低温等离子体协同吸附催化剂的烟气脱硝工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NOx)作为主要的大气污染物之一,对环境的破坏作用极大。近年来,随着低温等离子体化学的开拓与发展,利用低温等离子体和催化剂协同脱除氮氧化物的方法已引起学术界的广泛关注。本论文通过对低温等离子体协同吸附催化剂脱除NOx反应的研究,实现了模拟烟气条件下的NOx高效脱除,为等离子体协同催化剂在脱硝反应中的实际应用提供了有益的探索和发展。主要成果如下:
     (1)创造性地提出了低温等离子体协同吸附催化剂脱除NOx的反应,在室温下实现了模拟烟气中NOx的高效脱除同时又显著节省了能耗,具有巨大的潜在应用价值。
     (2)研究了天然丝光沸石(NMOR)吸附催化剂上NO的吸附性能和吸附机理。天然丝光沸石在改性之后对NO的吸附性能明显提高。其中,酸处理过程能够除去堵塞在天然丝光沸石孔道中的杂质,使沸石的孔道变得畅通;而金属离子交换过程则提高了NMOR对于NO的氧化性。与此同时,考察了实际烟气成分对于NMOR上NO的吸附影响。由于共吸附和化学作用,O2能够提高NMOR上NO的吸附;由于竞争吸附或毒化吸附,H2O, CO2, SO2对于NO的吸附则会造成消极的影响。其中Ni-NMOR对于NO的饱和吸附量高达1.20mmol/g,优于众多文献报道的人工合成吸附剂。原位红外结果表明,Ni-NMOR一方面可以促进NO氧化为NO2,另一方面又易于和NO形成二齿配体,因此对于NO的吸附性能很优异。在Ni-NMOR上,初步探索了低温等离子体协同吸附催化剂分解脱除NOx的反应,验证了该脱硝方案的可行性。
     (3)研究了以甲烷为还原剂作用下低温等离子体协同吸附催化剂H-ZSM-5脱除NOx的NSR反应。H-ZSM-5在吸附阶段起到吸附NOx的作用,在放电阶段则起到催化NOx脱除的作用。重点考察了还原剂CH4浓度、Oz浓度、气体空速和等离子体放电功率等对NOx脱除反应的影响,并对反应机理进行了相应的分析和探讨。等离子体中能量密度是影响NOx脱除的首要因素,较高的能量密度有益于NOx脱附和转化。高浓度的O2与N2发生的化合反应则是干扰NOx脱除的主要因素。CH4的引入,能显著提高NOx的转化。一方面,一定量的CH4在NOx脱除反应中起到还原剂的作用;另一方面,CH4的氧化能够消耗体系中的02,抑制逆反应的发生。同时,对富氧条件下低温等离子体协同H-ZSM-5脱除NOx的循环反应也做了评价,NOx的转化率始终能够维持在90%以上。XRD和SEM结果表明,H-ZSM-5的晶型结构维持稳定。
     (4)为进一步适应甲烷为还原剂的低温等离子体协同吸附催化剂ZSM-5脱除NOx反应的实际应用需要,详细地研究了水蒸气对于该反应的影响及其作用机理,并最终提出解决方案。在反应的吸附阶段,H20和NOx在ZSM-5表面发生竞争吸附从而降低了ZSM-5对于NOx的吸附量。Ni2+改性后则可显著加强ZSM-5的抗水性。在反应的放电阶段,H2O的作用机理较为复杂。首先,大量的吸附水消耗高能电子,降低体系的能量密度,不利于NOx脱附和转化;其次,在等离子体作用下H20与N2反应生成NOx;再次,在等离子体作用下H20与还原剂CH4反应,CH4被过度消耗因而无法实现理想的脱硝效果。提高体系的能量密度以及增加原料气中的CH4浓度能够恢复NOx的脱除效率至97%。
     (5)为适应大型电厂排放烟气的净化,研究了以氨为还原剂作用下低温等离子体协同吸附催化剂脱除NOx的反应。考察了还原剂NH3浓度、O2浓度、NOx吸附量和等离子体放电功率等对NOx脱除反应的影响,并对反应机理进行了相应的分析和探讨。相比于以CH4为还原剂或者无还原剂的条件下,以NH3为还原剂可以在相对较低的放电功率下实现吸附态的NOx高效脱附与转化。此外,高浓度H20引入反应体系后,NOx转化为N2的转化率基本不变,这是十分有意义的结果。有水蒸气参与的循环实验,其NOx转化率始终维持在90%以上,并且H-ZSM-5的晶型结构依旧保持稳定。
As a major source of air pollution, nitrogen oxides NOx mainly emitted from mobile and stationary sources. They are main contributors to a series of environmental issues. Nowadays, the nonthermal plasma (NTP) technology has been researched widely for NOx removal because NTP can activate molecules even at room temperature. The present work is focused on the study of a combined adsorption-discharge plasma process for NOx removal. The efficiency of this new process for NOx removal could achieve95%at ambient temperature. The main contents and results are as follows:
     (1) A combined adsorption-discharge plasma process was proposed for DeNOx in simulated flue gas at room temperature. The efficiency of this new process for NOx removal could achieve95%under the condition of simulated flue gas. The energy efficiency of the new process proposed was improved. Thus we believe that this new deNOx technology has broad application prospects.
     (2) Natural mordenite (NMOR), modified by acid treatment and ion-exchange, was employed for NO adsorption in the present study. The NO storage capacity of modified NMOR was greatly improved compared with its original correspondents, mainly due to the preservation of crystalline structure and the improvement of surface area of NMOR. Among all the modified NMOR, Ni-NMOR exhibited the highest adsorption capacity for NOx (1.20mmol/g). The influence of the main ingredients in flue gas on the storage capacity of NMOR for NO had also been investigated. H2O, CO2and SO2all displayed negative impact on NO adsorption due to their competitive adsorption on the surface of NMOR with NO, while the presence of02greatly improved the adsorption of NO because of the formation of NO2. Moreover, Ni-NMOR exhibited high efficiency for NOx removal through the NOx adsorption-plasma discharge process.
     (3) NOx storage and reduction with CH4by a plasma process was proposed for
     (4) NOx removal at ambient temperature. H-ZSM-5acted as an adsorbent for NOx at the adsorption stage and a catalyst at the discharge stage. The influence factors including the discharge power, flow rate, O2concentration and CH4concentration were investigated. High energy density is beneficial to NOX conversion. Obviously, CH4enhanced the total NOx conversion. On one hand, a suitable amount of CH4could play a role as a reducing agent in NSR; on the other hand, CH4oxidation consumed O2to restrain the reverse reaction of NOX decomposition. NOx removal via cyclic operation has also been investigated, maintaining efficieniency above90%.
     (5) The effect of water vapor on NOx storage and reduction in combination with non-thermal plasma was investigated. H2O could lower NOX adsorption capacity of H-ZSM-5at the adsorption stage, due to the competitive adsorption between H2O and NOx on HZSM-5. Ni-ZSM-5exhibited better resistance to H2O than H-ZSM-5. At the discharge stage, the introduction of H2O decreased the total NOx conversion. When increasing the CH4concentration and the discharge power, the conversion of adsorbed NOx to N2moved up to97.4%.
     (6) NOx storage and reduction with NH3by a plasma process was proposed for NOx removal in simulated flue gas. The influence factors including the discharge power, flow rate, O2concentration and NH3concentration were investigated. The introduction of NH3is able to reduce the energy consumption for the discharge process, while raising the total NOx conversion. Moreover, H2O did not affect the NOx conversion in this process. NOx removal via cyclic operation has also been investigated, maintaining efficieniency above90%.
引文
[1]V. Parvulescu, P. Grange, B. Delmon. Catalytic removal of NO. Catalysis Today. 1998,46:233-316.
    [2]张强,许世森,王志强.选择性催化还原烟气脱硝技术进展及工程应用.热力发电.2004,33:1-6.
    [3]韦正乐,黄碧纯,叶代启,徐雪梅.烟气NOx低温选择性催化还原催化剂研究进展.化工进展.2007,26:320-325.
    [4]X. Tang, J. Hao, H. Yi, J. Li. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catalysis Today.2007,126: 406-411.
    [5]H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, S. N. Li. Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems:a review of the performance enhancement mechanisms, current status, and suitable applications. Environmental science & technology.2009,43: 2216-2227.
    [6]刘杨先,张军,盛昌栋,张永春,陈洁,谢芳.NOx低温选择性催化还原催化剂研究进展.化工进展.2008,27:1198-1203.
    [7]曾汉才.大型锅炉高效低NOx燃烧技术的研究.锅炉制造.2001:1-11.
    [8]王恩禄,张海燕,罗永浩,彭玲.低NOx燃烧技术及其在我国燃煤电站锅炉中的应用.动力工程.2004,24:23-28.
    [9]任晓莉,赵林,杨宝强.NOx废气吸收的板式塔模型.化学工程.2007,35:13-16.
    [10]Y. Wang, Z. Lei, B. Chen, Q. Guo, N. Liu. Adsorption of NO and N2O on Fe-BEA and H-BEA zeolites. Applied Surface Science.2010,256:4042-4047.
    [11]刘晓,黄显怀,金文标.电极生物膜反应器中同步硝化反硝化的研究.工业用水与废水.2009,40.
    [12]K.-i. Shimizu, A. Satsuma. Selective catalytic reduction of NO over supported silver catalysts-practical and mechanistic aspects. Physical Chemistry Chemical Physics.2006,8:2677-2695.
    [13]H. Y. Huang, R. T. Yang. Removal of NO by reversible adsorption on Fe-Mn based transition metal oxides. Langmuir.2001,17:4997-5003.
    [14]K. Eguchi, M. Watabe, S. Ogata, H. Arai. Reversible Sorption of Nitrogen Oxides in Mn-Zr Oxide. Journal of Catalysis.1996,158:420-426.
    [15]K. Ito, S. Kakino, K. Ikeue, M. Machida. NO adsorption/desorption property of TiO2-ZrO2 having tolerance to SO2 poisoning. Applied Catalysis B: Environmental.2007,74:137-143.
    [16]K. Eguchi, M. Watabe, S. Ogata, H. Arai. Removal of dilute nitrogen oxide by the absorption in Mn-Zr oxide. Bulletin-chemical Socity of Japan.1995,68: 1739-1739.
    [17]M. Machida, D. Kurogi, T. Kijima. Study on reactions between H2 and NOX over noble metal-loaded NOx-adsorbing metal oxides. Studies in Surface Science and Catalysis.2001,138:267-274.
    [18]S. Guerrero, I. Guzman, G. Aguila, P. Araya. Sodium-promoted NO adsorption under lean conditions over Cu/TiO2 catalysts. Catalysis Communications.2009, 11:38-42.
    [19]康守方,蒋政,郝郑平.Cu对Pt/Cu-Mg-Al-O催化剂上NOx储存性能的影响.物理化学学报.2005,21:278-282.
    [20]康守方,李俊华,傅立新,郝郑平.Cu-Mg-Al催化剂上NOx储存及分解性能研究.环境科学.2007,28:958-962.
    [21]L. Chmielarz, P. Kustrowski, A. Rafalska-Lasocha, D. Majda, R. Dziembaj. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia. Applied catalysis B: environmental.2002,35:195-210.
    [22]J. D. Henao, L. F. Cordoba, C. M. de Correa. Theoretical and experimental study of NO/NO2 adsorption over Co-exchanged type-A zeolite. Journal of Molecular Catalysis A:Chemical.2004,207:195-204.
    [23]J. Zhang, Y. Liu, W. Fan, Y. He, R. Li. Adsorption and temperature programmed desorption of NO, NO+ O2, NO2 and NO+ NO2 over CoH-ZSM-5. Fuel.2007, 86:1577-1586.
    [24]M. Rivallan, G. Ricchiardi, S. Bordiga, A. Zecchina. Adsorption and reactivity of nitrogen oxides (NO2, NO, N2O) on Fe-zeolites. Journal of Catalysis.2009,264: 104-116.
    [25]M. Iwamoto, H. Yahiro, N. Mizuno, W. X. Zhang, Y. Mine, H. Furukawa, et al. Removal of nitrogen monoxide through a novel catalytic process.2. Infrared study on surface reaction of nitrogen monoxide adsorbed on copper ion-exchanged ZSM-5 zeolites. The Journal of Physical Chemistry.1992,96: 9360-9366.
    [26]J. Despres, M. Koebel, O. Krocher, M. Elsener, A. Wokaun. Adsorption and desorption of NO and NO2 on Cu-ZSM-5. Microporous and mesoporous materials.2003,58:175-183.
    [27]Y. Li, P. Battavio, J. Armor. Effect of water vapor on the selective reduction of NO by methane over cobalt-exchanged ZSM-5. Journal of Catalysis.1993,142: 561-571.
    [28]O. Monticelli, R. Loenders, P. A. Jacobs, J. A. Martens. NOx removal from exhaust gas from lean burn internal combustion engines through adsorption on FAU type zeolites cation exchanged with alkali metals and alkaline earth metals. Applied Catalysis B:Environmental.1999,21:215-220.
    [29]S. Smeekens, S. Heylen, K. Villani, K. Houthoofd, E. Godard, M. Tromp, et al. Reversible NOx storage over Ru/Na-Y zeolite. Chemical Science.2010,1: 763-771.
    [30]Z.-M. Wang, T. Arai, M. Kumagai. Cooperative and competitive adsorption mechanism of NO2, NO, and H2O on H-type mordenite. Industrial & engineering chemistry research.2001,40:1864-1871.
    [31]M. Mihaylov, K. Hadjiivanov. FTIR study of CO and NO adsorption and coadsorption on Ni-ZSM-5 and Ni/SiO2. Langmuir.2002,18:4376-4383.
    [32]K. Hadjiivanov, J. Saussey, J. Freysz, J. Lavalley. FT-IR study of NO+ O2 co-adsorption on H-ZSM-5:re-assignment of the 2133 cm-1 band to NO+ species. Catalysis letters.1998,52:103-108.
    [33]F. Poignant, J. Saussey, J.-C. Lavalley, G. Mabilon. In situ FT-IR study of NH3 formation during the reduction of NOx with propane on H/Cu-ZSM-5 in excess oxygen. Catalysis today.1996,29:93-97.
    [34]J. Alcaniz-Monge, A. Bueno-Lopez, M. A. Lillo-Rodenas, M. J. Man-Gomez. NO adsorption on activated carbon fibers from iron-containing pitch. Microporous and mesoporous materials.2008,108:294-302.
    [35]A. Claudino, J. Soares, R. Moreira, H. Jose. Adsorption equilibrium and breakthrough analysis for NO adsorption on activated carbons at low temperatures. Carbon.2004,42:1483-1490.
    [36]Y.-W. Lee, H.-J. Kim, J.-W. Park, B.-U. Choi, D.-K. Choi, J.-W. Park. Adsorption and reaction behavior for the simultaneous adsorption of NO-NO2 and SO2 on activated carbon impregnated with KOH. Carbon.2003,41:1881-1888.
    [37]J. Zhu, Y. Wang, J. Zhang, R. Ma. Experimental investigation of adsorption of NO and SO2 on modified activated carbon sorbent from flue gases. Energy conversion and management.2005,46:2173-2184.
    [38]Z. Zhu, Z. Liu, S. Liu, H. Niu. Adsorption and reduction of NO over activated coke at low temperature. Fuel.2000,79:651-658.
    [39]陈曦,李玉平,韩婕,郭兴明,迟正平,孟庆海.加压条件下氮氧化物的水吸收研究.火炸药学报.2009,32:84-87.
    [40]张锋,王晓旭,袁刚,耿皎,张志炳.恒容吸收系统中水和稀硝酸对N02的吸收过程研究.无机化学学报.2013,29:95-102.
    [41]景香顺,李玉平,冒翠娥,郑楠,迟正平,孟庆海.加压条件下稀硝酸吸收氮氧化物的实验研究.火炸药学报.2012,34:34-37.
    [42]任晓莉,张雪梅,张卫江,杨宝强,苗志超.碱液脱除工艺尾气中NOx的研 究.天津大学学报.2006,39:597-600.
    [43]任晓莉,张雪梅,张卫江,杨宝强,苗志超.碱液吸收法治理含NOx工艺尾气实验研究.化学工程.2006,34:63-66.
    [44]王娇,颜斌,张俊丰,黄妍. Na2SO3-NaOH体系配NO2吸收NO实验研究.湘潭大学自然科学学报.2013,34:72-76.
    [45]马乐凡,童志权,尹奇德,郭振华,宋剑飞.液相络合-铁屑还原-酸吸收回收法脱除烟气中的NOx.环境化学.2007,25:761-764.
    [46]马乐凡,童志权,张俊丰.液相络合-铁粉还原酸吸收回收法脱除烟气中NOx的机理研究.环境科学学报.2005,25:637-642.
    [47]周娅.络合吸收—电极生物膜净化烟气中氮氧化物的工艺研究:浙江大学;2013.
    [48]金耀民,陈建孟.络合吸收结合生物转化去除氮氧化物技术.环境污染治理技术与设备.2003,4:37-40.
    [49]H. Bosch, F. Janssen. Catalytic reduction of nitrogen oxides:a review on the fundamentals and technology:Elsevier Science Publishers; 1988.
    [50]C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, B. Bandl-Konrad. A "Nitrate Route" for the low temperature "Fast SCR" reaction over a V2O5-WO3/TiO2 commercial catalyst. Chemical communications.2004:2718-2719.
    [51]H. Sjovall, L. Olsson, E. Fridell, R. J. Blint. Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5-The effect of changing the gas composition. Applied Catalysis B:Environmental.2006,64:180-188.
    [52]Z. Li, D. Li, W. Huang, K. Xie. A Novel Cu-Mo/ZSM-5 Catalyst for NOx Catalytic Reduction with Ammonia. Journal of Natural Gas Chemistry.2005,14: 115.
    [53]A. Corma, E. Palomares. Selective catalytic reduction of NOx on Cu-beta zeolites. Applied Catalysis B:Environmental.1997,11:233-242.
    [54]M. Iwamoto, N. Mizuno. NOx emission control in oxygen-rich exhaust through selective catalytic reduction by hydrocarbon. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.1993,207: 23-33.
    [55]R. Q. Long, R. T. Yang. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. Journal of the American Chemical Society. 1999,121:5595-5596.
    [56]G. Carja, G. Delahay, C. Signorile, B. Coq. Fe-Ce-ZSM-5 a new catalyst of outstanding properties in the selective catalytic reduction of NO with NH3. Chemical Communications.2004:1404-1405.
    [57]T. Valdes-Solis, G. Marban, A. B. Fuertes. Low-temperature SCR of NOx with NH3 over carbon-ceramic cellular monolith-supported manganese oxides. Catalysis Today.2001,69:259-264.
    [58]P. G. Smirniotis, D. A. Pena, B. S. Uphade. Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2. Angewandte Chemie International Edition.2001, 40:2479-2482.
    [59]J. Li, H. Chang, L. Ma, J. Hao, R. T. Yang. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review. Catalysis Today.2011,175:147-156.
    [60]G. Qi, R. T. Yang, R. Chang. Low-temperature SCR of NO with NH3 over USY-supported manganese oxide-based catalysts. Catalysis Letters.2003,87: 67-71.
    [61]Z. Wang, X. Li, W. Song, J. Chen, T. Li, Z. Feng. Synergetic Promotional Effects Between Cerium Oxides and Manganese Oxides for NH3-Selective Catalyst Reduction Over CeMn/TiO2. Materials Express.2011,1:167-175.
    [62]E. Garcia-Bordeje, L. Calvillo, M. Lazaro, R. Moliner. Vanadium supported on carbon-coated monoliths for the SCR of NO at low temperature:effect of pore structure. Applied Catalysis B:Environmental.2004,50:235-242.
    [63]B. Huang, R. Huang, D. Jin, D. Ye. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catalysis Today.2007,126: 279-283.
    [64]T. Valdes-Solis, G. Marban, A. B. Fuertes. Kinetics and Mechanism of Low-Temperature SCR of NOx with NH3 over Vanadium Oxide Supported on Carbon-Ceramic Cellular Monoliths. Industrial & engineering chemistry research. 2004,43:2349-2355.
    [65]D. A. Pena, B. S. Uphade, P. G. Smirniotis. TiO< sub> 2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals. Journal of catalysis.2004,221:421-431.
    [66]P. R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, P. G. Smirniotis. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Applied Catalysis B:Environmental. 2007,76:123-134.
    [67]Z. SHENG, Y. HU, J. XUE, X. WANG, W. LIAO. SO2 poisoning and regeneration of Mn-Ce/T TiO2 catalyst for low temperature NOx reduction with NH3. Journal of Rare Earths.2012,30:676-682.
    [68]G. Qi, R. T. Yang. A superior catalyst for low-temperature NO reduction with NH3. Chemical Communications.2003:848-849.
    [69]S. Sato, Y. Yu-u, H. Yahiro, N. Mizuno, M. Iwamoto. Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines. Applied catalysis.1991,70:L1-L5.
    [70]W. Held, A. Konig, T. Richter, L. Puppe. Catalytic NOx reduction in net oxidizing exhaust gas. SAE Technical Paper; 1990.
    [71]M. Haneda, Y. Kintaichi, M. Inaba, H. Hamada. Infrared study of catalytic reduction of nitrogen monoxide by propene over Ag/TiO2-ZrO2. Catalysis today. 1998,42:127-135.
    [72]K. Arve, H. Backman, F. Klingstedt, K. Eranen, D. Y. Murzin. Hydrogen as a remedy for the detrimental effect of aromatic and cyclic compounds on the HC-SCR over Ag/alumina. Applied Catalysis B:Environmental.2007,70: 65-72.
    [73]S. Shuai, J. Wang, R. Li, J. Sun, L. Xing, H. He, et al. Performance evaluation and application of diesel NOx-SCR catalyst by ethanol reductant. SAE paper. 2005:1089.
    [74]K.-i. Shimizu, A. Satsuma, T. Hattori. Catalytic performance of Ag-Al2O3 catalyst for the selective catalytic reduction of NO by higher hydrocarbons. Applied Catalysis B:Environmental.2000,25:239-247.
    [75]S. Kureti, W. Weisweiler, K. Hizbullah. Simultaneous conversion of nitrogen oxides and soot into nitrogen and carbon dioxide over iron containing oxide catalysts in diesel exhaust gas. Applied Catalysis B:Environmental.2003,43: 281-291.
    [76]D. Kaucky, A. Vondrova, J. Dedecek, B. Wichterlova. Activity of Co ion sites in ZSM-5, ferrierite, and mordenite in selective catalytic reduction of NO with methane. Journal of Catalysis.2000,194:318-329.
    [77]M. Takahashi, T. Nakatani, S. Iwamoto, T. Watanabe, M. Inoue. Performance of solvothermally prepared Ga2O3-Al2O3 catalysts for SCR of NO with methane. Applied Catalysis B:Environmental.2007,70:73-79.
    [78]C. Shi, M. Cheng, Z. Qu, X. Yang, X. Bao. On the selectively catalytic reduction of NOx with methane over Ag-ZSM-5 catalysts. Applied Catalysis B: Environmental.2002,36:173-182.
    [79]Y. Li, J. N. Armor. Metal exchanged ferrierites as catalysts for the selective reduction of NOx with methane. Applied Catalysis B:Environmental.1993,3: L1-L11.
    [80]Y. Li, J. N. Armor. Selective Reduction of NOx by Methane on Co-Ferrierites:I. Reaction and Kinetic Studies. Journal of Catalysis.1994,150:376-387.
    [81]K. Hadjiivanov, B. Tsyntsarski, T. Nikolova. Stability and reactivity of the nitrogen-oxo species formed after NO adsorption and NO+ O2 coadsorption on Co-ZSM-5:An FTIR spectroscopic study. Phys. Chem. Chem. Phys.1999,1: 4521-4528.
    [82]S. Brandenberger, O. Krocher, A. Tissler, R. Althoff. Effect of structural and preparation parameters on the activity and hydrothermal stability of metal-exchanged ZSM-5 in the selective catalytic reduction of NO by NH3. Industrial & Engineering Chemistry Research.2011,50:4308-4319.
    [83]X. Chen, A. Zhu, C. Au, C. Shi. Enhanced low-temperature activity of Ag-promoted Co-ZSM-5 for the CH4-SCR of NO. Catalysis letters.2011,141: 207-212.
    [84]L. F. Cordoba, G. A. Fuentes, C. M. de Correa. Characterization of bimetallic Pd/Co-HMOR used for the Ch4-SCR of NOx. Microporous and mesoporous materials.2005,77:193-201.
    [85]T. Nakatani, T. Watanabe, M. Takahashi, Y. Miyahara, H. Deguchi, S. Iwamoto, et al. Characterization of y-Ga2O3-Al2O3 Prepared by Solvothermal Method and Its Performance for Methane-SCR of NO. The Journal of Physical Chemistry A. 2009,113:7021-7029.
    [86]M. Takahashi, T. Nakatani, S. Iwamoto, T. Watanabe, M. Inoue. Effect of the composition of spinel-type Ga2O3-Al2O3-ZnO catalysts on activity for the CH4-SCR of NO and optimization of catalyst composition. Industrial & engineering chemistry research.2006,45:3678-3683.
    [87]S. i. Matsumoto. DeNOx catalyst for automotive lean-burn engine. Catalysis today.1996,29:43-45.
    [88]胡玉才,冯长根.新一代三效催化剂的关键材料-CexZr1-xO2固溶体研究进展.环境科学与技术.2002,25:42-44.
    [89]N. Takahashi, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, et al. The new concept 3-way catalyst for automotive lean-burn engine:NOx storage and reduction catalyst. Catalysis Today.1996,27:63-69.
    [90]P. T. Fanson, M. R. Horton, W. N. Delgass, J. Lauterbach. FTIR analysis of storage behavior and sulfur tolerance in barium-based NOx storage and reduction (NSR) catalysts. Applied Catalysis B:Environmental.2003,46:393-413.
    [91]E. Fridell, A. Amberntsson, L. Olsson, A. W. Grant, M. Skoglundh. Platinum oxidation and sulphur deactivation in NOx storage catalysts. Topics in catalysis. 2004,30:143-146.
    [92]T. J. Toops, D. B. Smith, W. S. Epling, J. E. Parks, W. P. Partridge. Quantified NOx adsorption on Pt/K/gamma-Al2O3 and the effects of CO2 and H2O. Applied Catalysis B:Environmental.2005,58:255-264.
    [93]M. Haneda, T. Morita, Y. Nagao, Y. Kintaichi, H. Hamada. CeO2-ZrO2 binary oxides for NOx removal by sorption. Physical Chemistry Chemical Physics. 2001,3:4696-4700.
    [94]Q. Wang, J. Zhu, S. Wei, J. S. Chung, Z. Guo. Sulfur Poisoning and Regeneration of NOx Storage-Reduction Cu/K2Ti2Os Catalyst. Industrial & Engineering Chemistry Research.2010,49:7330-7335.
    [95]钟秦.选择性非催化还原法脱除NOx的实验研究.南京理工大学学报:自然科学版.2000,24:68-71.
    [96]宣小平,姚强.选择性催化还原法脱硝研究进展.煤炭转化.2002,25:26-31.
    [97]B. Wichterlova, J. Dedecek, Z. Sobalik, A. Vondrova, K. Klier. On the Cu site in ZSM-5 active in decomposition of NO:Luminescence, FTIR study, and redox properties. Journal of Catalysis.1997,169:194-202.
    [98]W. K. Hall, J. Valyon. Mechanism of NO decomposition over Cu-ZSM-5. Catalysis letters.1992,15:311-315.
    [99]M. Shelef. On the mechanism of nitric oxide decomposition over Cu-ZSM-5. Catalysis letters.1992,15:305-310.
    [100]蒋然,黄少斌,范利荣.在有氧条件下用生物过滤系统去除NOx.环境科学学报.2007,27:1469-1475.
    [101]杨斌武,蒋文举,朱晓帆,刘小燕,何媛媛.微波辐照法再生载硫活性炭的研究.化工环保.2003,23:125-128.
    [102]S. Broer, T. Hammer. Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2O5-WO3/TiO2 catalyst. Applied Catalysis B:Environmental.2000,28:101-111.
    [103]L. Tonks, I. Langmuir. Oscillations in ionized gases. Physical Review.1929,33: 195.
    [104]M. Capitelli, F. Capitelli, A. Eletskii. Non-equilibrium and equilibrium problems in laser-induced plasmas. Spectrochimica Acta Part B:Atomic Spectroscopy.2000,55:559-574.
    [105]M. Capitelli, I. Armenise, D. Bruno, M. Cacciatore, R. Celiberto, G. Colonna, et al. Non-equilibrium plasma kinetics:a state-to-state approach. Plasma Sources Science and Technology.2007,16:S30.
    [106]国贤.气体放电:等离子体物理的应用:知识出版社;1988.
    [107]Z. Falkenstein, J. J. Coogan. Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. Journal of Physics D:Applied Physics. 1997,30:817.
    [108]T. Yokoyama, M. Kogoma, T. Moriwaki, S. Okazaki. The mechanism of the stabilisation of glow plasma at atmospheric pressure. Journal of Physics D: Applied Physics.1990,23:1125.
    [109]J. S. Chang, P. A. Lawless, T. Yamamoto. Corona discharge processes. Plasma Science, IEEE Transactions on.1991,19:1152-1166.
    [110]T. Oda, T. Kato, T. Takahashi, K. Shimizu. Nitric oxide decomposition in air by using nonthermal plasma processing with additives and catalyst. Industry Applications, IEEE Transactions on.1998,34:268-272.
    [111]T. Oda, T. Takahashi, S. Kohzuma. Decomposition of trichloroethylene by non-thermal plasma with catalyst. Industry Applications Conference,1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE:IEEE; 1999. p.1489-1494.
    [112]M. Baeva, H. Gier, A. Pott, J. Uhlenbusch, J. Hoschele, J. Steinwandel. Studies on gas purification by a pulsed microwave discharge at 2.46 GHz in mixtures of N2/NO/O2 at atmospheric pressure. Plasma Chemistry and Plasma Processing. 2001,21:225-247.
    [113]M. Baeva, H. Gier, A. Pott, J. Uhlenbusch, J. Hoschele, J. Steinwandel. Pulsed microwave discharge at atmospheric pressure for NOx decomposition. Plasma Sources Science and Technology.2002,11:1.
    [114]刘彤,宋志民.介质阻挡放电等离子体直接分解NOx的影响因素.环境科学.2000,21:80-82.
    [115]Q. Sun, A. Zhu, X. Yang, J. Niu, Y. Xu. Formation of NOx from N2 and O2 in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure. Chemical Communications.2003:1418-1419.
    [116]H. Miessner, R. Rudolph. Plasmacatalytic low-temperature conversion of NOx to N2 by ammonium-loaded zeolites in a dielectric barrier discharge. Chem. Commun.1998:2725-2726.
    [117]J. Niu, X. Yang, A. Zhu, L. Shi, Q. Sun, Y. Xu, et al. Plasma-assisted selective catalytic reduction of NOX by C2H2 over Co-HZSM-5 catalyst. Catalysis Communications.2006,7:297-301.
    [118]刘彤,于琴琴,王卉,蒋晓原,郑小明.等离子体与催化剂协同催化CH_4选择性还原脱硝反应.催化学报.2011.
    [119]C. L. Song, F. Bin, Z. M. Tao, F. C. Li, Q. F. Huang. Simultaneous removals of NOx, HC and PM from diesel exhaust emissions by dielectric barrier discharges. Journal of hazardous materials.2009,166:523-530.
    [120]S. Y. Park, B. R. Deshwal, S. H. Moon. NOx removal from the flue gas of oil-fired boiler using a multistage plasma-catalyst hybrid system. Fuel Processing Technology.2008,89:540-548.
    [121]J. Li, R. Ke, W. Li, J. Hao. A comparison study on non-thermal plasma-assisted catalytic reduction of NO by C3H6 at low temperatures between Ag/USY and Ag/Al2O3 catalysts. Catalysis Today.2007,126:272-278.
    [122]H. Miessner, K.-P. Francke, R. Rudolph, T. Hammer. NOx removal in excess oxygen by plasma-enhanced selective catalytic reduction. Catalysis Today.2002, 75:325-330.
    [123]H. Miessner, K.-P. Francke, R. Rudolph. Plasma-enhanced HC-SCR of NOx in the presence of excess oxygen. Applied Catalysis B:Environmental.2002,36: 53-62.
    [124]于琴琴,刘彤,王卉,肖丽萍,陈敏,蒋晓原,et al.低温等离子体协助B2O3/Al2O3选择催化还原NO. Chinese Journal of Catalysis.2012,33.
    [125]S. Yoon, A. G. Panov, R. G. Tonkyn, A. C. Ebeling, S. E. Barlow, M. L. Balmer. An examination of the role of plasma treatment for lean NOx reduction over sodium zeolite Y and gamma alumina:Part 1. Plasma assisted NOx reduction over NaY and Al2O3. Catalysis today.2002,72:243-250.
    [126]S. Yoon, A. G. Panov, R. G. Tonkyn, A. C. Ebeling, S. E. Barlow, M. L. Balmer. An examination of the role of plasma treatment for lean NOx reduction over sodium zeolite Y and gamma alumina Part 2:Formation of nitrogen. Catalysis today.2002,72:251-257.
    [127]X.-Q. Wang, W. Chen, Q.-P. Guo, Y. Li, G.-H. Lv, X.-P. Sun, et al. Characteristics of NOx removal combining dielectric barrier discharge plasma with selective catalytic reduction by C2H5OH. Journal of Applied Physics.2009, 106:013309-013309-013305.
    [128]H. Kim, K. Takashima, S. Katsura, A. Mizuno. Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts. Journal of Physics D:Applied Physics.2001,34:604.
    [129]K. Li, X. Tang, H. Yi, P. Ning, J. Song, J. Wang. Mechanism of Catalytic Oxidation of NO over Mn-Co-Ce-Ox Catalysts with the Aid of Nonthermal Plasma at Low Temperature. Industrial & Engineering Chemistry Research.2011, 50:11023-11028.
    [130]T. Yamamoto. VOC decomposition by nonthermal plasma processing-A new approach. Journal of electrostatics.1997,42:227-238.
    [131]Y. Ko, G. Yang, D. P. Chang, I. M. Kennedy. Microwave plasma conversion of volatile organic compounds. Journal of the Air & Waste Management Association.2003,53:580-585.
    [132]H.-H. Kim, A. Ogata, S. Futamura. Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis. Plasma Science, IEEE Transactions on.2006,34:984-995.
    [133]H.-X. Ding, A.-M. Zhu, F.-G. Lu, Y. Xu, J. Zhang, X.-F. Yang. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. Journal of Physics D:Applied Physics.2006,39:3603.
    [134]H. Grossmannova, D. Neirynck, C. Leys. Atmospheric discharge combined with Cu-Mn/Al2O3 catalyst unit for the removal of toluene. Czechoslovak Journal of Physics.2006,56:B1156-B1161.
    [135]M. Alvarez-Galvan, V. de la Pena O'Shea, J. Fierro, P. Arias. Alumina-supported manganese-and manganese-palladium oxide catalysts for VOCs combustion. Catalysis Communications.2003,4:223-228.
    [136]陈春雨,王卉,于琴琴,吴丹娴,范杰,肖丽萍.低温等离子体与天然丝光沸石协同降解正已醛.无机化学学报.2012,28:881-887.
    [137]H. Y. Fan, C. Shi, X. S. Li, D. Z. Zhao, Y. Xu, A.-M. Zhu. High-efficiency plasma catalytic removal of dilute benzene from air. Journal of Physics D: Applied Physics.2009,42:225105.
    [138]A. G. Konstandopoulos, M. Kostoglou, E. Skaperdas, E. Papaioannou, D. Zarvalis, E. Kladopoulou. Fundamental studies of diesel particulate filters: transient loading, regeneration and aging. SAE paper.2000:1016.
    [139]S. Yao, K. Madokoro, C. Fushimi, Y. Fujioka. Experimental investigation on diesel PM removal using uneven DBD reactors. AIChE journal.2007,53: 1891-1897.
    [140]S. Yao. Plasma reactors for diesel particulate matter removal. Recent Patents on Chemical Engineering.2009,2:67-75.
    [141]M. Holub, S. Kalisiak, T. Borkowski, J. Myskow, R. Brandenburg. The influence of direct non-thermal plasma treatment on particulate matter (PM) and NOx in the exhaust of marine diesel engines. Pol J Environ Stud.2010,19: 1199-1211.
    [142]于琴琴.低温等离子体协同催化反应在CO2转化和De NOx过程中的应用基础研究:浙江大学:2012.
    [1]杨靖.天然丝光沸石二次合成改性制备钛硅分子筛的研究:浙江大学;2010.
    [2]P. Forzatti, L. Lietti. Recent advances in De-NO(X)ing catalysis for stationary applications. Heterogeneous chemistry reviews.1996,3:33-51.
    [3]S. i. Matsumoto. DeNOx catalyst for automotive lean-burn engine. Catalysis today. 1996,29:43-45.
    [4]K. Skalska, J. S. Miller, S. Ledakowicz. Trends in NOx abatement:A review. Science of the total environment.2010,408:3976-3989.
    [5]杨靖,周慧,肖丽萍,郑小明.天然沸石同晶取代制备钛丝光沸石.浙江大学学报:理学版.2010,37:556-559.
    [6]H. Wang, Q. Yu, L. Xiao, T. Liu, W. Yu, X. Jiang, et al. Superior Storage Performance for NO in Modified Natural Mordenite. Chinese Journal of Chemistry.2012,30:1511-1516.
    [7]Z.-M. Wang, T. Arai, M. Kumagai. Cooperative and competitive adsorption mechanism of NO2, NO, and H2O on H-type mordenite. Industrial & engineering chemistry research.2001,40:1864-1871.
    [8]H. Y. Huang, R. T. Yang. Removal of NO by reversible adsorption on Fe-Mn based transition metal oxides. Langmuir.2001,17:4997-5003.
    [9]K. Ito, S. Kakino, K. Ikeue, M. Machida. NO adsorption/desorption property of TiO2-ZrO2 having tolerance to SO2 poisoning. Applied Catalysis B: Environmental.2007,74:137-143.
    [10]I. Mochida, Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, et al. Removal of SOx and NOx over activated carbon fibers. Carbon.2000,38:227-239.
    [11]Z. Zhu, Z. Liu, S. Liu, H. Niu. Adsorption and reduction of NO over activated coke at low temperature. Fuel.2000,79:651-658.
    [12]K. Hadjiivanov, D. Klissurski, G. Ramis, G. Busca. Fourier transform IR study of NOX> adsorption on a CuZSM-5 De NOX catalyst. Applied Catalysis B: Environmental.1996,7:251-267.
    [13]K. Hadjiivanov, J. Saussey, J. Freysz, J. Lavalley. FT-IR study of NO+ O2 co-adsorption on H-ZSM-5:re-assignment of the 2133 cm-1 band to NO+ species. Catalysis letters.1998,52:103-108.
    [14]K. Hadjiivanov, H. Knozinger, M. Mihaylov. FTIR study of CO adsorption on Ni-ZSM-5. The Journal of Physical Chemistry B.2002,106:2618-2624.
    [15]M. Mihaylov, K. Hadjiivanov. FTIR study of CO and NO adsorption and coadsorption on Ni-ZSM-5 and Ni/SiO2. Langmuir.2002,18:4376-4383.
    [16]M. Mihaylov, K. Hadjiivanov, D. Panayotov. FTIR mechanistic studies on the selective catalytic reduction of NOx with methane over Ni-containing zeolites: comparison between NiY and Ni-ZSM-5. Applied Catalysis B:Environmental. 2004,51:33-42.
    [17]T. J. Toops, D. B. Smith, W. S. Epling, J. E. Parks, W. P. Partridge. Quantified NO (x) adsorption on Pt/K/gamma-Al2O3 and the effects of CO2 and H2O. Applied Catalysis B:Environmental.2005,58:255-264.
    [18]J. J. Yu, Y. X. Tao, C. C. Liu, Z. P. Hao, Z. P. Xu. Novel NO trapping catalysts derived from Co-Mg/X-Al (X= Fe, Mn, Zr, La) hydrotalcite-like compounds. Environmental science & technology.2007,41:1399-1404.
    [19]Y.-W. Lee, H.-J. Kim, J.-W. Park, B.-U. Choi, D.-K. Choi, J.-W. Park. Adsorption and reaction behavior for the simultaneous adsorption of NO-NO2 and SO2 on activated carbon impregnated with KOH. Carbon.2003,41:1881-1888.
    [20]S. Sumathi, S. Bhatia, K. Lee, A. Mohamed. Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SOX and NOx of flue gas at low temperature. Science in China Series E:Technological Sciences.2009, 52:198-203.
    [1]A. Sharma, G. Josephson, D. Camaioni, S. Goheen. Destruction of pentachlorophenol using glow discharge plasma process. Environmental science & technology.2000,34:2267-2272.
    [2]S. L. Suib, S. L. Brock, M. Marquez, J. Luo, H. Matsumoto, Y. Hayashi. Efficient catalytic plasma activation of CO2, NO, and H2O. The Journal of Physical Chemistry B.1998,102:9661-9666.
    [3]刘彤,于琴琴,王卉,蒋晓原,郑小明.等离子体与催化剂协同催化CH4选择性还原脱硝反应.催化学报.2011.
    [4]D. N. Tran, C. L. Aardahl, K. G. Rappe, P. W. Park, C. Boyer. Reduction of NOx by plasma-facilitated catalysis over In-doped y-alumina. Applied Catalysis B: Environmental.2004,48:155-164.
    [5]J. Hueso, J. Cotrino, A. Caballero, J. Espinos, A. Gonzalez-Elipe. Plasma catalysis with perovskite-type catalysts for the removal of NO and CH4 from combustion exhausts. Journal of Catalysis.2007,247:288-297.
    [6]S. Broer, T. Hammer. Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2O5-WO3/TiO2 catalyst. Applied Catalysis B:Environmental.2000,28:101-111.
    [7]H.-Y Fan, C. Shi, X.-S. Li, X.-F. Yang, Y. Xu, A.-M. Zhu. Low-temperature NOx Selective Reduction by Hydrocarbons on H-Mordenite Catalysts in Dielectric Barrier Discharge Plasma. Plasma Chemistry and Plasma Processing.2009,29: 43-53.
    [8]J. Li, R. Ke, W. Li, J. Hao. Mechanism of selective catalytic reduction of NO over Ag/Al2O3 with the aid of non-thermal plasma. Catalysis Today.2008,139:49-58.
    [9]J. Li, R. Ke, W. Li, J. Hao. A comparison study on non-thermal plasma-assisted catalytic reduction of NO by C3H6 at low temperatures between Ag/USY and Ag/Al2O3 catalysts. Catalysis Today.2007,126:272-278.
    [10]Q. Yu, H. Wang, T. Liu, L. Xiao, X. Jiang, X. Zheng. High-Efficiency Removal of NOx Using a Combined Adsorption-Discharge Plasma Catalytic Process. Environmental science & technology.2012,46:2337-2344.
    [11]H. Y. Fan, C. Shi, X. S. Li, D. Z. Zhao, Y. Xu, A. M. Zhu. High-efficiency plasma catalytic removal of dilute benzene from air. Journal of Physics D:Applied Physics.2009,42:225105.
    [12]S. Yao, K. Madokoro, C. Fushimi, Y. Fujioka. Experimental investigation on diesel PM removal using uneven DBD reactors. AIChE journal.2007,53: 1891-1897.
    [13]S. Yao, C. Fushimi, K. Madokoro, K. Yamada. Uneven dielectric barrier discharge reactors for diesel particulate matter removal. Plasma chemistry and plasma processing.2006,26:481-493.
    [14]J. T. Herron. Evaluated Chemical Kinetics Data for Reactions of N (2D), N (2P), and N2 (A 3Σu+) in the Gas Phase. Journal of Physical and Chemical Reference Data.1999,28:1453-1483.
    [15]I. Kossyi, A. Y. Kostinsky, A. Matveyev, V. Silakov. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science and Technology.1992,1:207.
    [16]A. Fernandez, A. Goumri, A. Fontijn. Kinetics of the Reactions of N (4S) Atoms with O2 and CO2 over Wide Temperatures Ranges. The Journal of Physical Chemistry A.1998,102:168-172.
    [17]R. Atkinson, D. Baulch, R. Cox, R. Hampson Jr, J. Kerr, M. Rossi, et al. Evaluated kinetic and photochemical data for atmospheric chemistry:supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. Journal of Physical and Chemical Reference Data.1997,26: 1329-1499.
    [1]H. Tsuchiai, T. Ishizuka, T. Ueno, H. Hattori, H. Kita. Highly active absorbent for SO2 removal prepared from coal fly ash. Industrial & engineering chemistry research.1995,34:1404-1411.
    [2]B. Hall, P. Schager, O. Lindqvist. Chemical reactions of mercury in combustion flue gases. Water Air & Soil Pollution.1991,56:3-14.
    [3]于琴琴.低温等离子体协同催化反应在CO2转化和DeNOx过程中的应用基础研究:浙江大学;2012.
    [4]M. Baeva, H. Gier, A. Pott, J. Uhlenbusch, J. Hoschele, J. Steinwandel. Studies on gas purification by a pulsed microwave discharge at 2.46 GHz in mixtures of N2/NO/O2 at atmospheric pressure. Plasma Chemistry and Plasma Processing. 2001,21:225-247.
    [5]Q. Sun, A. Zhu, X. Yang, J. Niu, Y. Xu. Formation of NOx from N2 and O2 in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure. Chemical Communications.2003:1418-1419.
    [6]D. Yang, J. Li, M. Wen, C. Song. Selective catalytic reduction of NOx with CH4 over the In/sulfated TiO2 catalyst. Catalysis Letters.2008,122:138-143.
    [7]X. Chen, A. Zhu, C. Au, C. Shi. Enhanced low-temperature activity of Ag-promoted Co-ZSM-5 for the CH4-SCR of NO. Catalysis letters.2011,141: 207-212.
    [8]D. Kaucky, A. Vondrova, J. Dedecek, B. Wichterlova. Activity of Co ion sites in ZSM-5, ferrierite, and mordenite in selective catalytic reduction of NO with methane. Journal of Catalysis.2000,194:318-329.
    [9]K. Hadjiivanov, B. Tsyntsarski, T. Nikolova. Stability and reactivity of the nitrogen-oxo species formed after NO adsorption and NO+ O2 coadsorption on Co-ZSM-5:An FTIR spectroscopic study. Phys. Chem. Chem. Phys.1999,1: 4521-4528.
    [10]E. Sadovskaya, A. Suknev, L. Pinaeva, V. Goncharov, B. Bal'Zhinimaev, C. Chupin, et al. Mechanism and kinetics of the selective NO reduction over Co-ZSM-5 studied by the SSITKA technique:2. Reactivity of NOx-adsorbed species with methane. Journal of Catalysis.2004,225:179-189.
    [11]F. Bustamante, F. Cordoba, M. Yates, C. Montes de Correa. The promotion of cobalt mordenite by palladium for the lean CH4-SCR of NOx in moist streams. Applied Catalysis A:General.2002,234:127-136.
    [12]C. Montes de Correa, F. Cordoba, F. Bustamante. The role of zeolite type on the lean NOx reduction by methane over Pd loaded pentasil zeolites. Microporous and mesoporous materials.2000,40:149-157.
    [13]L. Gutierrez, A. Boix, E. Lombardo, J. Fierro. Study of the Co-Pt Synergism for the Selective Catalytic Reduction of NOx with CH4. Journal of Catalysis.2001, 199:60-72.
    [14]L. Gutierrez, M. Ulla, E. Lombardo, A. Kovacs, F. Lonyi, J. Valyon. Study of the deactivation of Co-and Pt, Co-mordenite during the SCR of NOx with CH4. Applied Catalysis A:General.2005,292:154-161.
    [15]F. Lonyi, J. Valyon, L. Gutierrez, M. Ulla, E. Lombardo. The SCR of NO with CH4 over Co-, Co, Pt-, and H-mordenite catalysts. Applied Catalysis B: Environmental.2007,73:1-10.
    [16]L. Gutierrez, A. Boix, J. O. Petunchi. Promoting Effect of Pt on CoZeolites upon the SCR of NOx. Journal of Catalysis.1998,179:179-191.
    [17]Y. Li, G.-h. Xu, C.-j. Liu, B. Eliasson, B.-z. Xue. Co-generation of syngas and higher hydrocarbons from CO2 and CH4 using dielectric-barrier discharge:effect of electrode materials. Energy & fuels.2001,15:299-302.
    [18]H. Wang, Q. Yu, T. Liu, L. Xiao, X. Zheng. NOx storage and reduction with methane by plasma at ambient temperature. RSC Advances.2012,2:5094-5097.
    [19]J.-J. Zou, Y. Li, Y.-P. Zhang, C.-J. Liu. Product distribution of conversions of methane and carbon dioxide using dielectric barrier discharge. Acta physicochimica sinica.2002,18:759-763.
    [1]C. L. Song, F. Bin, Z. M. Tao, F. C. Li, Q. F. Huang. Simultaneous removals of NOx, HC and PM from diesel exhaust emissions by dielectric barrier discharges. Journal of hazardous materials.2009,166:523-530.
    [2]J. Niu, X. Yang, A. Zhu, L. Shi, Q. Sun, Y. Xu, et al. Plasma-assisted selective catalytic reduction of NOx by C2H2 over Co-HZSM-5 catalyst. Catalysis Communications.2006,7:297-301.
    [3]X. Chen, M. Marquez, J. Rozak, C. Marun, J. Luo, S. L. Suib, et al. H2O Splitting in Tubular Plasma Reactors. Journal of Catalysis.1998,178:372-377.
    [4]A. Ogata, N. Shintani, K. Yamanouchi, K. Mizuno, S. Kushiyama, T. Yamamoto. Effect of water vapor on benzene decomposition using a nonthermal-discharge plasma reactor. Plasma Chemistry and Plasma Processing.2000,20:453-467.
    [5]K. Shimizu, T. Hirano, T. Oda. Effect of water vapor and hydrocarbons in removing NOx by using nonthermal plasma and catalyst. Industry Applications, IEEE Transactions on.2001,37:464-471.
    [6]G. Qi, R. T. Yang. A superior catalyst for low-temperature NO reduction with NH3. Chemical Communications.2003:848-849.
    [7]F. Gutierrez Ortiz, F. Vidal, P. Ollero, L. Salvador, V. Cortes, A. Gimenez. Pilot-plant technical assessment of wet flue gas desulfurization using limestone. Industrial & engineering chemistry research.2006,45:1466-1477.
    [8]J. Li, H. Chang, L. Ma, J. Hao, R. T. Yang. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts——A review. Catalysis Today.2011,175:147-156.
    [9]P. G. Smirniotis, D. A. Pena, B. S. Uphade. Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2. Angewandte Chemie International Edition.2001,40: 2479-2482.
    [10]G. Qi, R. T. Yang, R. Chang. Low-temperature SCR of NO with NH3 over USY-supported manganese oxide-based catalysts. Catalysis Letters.2003,87: 67-71.
    [11]H.-Y. Chen, W. M. Sachtler. Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor. Catalysis today.1998, 42:73-83.
    [12]H.-Y. Chen, W. M. Sachtler. Promoted Fe/ZSM-5 catalysts prepared by sublimation:de-NOx activity and durability in H2O-rich streams. Catalysis letters. 1998,50:125-130.
    [13]Z.-M. Wang, T. Arai, M. Kumagai. Cooperative and competitive adsorption mechanism of NO2, NO, and H2O on H-type mordenite. Industrial & engineering chemistry research.2001,40:1864-1871.
    [14]T. J. Toops, D. B. Smith, W. S. Epling, J. E. Parks, W. P. Partridge. Quantified NOx adsorption on Pt/K/gamma-Al2O3 and the effects of CO2 and H2O. Applied Catalysis B:Environmental.2005,58:255-264.
    [15]H. Wang, Q. Yu, L. Xiao, T. Liu, W. Yu, X. Jiang, et al. Superior Storage Performance for NO in Modified Natural Mordenite. Chinese Journal of Chemistry.2012,30:1511-1516.
    [16]H. Wang, X. Li, M. Chen, X. Zheng. The effect of water vapor on NOX storage and reduction in combination with plasma. Catalysis Today.2013,211:66-71.
    [17]F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, et al. Kinetic of the NO removal by nonthermal plasma in N2/NO/C2H4 mixtures. Applied Physics Letters.2000,77:4118-4120.
    [18]F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, et al. Influence of water on NO removal by pulsed discharge in N2/H2O/NO mixtures. Plasma Sources Science and Technology.2002,11:152.
    [19]J. Zhang, Y. Liu, W. Fan, Y. He, R. Li. Adsorption and temperature programmed desorption of NO, NO+ O2, NO2 and NO+ NO2 over CoH-ZSM-5. Fuel.2007, 86:1577-1586.
    [20]Y. Wang, Z. Lei, B. Chen, Q. Guo, N. Liu. Adsorption of NO and N2O on Fe-BEA and H-BEA zeolites. Applied Surface Science.2010,256:4042-4047.
    [21]S. Smeekens, S. Heylen, K. Villani, K. Houthoofd, E. Godard, M. Tromp, et al. Reversible NOX storage over Ru/Na-Y zeolite. Chemical Science.2010,1: 763-771.
    [22]李成林.超强吸水剂的应用及展望.化工时刊.2003,17:9-11.
    [23]蒋荣立,周怀兰,吕小丽,仇友爱,郭鑫.煤系高岭土合成吸附干燥剂4A分子筛的试验研究.中国矿业大学学报.2006,34:793-797.
    [24]K. Hadjiivanov, J. Saussey, J. Freysz, J. Lavalley. FT-IR study of NO+ 02 co-adsorption on H-ZSM-5:re-assignment of the 2133 cm-1 band to NO+ species. Catalysis letters.1998,52:103-108.
    [25]B. Hall, P. Schager, O. Lindqvist. Chemical reactions of mercury in combustion flue gases. Water Air & Soil Pollution.1991,56:3-14.
    [26]H. Tsuchiai, T. Ishizuka, T. Ueno, H. Hattori, H. Kita. Highly active absorbent for SO2 removal prepared from coal fly ash. Industrial & engineering chemistry research.1995,34:1404-1411.
    [27]M. Mihaylov, K. Hadjiivanov. FTIR study of CO and NO adsorption and coadsorption on Ni-ZSM-5 and Ni/SiO2. Langmuir.2002,18:4376-4383.
    [28]M. Mihaylov, K. Hadjiivanov, D. Panayotov. FTIR mechanistic studies on the selective catalytic reduction of NOx with methane over Ni-containing zeolites: comparison between NiY and Ni-ZSM-5. Applied Catalysis B:Environmental. 2004,51:33-42.
    [1]B. Thirupathi, P. G. Smirniotis. Effect of nickel as dopant in Mn/TiO4 catalysts for the low-temperature selective reduction of NO with NH3. Catalysis letters.2011, 141:1399-1404.
    [2]M. Takahashi, T. Nakatani, S. Iwamoto, T. Watanabe, M. Inoue. Effect of the composition of spinel-type Ga2O3-Al2O3-ZnO catalysts on activity for the CH4-SCR of NO and optimization of catalyst composition. Industrial& engineering chemistry research.2006,45:3678-3683.
    [3]A. Musi, P. Massiani, D. Brouri, J. M. Trichard, P. Da Costa. On the Characterisation of Silver Species for SCR of NO x with Ethanol. Catalysis letters.2009,128:25-30.
    [4]A. Hernandez. Oxidation of NO to NO2 on a Pt-MFI zeolite and subsequent reduction of NOX by C2H4 on an In-MFI zeolite:a novel de-NOx strategy in excess oxygen. Chemical Communications.1997:37-38.
    [5]N. Jinhai, Z. Zhihui, L. Dongping, W. Qi. Low-temperature plasma-catalytic reduction of NOX by C2H2 in the presence of excess oxygen. Plasma Science and Technology.2008,10:466.
    [6]J. Chen, R. Yang. Role of WO3 in mixed V2O5-WO3/TiO2 catalysts for selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis A:General. 1992,80:135-148.
    [7]H. Wang, X. Li, P. Chen, M. Chen, X. Zheng. An enhanced plasma-catalytic method for DeNOx in simulated flue gas at room temperature. Chemical Communications.2013,49:9353-9355.
    [8]M. Shelef. On the mechanism of nitric oxide decomposition over Cu-ZSM-5. Catalysis letters.1992,15:305-310.
    [9]Y. Mizutani, H. Nishizawa. NOx sensor having catalyst for decomposing NOx. Google Patents; 1990.
    [10]T. Oda, T. Kato, T. Takahashi, K. Shimizu. Nitric oxide decomposition in air by using nonthermal plasma processing with additives and catalyst. Industry Applications, IEEE Transactions on.1998,34:268-272.
    [11]M. Baeva, H. Gier, A. Pott, J. Uhlenbusch, J. Hoschele, J. Steinwandel. Pulsed microwave discharge at atmospheric pressure for NOx decomposition. Plasma Sources Science and Technology.2002,11:1.
    [12]J. Park, I. Tomicic, G. Round, J. Chang. Simultaneous removal of NOx and SO2 from NO-SO2-CO2-N2-O2 gas mixtures by corona radical shower systems. Journal of Physics D:Applied Physics.1999,32:1006.
    [13]K. Yan, S. Kanazawa, T. Ohkubo, Y. Nomoto. Oxidation and reduction processes during NO x removal with corona-induced nonthermal plasma. Plasma chemistry and plasma processing.1999,19:421-443.
    [14]R. Atkinson, D. Baulch, R. Cox, R. Hampson, J. Kerr, J. Troe. Evaluated kinetic and photochemical data for atmospheric chemistry:Supplement Ⅲ. International journal of chemical kinetics.1989,21:115-150.
    [15]J. T. Herron. Evaluated Chemical Kinetics Data for Reactions of N (2D), N (2P), and N2 (A 3Σu+) in the Gas Phase. Journal of Physical and Chemical Reference Data.1999,28:1453-1483.
    [16]J. T. Herron, D. S. Green. Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part Ⅱ. Neutral species reactions. Plasma Chemistry and Plasma Processing.2001,21:459-481.
    [17]陈国庆,高继慧,王帅,付晓林,徐莉莉,秦裕琨.烟气气相组分及Ca (OH)2对KMnO4氧化NO的影响机理.化工学报.2009:2314-2320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700