR, Jiang HH. Studies on inactivation of Bacillus subtilis spores by high hydrostatic pressure and heat using design of experiments. Journal of Food Engineering,2006,77(3):672-679.
    [67]Watabe K. [Overview of study on Bacillus subtilis spores]. Yakugaku Zasshi,2013,133(7):783-797.
    [68]徐小曼,王啸辰,马翠卿.芽胞表面展示技术研究进展.生物工程学报,2010,26(10):1404-1409.
    [69]Tojo S, Hirooka K, Fujita Y. Expression of kinA and kinB of Bacillus subtilis, Necessary for Sporulation Initiation, Is under Positive Stringent Transcription Control. Journal of bacteriology, 2013,195(8):1656-1665.
    [70]Chary VK, Meloni M, Hilbert DW, et al. Control of the expression and compartmentalization of sigma(G) activity during sporulation of Bacillus subtilis by regulators of sigma(F) and sigma(E). Journal of bacteriology,2005,187(19):6832-6840.
    [71]Fujita Y, Yasuda Y, Kozuka S, et al. Presence of proteins derived from the vegetative cell membrane in the dormant spore coat of Bacillus subtilis. Microbiology and immunology,1989,33(5):391-401.
    [72]Driks A. Bacillus subtilis spore coat. Microbiology and Molecular Biology Reviews,1999,63(1): 1-20.
    [73]Kim J, Schumann W. Display of proteins on Bacillus subtilis endospores. Cellular and Molecular Life Sciences,2009,66(19):3127-3136.
    [74]Setlow P. Spores of Bacillus subtilis:their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology,2006,101(3):514-525.
    [75]Driks A. The Bacillus spore coat. Phytopathology,2004,94(11):1249-1251.
    [76]Setlow P. Spore germination. Current opinion in microbiology,2003,6(6):550-556.
    [77]Higgins D, Dworkin J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev, 2012,36(1):131-148.
    [78]Henriques AO, Moran CP. Structure and assembly of the bacterial endospore coat. Methods-a Companion to Methods in Enzymology,2000,20(1):95-110.
    [79]Kemp E, Sammons R, Moir A, et al. Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis 168. Journal of bacteriology,1991,173(15):4646-4652.
    [80]Hudson KD, Corfe BM, Kemp EH, et al. Localization of GerAA and GerAC germination proteins in the Bacillus subtilis spore. Journal of bacteriology,2001,183(14):4317-4322.
    [81]Hilbert DW, Piggot PJ. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiology and Molecular Biology Reviews,2004,68(2):234-246.
    [82]Molle V, Fujita M, Jensen ST, et al. The SpoOA regulon of Bacillus subtilis. Molecular Microbiology, 2003,50(5):1683-1701.
    [83]Fujita M, Gonzalez-Pastor JE, Losick R. High-and low-threshold genes in the SpoOA regulon of Bacillus subtilis. Journal of bacteriology,2005,187(4):1357-1368.
    [84]Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature,1997,390(6657):249-256.
    [85]Isticato R, Cangiano G, Tran HT, et al. Surface display of recombinant proteins on Bacillus subtilis spores. Journal of bacteriology,2001,183(21):6294-6301.
    [86]Lee SY, Choi JH, Xu Z. Microbial cell-surface display. TRENDS in Biotechnology,2003,21(1): 45-52.
    [87]高超,徐小曼,马翠卿,等芽胞表面展示系统在生物催化中的应用.第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集,2011:56-58.
    [88]Wang N, Chang C, Yao Q, et al. Display of Bombyx mori Alcohol Dehydrogenases on the Bacillus subtilis Spore Surface to Enhance Enzymatic Activity under Adverse Conditions. PLoS One,2011,6(6).
    [89]Kim JH, Roh C, Lee CW, et al. Bacterial surface display of GFP(UV) on Bacillus subtilis spores. Journal of Microbiology and Biotechnology,2007,17(4):677-680.
    [90]Ning D, Leng X, Li Q, et al. Surface-displayed VP28 on Bacillus subtilis spores induce protection against white spot syndrome virus in crayfish by oral administration. Journal of Applied Microbiology, 2011,111(6):1327-1336.
    [91]Kim JH, Lee CS, Kim BG. Spore-displayed streptavidin:A live diagnostic tool in biotechnology. Biochemical and Biophysical Research Communications,2005,331(1):210-214.
    [92]Mulder KCL, Schumann W. Construction and Analysis of a Modified Transposable Element Carrying an Outward Directed Inducible Promoter for Bacillus subtilis. Current Microbiology,2014,68(5): 569-574.
    [93]Iwanicki A, Piatek I, Stasilojc M, et al. A system of vectors for Bacillus subtilis spore surface display. Microb Cell Fact,2014,13(1):30-34.
    [94]Mauriello EMF, Duc LH, Isticato R, et al. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine,2004,22(9-10):1177-1187.
    [95]Kwon SJ, Jung H-C, Pan J-G. Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surfaces of Bacillus subtilis spores. Applied and Environmental Microbiology,2007,73(7):2251-2256.
    [96]The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol, 2008,38(12):1036-1045.
    [97]李绍先.中华蚕桑丝织起源多元论.文史杂志,2010,(5):7-10.
    [98]朱作言.模式生物研究.生命科学,2006,18(5):419-419.
    [99]刘擎,余龙.酵母:一种模式生物.生命的化学,2000,20(2):61-65.
    [100]汪晓华,熊思东.斑马鱼:一种新的免疫学研究模式生物.生命的化学,2003,23(3):206-208.
    [101]任长虹,张成岗.秀丽线虫:低氧应答研究的模式生物.生理科学进展,2008,39(1):84-87.
    [102]傅诚杰,俞婷,缪炜,等.四膜虫:毒理学与生态毒理学研究中的优良模式生物.2005,15(1):336-338.
    [103]Kang HM, Zaitlen NA, Wade CM, et al. Efficient control of population structure in model organism association mapping. Genetics,2008,178(3):1709-1723.
    [104]Wittbrodt J, Shima A, Schartl M. Medaka—a model organism from the far East. Nature Reviews Genetics,2002,3(1):53-64.
    [105]惠俊爱,惠俊美.模式生物及其研究进展.生物学通报,2002,37(8):4-6.
    [106]Langheinrich U, Hennen E, Stott G, et al. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Current Biology,2002,12(23):2023-2028.
    [107]Kaletta T, Hengartner MO. Finding function in novel targets:C. elegans as a model organism. Nature Reviews Drug Discovery,2006,5(5):387-399.
    [108]Sprague J, Bayraktaroglu L, Clements D, et al. The Zebrafish Information Network:the zebrafish model organism database. Nucleic acids research,2006,34(suppl 1):D581-D585.
    [109]Blake JA, Bult CJ, Kadin JA, et al. The Mouse Genome Database (MGD):premier model organism resource for mammalian genomics and genetics. Nucleic acids research,2011,39(suppl 1):D842-D848.
    [110]Yu HS, Shen YH, Yuan GX, et al. Evidence of selection at melanin synthesis pathway loci during silkworm domestication. Mol Biol Evol,2011,28(6):1785-1799.
    [111]Kaito C, Kurokawa K, Matsumoto Y, et al. Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Molecular Microbiology,2005,56(4):934-944.
    [112]李斌,夏庆友,鲁成,等.家蚕细胞色素P450的基因组学分析.中国科学C辑,2004,34(6):517-521.
    [113]Infanger LC, Rocheleau TA, Bartholomay LC, et al. The role of phenylalanine hydroxylase in melanotic encapsulation of filarial worms in two species of mosquitoes. Insect Biochem Mol Biol, 2004,34(12):1329-1338.
    [114]朱晓苏,宋艳,徐世清.家蚕作为模式生物在现代生物学中的应用.
    [115]秦俭,何宁佳,向仲怀.家蚕模式化研究进展.蚕业科学,2010,36(4):645-649.
    [116]Xia Q, Guo Y, Zhang Z, et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science,2009,326(5951):433-436.
    [117]Sakudoh T, Nakashima T, Kuroki Y, et al. Diversity in copy number and structure of a silkworm morphogenetic gene as a result of domestication. Genetics,2011,187(3):965-976.
    [118]王斌.自然界中丰富多彩的动物资源.生物学教学,2010,35(9):667-668.
    [119]Xiang H, Li X, Dai F, et al. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics,2013,14(2):646-651.
    [120]吉武成美,向仲怀.家蚕生活史.蚕学通讯,1985,1:27-36.
    [121]Chen P, Li L, Wang J, et al. BmPAH catalyzes the initial melanin biosynthetic step in Bombyx mori. PLoS One,2013,8(8):e71984.
    [122]徐晶晶,陈斌,郝友进,等.昆虫滞育相关激素调节的研究进展.重庆师范大学学报(自然科学版),2012,29(4):29-34.
    [123]许可,唐明,沈璐辉,等.昆虫蜕皮行为的生理生化和分子生物学研究进展.昆虫学报,2001,44(2):244-251.
    [124]聂国兴.新型饲料添加剂的研制与应用效果.江西饲料,2000,(1):21-22.
    [125]黄君霆.家蚕基因组序列解读及其展望.蚕业科学,2004,30(1):1-5.
    [126]黄君霆.家蚕性别控制的研究.遗传,1980,2(2):1-5.
    [127]鲁成,代方银,向仲怀.家蚕基因库突变系统的研究.中国农业科学,2003,36(8):968-975.
    [128]Hirata Y, Nakanishi K, Kikkawa H. Xanthopterin obtained from the skins of the yellow mutant of Bombyx mori (silkworm). Science,1950,111(2892):608-609.
    [129]Meng Y, Katsuma S, Daimon T, et al. The silkworm mutant lemon (lemon lethal) is a potential insect model for human sepiapterin reductase deficiency. Journal of Biological Chemistry,2009,284(17): 11698-11705.
    [130]Daimon T, Kozaki T, Niwa R, et al. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. PLoS Genet,2012,8(3):e1002486.
    [131]Quan GX, Kim I, Komoto N, et al. Characterization of the kynurenine 3-monooxygenase gene corresponding to the white egg 1 mutant in the silkworm Bombyx mori. Mol Genet Genomics, 2002,267(1):1-9.
    [132]Uchida R, Iwatsuki M, Kim YP, et al. Nosokomycins, new antibiotics discovered in an in vivo-mimic infection model using silkworm larvae. Ⅱ:Structure elucidation. Journal of Antibiotics, 2010,63(4):157-163.
    [133]Hamamoto A, Kamura K, Razanajatovo IM, et al. Effects of molecular mass and hydrophobicity on transport rates through non-specific pathways of the silkworm larva midgut. International Journal of Antimicrobial Agents,2005,26(1):38-42.
    [134]Asami Y, Horie R, Hamamoto H, et al. Use of silkworms for identification of drug candidates having appropriate pharmacokinetics from plant sources. BMC Pharmacol,2010,39(10):147-155.
    [135]Sekimizu N, Paudel A, Hamamoto H. Animal welfare and use of silkworm as a model animal. Drug discoveries & therapeutics,2012,6(4):64-78.
    [136]赵东红,戴祝英,周开亚.昆虫抗菌肽的功能,作用机理与分子生物学研究最新进展.生物工程进展,1999,19(5):14-17.
    [137]张然,徐慰倬,孔平,等.转基因动物应用的研究现状与发展前景.中国生物工程杂志,2005,25(8):16-24.
    [138]Tabunoki H, Ono H, Ode H, et al. Identification of key uric acid synthesis pathway in a unique mutant silkworm Bombyx mori model of Parkinson's disease. PLoS One,2013,8(7):e69130.
    [139]Zhang XL, Xue RY, Cao GL, et al. Silkworms can be used as an animal model to screen and evaluate gouty therapeutic drugs. Journal of Insect Science,2012,12:1536-2442.
    [140]钟兆基,陈仁方,连水娣,等.家蚕五龄期按体重指数给桑实用效应的研究.湖北农业科学,19855,15(5):27-30.
    [141]Asami Y, Horie R, Hamamoto H, et al. Use of silkworms for identification of drug candidates having appropriate pharmacokinetics from plant sources. BMC pharmacology,2010,10(1):7-18.
    [142]代方银,鲁成,向仲怀.家蚕基因资源品系油蚕突变体的鉴定试验.蚕学通讯,1997,17(2):2-6.
    [143]Shi XF, Bin H, Li YN, et al. Proteomic analysis of the phenotype of the scaleless wings mutant in the silkworm, Bombyx mori. J Proteomics,2013,78:15-25.
    [144]Urano K, Daimon T, Banno Y, et al. Molecular defect of isovaleryl-CoA dehydrogenase in the skunk mutant of silkworm, Bombyx mori. FEBS J,2010,277(21):4452-4463.
    [145]Lin Y, Meng Y, Wang YX, et al. Vitellogenin receptor mutation leads to the oogenesis mutant phenotype "scanty vitellin" of the silkworm, Bombyx mori. Journal of Biological Chemistry, 2013,288(19):13345-13355.
    [146]Iino T, Sawada H, Tsusue M, et al. Discovery of a new tetrahydrobiopterin-synthesizing enzyme in the lemon mutant of the silkworm Bombyx mori. Biochim Biophys Acta,1996,1297(2):191-199.
    [147]Inagaki Y, Matsumoto Y, Kataoka K, et al. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph. Bmc Pharmacology & Toxicology, 2012,36(13):11-18.
    [148]向仲怀,杨焕明.家蚕基因组研究对蚕业学科和产业发展的影响.世界科技研究与发展,2005,25(6):1-5.
    [149]张桂征,张雨丽,费美华,等.家蚕模式在人类疾病与医药研究中的应用.广西蚕业,2012,(4):35-42.
    [150]奇云.中国科学家抢占家蚕基因组研究制高点.生物学教学,2004,29(5):4-6.
    [151]Fujii T, Abe H, Kawamoto M, et al. Albino (al) is a tetrahydrobiopterin (BH4)-deficient mutant of the silkworm Bombyx mori. Insect Biochem Mol Biol,2013,43(7):594-600.
    [152]Gao P, Chen AL, Zhao QL, et al. Differentially expressed genes in the ovary of the sixth day of pupal "Ming" lethal egg mutant of silkworm, Bombyx mori. Gene,2013,527(1):161-166.
    [153]Nie H, Liu C, Cheng T, et al. Transcriptome Analysis of Integument Differentially Expressed Genes in the Pigment Mutant (quail) during Molting of Silkworm, Bombyx mori. PLoS One,2014,9(4):e94185.
    [154]Hamamoto H, Tonoike A, Narushima K, et al. Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology,2009,149(3):334-339.
    [155]Ishii K, Hamamoto H, Kamimura M, et al. Insect cytokine paralytic peptide (PP) induces cellular and humoral immune responses in the silkworm Bombyx mori. Journal of Biological Chemistry, 2010,285(37):28635-28642.
    [156]Matsumoto Y, Sumiya E, Sugita T, et al. An invertebrate hyperglycemic model for the identification of anti-diabetic drugs. PLoS One,2011,6(3):e18292.
    [157]Meng Y, Katsuma S, Daimon T, et al. The Silkworm Mutant lemon (lemon lethal) Is a Potential Insect Model for Human Sepiapterin Reductase Deficiency. Journal of Biological Chemistry, 2009,284(17):11698-11705.
    [158]Hamamoto H, Urai M, Paudel A, et al. Identification of Novel Therapeutically Effective Antibiotics Using Silkworm Infection Model. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan, 2012,132(1):79-84.
    [159]Edwards NL. The role of hyperuricemia and gout in kidney and cardiovascular disease. Cleve Clin J Med,2008,75 Suppl 5:S13-16.
    [160]Saag KG, Choi H. Epidemiology, risk factors, and lifestyle modifications for gout. Arthritis Res Ther, 2006,8 Suppl 1:S2-11.
    [161]Wu X, Wakamiya M, Vaishnav S, et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci U S A,1994,91(2):742-746.
    [162]Friedman TB, Polanco GE, Appold JC, et al. On the loss of uricolytic activity during primate evolution--Ⅰ. Silencing of urate oxidase in a hominoid ancestor. Comp Biochem Physiol B,1985,81(3): 653-659.
    [163]Stavric B, Johnson WJ, Grice HC. Uric acid nephropathy:an experimental model. Proc Soc Exp Biol Med,1969,130(2):512-516.
    [164]Li W, Ge FL, Ye DP, et al. [Cytogenetics and application in domesticated silkworm Bombyx mori]. Yi Chuan,2006,28(9):1167-1172.
    [165]Hayashi Y. Properties of xanthine dehydrogenase in the silkworm, Bombyx mori L. Nature, 1961,192:756-757.
    [166]Dussaubat C, Brunet JL, Higes M, et al. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS One,2012,7(5):e37017.
    [167]Ohno Y. [Alternatives to animal experiments in pharmacology]. Nihon Yakurigaku Zasshi, 2011,138(3):99-102.
    [168]Chen Y, Ray WK, Helm RF, et al. Levels of Germination Proteins in Bacillus subtilis Dormant, Superdormant, and Germinating Spores. PLoS One,2014,9(4):e95781.
    [169]Oggioni MR, Ciabattini A, Cuppone AM, et al. Bacillus spores for vaccine delivery. Vaccine, 2003,21 Suppl2:S96-101.
    [170]Amuguni H, Tzipori S. Bacillus subtilis:a temperature resistant and needle free delivery system of immunogens. Hum Vaccin Immunother,2012,8(7):979-986.
    [171]Wang N, Chang C, Yao Q, et al. Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS One,2011,6(6): e21454.
    [172]Ning D, Leng X, Li Q, et al. Surface-displayed VP28 on Bacillus subtilis spores induce protection against white spot syndrome virus in crayfish by oral administration. J Appl Microbiol,2011,111(6): 1327-1336.
    [173]Kim JH, Roh C, Lee CW, et al. Bacterial surface display of GFP(uv) on bacillus subtilis spores. J Microbiol Biotechnol,2007,17(4):677-680.
    [174]Lee S, Belitsky BR, Brown DW, et al. Efficacy, heat stability and safety of intranasally administered Bacillus subtilis spore or vegetative cell vaccines expressing tetanus toxin fragment C. Vaccine, 2010,28(41):6658-6665.
    [175]Amuguni H, Lee S, Kerstein K, et al. Sublingual immunization with an engineered Bacillus subtilis strain expressing tetanus toxin fragment C induces systemic and mucosal immune responses in piglets. Microbes Infect,2012,14(5):447-456.
    [176]Amuguni JH, Lee S, Kerstein KO, et al. Sublingually administered Bacillus subtilis cells expressing tetanus toxin C fragment induce protective systemic and mucosal antibodies against tetanus toxin in mice. Vaccine,2011,29(29-30):4778-4784.
    [177]Mao L, Jiang S, Li G, et al. Surface display of human serum albumin on Bacillus subtilis spores for oral administration. Curr Microbiol,2012,64(6):545-551.
    [178]Feng F, Hu P, Chen L, et al. Display of human proinsulin on the Bacillus subtilis spore surface for oral administration. Curr Microbiol,2013,67(1):1-8.
    [179]Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. Cold spring harbor laboratory press New York,1989.
    [180]Donovan W, Zheng LB, Sandman K, et al. Genes encoding spore coat polypeptides from Bacillus subtilis. J Mol Biol,1987,196(1):1-10.
    [181]Uchida R, Iwatsuki M, Kim YP, et al. Nosokomycins, new antibiotics discovered in an in vivo-mimic infection model using silkworm larvae. Ⅰ:Fermentation, isolation and biological properties. Journal of Antibiotics,2010,63(4):151-155.
    [182]Hamamoto H, Kurokawa K, Kaito C, et al. Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrobial Agents and Chemotherapy,2004,48(3):774-779.
    [183]Kaito C, Akimitsu N, Watanabe H, et al. Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microbial Pathogenesis,2002,32(4):183-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700