磷脂修饰量子点与细胞相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点(Quantum dots, QDs)是一种新型半导体荧光纳米探针,与传统有机荧光染料相比,具有许多优良的光谱特性,在分子诊断、靶向治疗、生物医学成像与生物传感等方面得到了广泛应用,并极大地推动了生命分析化学、生物医学工程等研究领域的飞速发展。本论文在实验室已有的量子点合成技术平台上,以量子点与细胞相互作用为主线,主要开展了以下几个方面的工作:
     1.磷脂修饰量子点的制备
     针对脂溶性量子点在生物分析研究中面临的相转移及其功能化修饰问题,分别采用普通磷脂(DPPC)与聚乙二醇功能化磷脂(PEG-DPPE)修饰量子点,在对其进行紫外可见吸收光谱、荧光发射光谱、荧光显微成像、透射电子显微镜成像等系列表征后,考察了两种修饰方法所得量子点光谱性质、分散性、光稳定性的差异。结果表明:普通磷脂修饰量子点得到多个量子点的团聚体,与之相比,采用聚乙二醇功能化磷脂修饰的量子点单分散性较好、光稳定性强,可用于后续实验。
     2.量子点与细胞非特异性相互作用研究
     非特异性吸附是纳米颗粒应用于细胞成像研究面对的首要问题之一。在第一部分工作基础上,为了更好的将修饰后的量子点应用于细胞成像研究中,分别采用带有氨基、羧基、甲基的聚乙二醇功能化磷脂修饰得到不同功能表面基团的量子点,结合激光共聚焦成像技术,对不同功能基团表面的量子点与细胞非特异性作用进行研究。结果表明:量子点表面电荷对量子点与细胞的非特异性作用影响显著,氨基功能化后带正电荷的量子点最容易与细胞发生非特异性作用,羧基功能化后带负电荷的量子点次之,甲基功能化后基本不带电荷的量子点与细胞非特异性作用最小。量子点与细胞的作用是一个依赖于量子点的浓度、表面电荷、培育时间与温度,并受培养基中血清影响的耗能过程。因此,可以有针对性地对量子点的表面进行修饰或改性并将其应用于细胞成像研究。
     3.血管生成素-量子点复合物特异识别细胞及其内化研究
     血管生成素(Angiogenin)是一种与肿瘤发生、发展密切相关的蛋白质。在前面两部分工作的基础上,借助核酸适体,将血管生成素固定在量子点上,并进一步考察了量子点-血管生成素复合物对目标细胞的选择性识别与内化情况。由于细胞表面血管生成素受体的作用,血管生成素-量子点复合物能选择性地结合到人脐带静脉内皮细胞(HUVEC)和人宫颈癌细胞(Hela)上;荧光共定位实验和Z-轴扫描结果进一步证实,复合物能进入靶细胞,最终主要定位在溶酶体中。结合以上实验结果,构建了一种特异性识别表面表达有血管生成素受体细胞的纳米探针,有望在肿瘤血管生成及肿瘤细胞早期诊断与靶向治疗等基础研究方面发挥重要作用。
Compared with conventional organic fluorescent dyes, quantum dots show unique size-dependent optical properties, which make them appealing as a new class of fluorescent probes, and have gained increasing applications in the fields of molecular diagnosis, target therapy,biomedical imaging and biosensor, etc, which promote the evolution of bio-analytical chemistry and biomedical engineering. The following several works have mainly performed by taking the interaction of quantum dots with cells as the line of this dissertation.
     1. Encapsulation of Quantum Dots in Phospholipid Micelles
     Phase transfer is an essential and nontrivial step for QDs that render solubility only in nonpolar organic solvents to be useful as biological reporters. In this study hydrophobic QDs were encapsulated with phospholipid and PEG-phospholipid. The abtained micelles were characterized by UV-Visible spectroscopy, fluorescence spectroscopy, fluorescence microscopy imaging and Transmission Electron Microscope, respectively. The results showed that QDs encapsulated in poly(ethylene glycol)-phospholipid micelles with one QD per micelle was more feasible than that encapsulated in phospholipid micelles with many QDs per micelle. The as-prepared water-compatible QDs all hold high photostability and narrow size-distribution.
     2. Nonspecifical Binding Study of Functional QD Micelles to Cells
     A major problem for the application of nanoparticles in cellular imaging is that nanoparticles tend to bind nonspecifically to cellular membranes. Based on the first part work, functional QD micelles with chemically reactive groups (e.g., NH2- , COOH-, and CH3-) were prepared by encapsulation of QDs into functional PEG-phospholipid micelles, and their nonspecifical binding to COS-7 cells were investigated by using confocal laser scanning microscopy. The results indicated that nonspecifical binding of QD micelles depended on particle concentration and incubation time. The surface charge of QD micelles and the serum in cell culture medium also affected the nonspecifical binding. In particular, functional QD micelles with highly charged surface groups, such as carboxylic acids and amines, have been shown to more strong nonspecific binding to cells than that with little charged methyl groups. These results offered a foundation for further better biological application of quantum dots in cell biological field by pertinent modification of their surface to minimize nonspecific cellular binding of QDs.
     3. The Selectively Binding and Cellular Internalization Study of QD-angiogenin Conjugates
     Angiogenin is closely correlated with the occurrence and development of cancers. Based on above work, QD-angiogenin conjugates, prepared using an aptamer that bridges the inorganic fluorophores and angiogenin, were employed to recognize target cells. The cellular internalization study of the conjugates was followed. With the function of angiogenin receptor, QD-angiogenin conjugates could be selectively bound to human umbilical vein endothelial cells and human cervical carcinoma cells. Z-axis scanning studies demonstrated that the QD-angiogenin conjugates were internalized to intracellular organelles of target cells. Subcellular localization and fluorescent colocalization studies indicated that the conjugates mainly located in organelle lysosome after entering the cells. The QD-angiogenin conjugates could be potentially utilized as a novel cellular recognition system in the field of tumor angiogenesis, tumor early diagnosis and target therapy.
引文
[1] Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996, 271(5251): 933-937
    [2] Seydel C. Quantum Dots Get Wet. Science, 2003, 300(5616): 80-81
    [3] Green M. Semiconductor Quantum Dots as Biological Imaging Agents. Angewandte Chemie International Edition, 2004, 43(32): 4129-4131
    [4] Smith A M, Nie S M. Chemical Analysis and Cellular Imaging with Quantum Dots. Analyst, 2004, 129(8): 672-677
    [5] Medintz I L, Uyeda H. T, Goldman E R, et al. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nature Materials, 2005, 4(6): 435-446
    [6] Alivisatos A P, Gu W W, Larabell C. Quantum Dots as Cellular Probes. Annual Review of Biomedical Engineering, 2005, 7: 55-76
    [7] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science, 2005, 307(5709): 538-544
    [8] Rbyner M N, Smith A M, Gao X H, et al. Quantum Dots and Multifunctional Nanoparticles: New Contrast Agents for Tumor Imaging. Nanomedicine, 2006, 1(2): 1-9
    [9] Smith A M, Duan H W, Mohs A M, et al. Bioconjugated Quantum Dots for in vivo Molecular and Cellular Imaging. Advanced Drug Delivery Reviews, 2008, 60(11): 1226-1240
    [10] Gaponik N L, Talapin D V, Weller H, et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. Journal of Physical Chemistry B, 2002, 106(29): 7177-7185
    [11] Murray C B, Norris D J, Bawendi M G. Synthesis and Characterization of Nearly Monodisperse CdE (E=sulfur, selenium, tellurium) Semiconductor Nanocrystallites. Journal of the American Chemistry Society, 1993, 115(19): 8706-8715
    [12] Peng Z A, Peng X G. Mechanisms of the Shape Evolution of CdSe Nanocrystals. Journal of the American Chemistry Society, 2001, 123(7): 1389-1395
    [13] Qu L, Peng Z A, Peng X G. Alternative Routes toward High Quality CdSe Nanocrystals. Nano Letters, 2001, 1(6): 333-337
    [14] Hines M A, Philippe G S. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. Journal of Physical Chemistry,1996, 100(2): 468-471
    [15] Talapin D V, Rogach A L, Weller H, et al. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine Trioctylphosphine Oxide Trioctylphospine Mixture. Nano Letters, 2001, 1(4): 207-211
    [16] Mekis I, Talapin D V, Kornowski A, et al. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and“Greener”Chemical Approaches. Journal of Physical Chemistry B, 2003, 107(30): 7454-7462
    [17] Li J J, Andrew W, Guo W Z, et al. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. Journal of the American Chemistry Society, 2003, 125(41): 12567-12575
    [18] Smith A M, Duan H W, Rhyner M N, et al. A Systematic Examination of Surface Coatings on the Optical and Chemical Properties of Semiconductor Quantum Dots. Physical Chemistry Chemical Physics, 2006, 8(33): 3895-3903
    [19] Pons T H, Uyeda T, Medintz I L, et al. Hydrodynamic Dimensions, Electrophoretic Mobility, and Stability of Hydrophilic Quantum Dots. The Journal of Physical Chemistry B, 2006, 110 (41): 20308-20316
    [20] Breus V V, Heyes C D, Nienhaus G U. Quenching of CdSe-ZnS Core-shell Quantum Dot Luminescence by Water-Soluble Thiolated Ligands. The Journal of Physical Chemistry C, 2007, 111(50): 18589-18594
    [21] Munro A M, Ginger D S. Photoluminescence Quenching of Single CdSe Nanocrystals by Ligand Adsorption. Nano Letters, 2008, 8(8): 2585-2590
    [22] Fan H Y, Leve E W, Scullin C, et al. Surfactant-Assisted Synthesis of Water-soluble and Biocompatible Semiconductor Quantum Dot Micelles. Nano Letters, 2005, 5(4): 645-648
    [23] Fan H Y. Nanocrystal-Micelle: Synthesis, Self-assembly and Application. Chemical Communications, 2008, (12): 1383-1394
    [24] Sapsford K E, Pons T, Medintz I L, et al. Biosensing with Luminescent Semiconductor Quantum Dots. Sensors, 2006, 6(8): 925-953
    [25] Suzuki M, Husimi Y, Komatsu H, et al. Quantum Dot FRET Biosensors that Respond to pH, to Proteolytic or Nucleolytic Cleavage, to DNA Synthesis, or to a Multiplexing Combination. Journal of the American Chemical Society, 2008, 130(17): 5720-5725
    [26] Medintz I L, Aaron R C, Mattoussi H, et al. Self-Assembled Nanoscale Biosensors Based on Quantum Dot FRET Donors. Nature Materials, 2003, 2(9): 630-638.
    [27] Aaron R C, Medintz I L, Mauro J M, et al. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors. Journal of the American Chemical Society, 2004, 126(1): 301-310
    [28] Goldman E R, Medintz I L, Whitley J L, et al. A Hybrid Quantum Dot-Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor. Journal of the American Chemical Society, 2005, 127(18): 6744-6751
    [29] Zhang C Y, Yeh H C, Kuroki M T, et al. Single-Quantum-Dot-Based DNA Nanosensor. Nature Materials, 2005, 4(11): 826-831
    [30] Zhang C Y, Johnson L W. Quantum Dot-Based Fluorescence Resonance Energy Transfer with Improved FRET Efficiency in Capillary Flows. Analytical Chemistry, 2006, 78(15): 5532-5537
    [31] Zhang C Y, Johnson L W. Quantum-Dot-Based Nanosensor for RRE IIB RNA-Rev Peptide Interaction Assay. Journal of the American Chemical Society, 2006, 128(16): 5324-5325
    [32] Zhang C Y, Johnson L W. Quantifying RNA-Peptide Interaction by Single-Quantum-Dot-Based Nanosensor: An Approach for Drug Screening. Analytical Chemistry, 2007, 79 (20): 7775-7781
    [33] Zhang C Y, Johnson L W. Homogenous Rapid Detection of Nucleic Acids Using Two-Color Quantum Dots. Analyst, 2006, 131(4): 484-488
    [34] Agrawal A, Zhang C Y, Byassee T, et al. Counting Single Native Biomolecules and Intact Viruses with Color-Coded Nanoparticles. Analytical Chemistry, 2006, 78 (4): 1061-1070
    [35] Huang S, Xiao Q, He Z K, et al. A High Sensitive and Specific QDs FRET Bioprobe for MNase. Chemical Communications, 2008, (45): 5990-5992
    [36] Shi L F, Paoli V D, Rosenzweig N, et al. Synthesis and Application of Quantum Dots FRET-Based Protease Sensors. Journal of the American Chemical Society, 2006, 128(32): 10378-10379
    [37] Shi L F, Rosenzweig N, Rosenzweig Z. Luminescent Quantum Dots Fluorescence Resonance Energy Transfer-Based Probes for Enzymatic Activity and Enzyme Inhibitors. Analytical Chemistry, 2007, 79(1): 208-214
    [38] Pons T, Medintz I L, Sapsford K E, et al. On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles. NanoLetters, 2007, 7(10): 3157-3164
    [39] Eunkeu O, Hong M Y, Lee D, et al. Inhibition Assay of Biomolecules based on Fluorescence Resonance Energy Transfer (FRET) between Quantum Dots and Gold Nanoparticles. Journal of the American Chemical Society, 2005, 127(10): 3270-3271
    [40] Kim Y P, Oh Y H, Oh E, et al. Energy Transfer-Based Multiplexed Assay of Proteases by Using Gold Nanoparticle and Quantum Dot Conjugates on a Surface. Analytical Chemistry, 2008, 80(12): 4634-4641
    [41] Kondon M, Kim J, Udawatte N, et al. Origin of Size-Dependent Energy Transfer from Photoexcited CdSe Quantum Dots to Gold Nanoparticles. The Journal of Physical Chemistry C, 2008, 112 (17): 6695-6699
    [42] Cui D X, Pan B F, Zhang H, et al. Self-Assembly of Quantum Dots and Carbon Nanotubes for Ultrasensitive DNA and Antigen Detection. Analytical Chemistry, 2008, 80(21): 7996-8001
    [43] Dennis A M and Bao G. Quantum Dot-Fluorescent Protein Pairs as Novel Fluorescence Resonance Energy Transfer Probes. Nano Letters, 2008, 8(5): 1439-1445
    [44] Freeman R, Gill R, Shweky I, et al. Biosensing and Probing of Intracellular Metabolic Pathways by NADH-Sensitive Quantum Dots. Angewandte Chemie International Edition, 2009, 48(2): 309-313
    [45] Goldman E R, Anderson G P, Mattoussi H, et al. Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents. Analytical Chemistry, 2004, 76(3): 684-688
    [46] Goldman E R, Anderson G P, Mattoussi H, et al. Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein To Provide New Reagents for Fluoroimmunoassays. Analytical Chemistry, 2002, 74(4): 841-847
    [47] Cui R J, Pan H C, Zhu J J, et al. Versatile Immunosensor Using CdTe Quantum Dots as Electrochemical and Fluorescent Labels. Analytical Chemistry, 2007, 79(22): 8494-8501
    [48] Han M Y, Gao X H, Su J K, et al. Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nature Biotechnology, 2001, 19(7): 631-635
    [49] Gao X H, Nie S M. Doping Mesoporous Materials with Multicolor Quantum Dots. The Journal of Physical Chemistry B, 2003, 107(42): 11575-11578
    [50] Gao X H, Nie S M. Quantum Dot-Encoded Mesoporous Beads with High Brightness and Uniformity: Rapid Readout Using Flow Cytometry. Analytical Chemistry, 2004, 76 (8): 2406-2410
    [51] Yang J, Dave S R, Gao X H. Quantum Dot Nanobarcodes: Epitaxial Assembly of Nanoparticle-Polymer Complexes in Homogeneous Solution. Journal of the American Chemical Society, 2008, 130(15): 5286-5292
    [52] Hild W A, Breunig M, Goepferich A. Quantum Dots-Nano-Sized Probes for the Exploration of Cellular and Intracellular Targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68(2): 153-168
    [53] Bruchez M, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 1998, 281(5385): 2013-2016
    [54] Chan W C, Nie S M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 1998, 281(25): 2016-2018
    [55] Wu X Y, Liu H J, Liu J H, et al. Immunofluorescent Labeling of Cancer Marker Her2 and other Cellular Targets with Semiconductor Quantum Dots. Nature Biotechnology, 2003, 21(1): 41-46
    [56] Jaiswal, J K, Mattoussi H, Mauro J M, etal. Long-Term Multiple Color Imaging of Live Cells Using Quantum Dot Bioconjugates. Nature Biotechnology, 2003, 21(1): 47-51
    [57] Li Z H, Wang K M, Tan W H, et al. Immunofluorescent Labeling of Cancer Cells with Quantum Dots Synthesized in Aqueous Solution. Analytical Biochemistry, 2006, 354(2): 169-174
    [58] Schroeder J E, Shweky I, Shmeeda H, et al. Folate-Mediated Tumor Cell Uptake of Quantum Dots Entrapped in Lipid Nanoparticles. Journal of Controlled Release, 2007, 124(1): 28-34
    [59] Lagerholm B C, Wang M M, Ernst L A, et al. Multicolor Coding of Cells with Cationic Peptide Coated Quantum Dots. Nano Letters, 2004, 4(10): 2019-2022
    [60] Chakraborty S K, Fitzpatrick J A, Phillippi J A, et al. Cholera Toxin B Conjugated Quantum Dots for Live Cell Labeling. Nano Letters, 2007, 7(9): 2618-2626
    [61] Nimjee S M, Rusconi C P, Sullenger B A. Aptamers: An Emerging Class of Therapeutics. Annual Review of Medicine, 2005, 56: 555-583
    [62] Nimjee S M, Rusconi C P, Sullenger B A. Aptamers Come of Age at Last. Nature Reviews Microbiology, 2006, 4(8): 588-596
    [63] Shangguan D, Li Y, Tang Z, et al. Aptamers Evolved from Live Cells asEffective Molecular Probes for Cancer Study. Proceedings of the National Academy of Sciences, 2006, 103(32): 11838-11843
    [64] Nissenbaum E L, Moreno A F, and Wang A Z. Nanotechnology and Aptamers: Applications in Drug Delivery. Trends in Biotechnology, 2008, 26(8): 442-449
    [65] Chen X C, Deng Y L, Lin Y, et al. Quantum Dot-Labeled Aptamer Nanoprobes Specifically Targeting Glioma Cells. Nanotechnology, 2008, 19(23): 1-6
    [66] Chu TC, Shieh F, Lavery LA, et al. Labeling Tumor Cells with Fluorescent Nanocrystal-Aptamer Bioconjugates. Biosensors and Bioelectronics, 2006, 21(10): 1859-1866
    [67] Severine L G, Istvan V, and Albertvd Berg. Quantum Dots Based Probes Conjugated to Annexin V for Photostable Apoptosis Detection and Imaging. Nano Letters, 2006, 6(9): 1863-1869
    [68] Chang Y P, Pinaud F, Antelman J, et al. Tracking Bio-Mmolecules in Live Cells using Quantum Dots. Journal of Biophotonics, 2008, 1(4): 287-298
    [69] Yildiz A, Forkey J N, McKinney S A, et al. Myosin V walks Hand-over-Hand: Single Fluorophore Imaging with 1.5-nm Localization. Science, 2003, 300(5628): 2061-2065
    [70] Warshaw D M, Kennedy G G, Work S S, et al. Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophysical Journal, 2005, 88(5): 30-32
    [71] Courty S, Luccardini C, Bellaiche Y, et al. Tracking Individual Kinesin Motors in Living Cells Using Single Quantum-Dot Imaging. Nano Letters, 2006, 6(7): 1491-1495
    [72] Dahan M, Levi S, Luccardini S, et al. Diffusion Dynamics of Glycine Receptors Revealed by Single–Quantum Dot Tracking. Science, 2003, 302(5644): 442-445
    [73] Rajan S S, Liu H Y, Vu T Q. Ligand-bound quantum dot probes for studying the molecular scale dynamics of receptor endocytic trafficking in live cells. ACS Nano, 2008, 2(6): 1153-1166
    [74] F Chen, D Gerion. Fluorescent CdSe/ZnS Nanocrystal-Peptide Conjugates for Long-Term, Nontoxic Imaging and Nuclear Targeting in Living Cells. Nano letters, 2004, 4(10): 1827-1832
    [75] Bagalkot V, Zhang L F, Nissenbaum E L, et al. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy. Nano Letters, 2007, 7(10): 3065-3070
    [76] Yezhelyev M V, Qi L F, O’Regan R M, et al. Proton-Sponge Coated Quantum Dots for siRNA Delivery and Intracellular Imaging. Journal of the American Chemical Society, 2008, 130(28): 9006-9012
    [77] Qi L F and Gao X H. Quantum Dot-Amphipol Nanocomplex for Intracellular Delivery and Real-Time Imaging of siRNA. ACS Nano, 2008, 2(7): 1403-1410
    [78] Derfus AM, Chen AA, Min DH, et al. Targeted Quantum Dot Conjugates for siRNA Delivery. Bioconjugate Chemistry, 2007, 18(5): 1391-1396
    [79] Cai W B, Hsu A R, Li Z B, et al. Are Quantum Dots Ready for in vivo Imaging in Human Subjects?. Nanoscale Research Letters, 2007, 2(6): 265-281.
    [80] Akerman M E, Chan W C W, Laakkonen P, et al. Nanocrystal Target in In Vivo. Proceeding of the National Academy of Science of the United States of America, 2002, 99(20): 12617-12621
    [81] Gao X H, Cui Y Y, Levenson R M, et al. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nature Biotechnology, 2004, 22(8): 969-976
    [82] Ballou B, Lagerholm C, Ernst L A, et al. Noninvasive Imaging of Quantum Dots in Mice. Bioconjugate Chemistry, 2004, 15(1): 79-86
    [83] Kobayashi H, Hama Y, Koyama Y, et al. Simultaneous Multicolor Imaging of Five Different Lymphatic Basins Using Quantum Dots. Nano Letters, 2007, 7(6): 1711-1716
    [84] Daou TJ, Li L, Reiss P, et al. Effect of Poly(ethylene glycol) Length on the in vivo Behavior of Coated Quantum Dots. Langmuir, 2009, 25(5): 3040-3044
    [85] Larson D R, Zipfel W R, Williams R M, et al. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science, 2003, 300(5624): 1434-1436
    [86] Kim S, Lim Y T, Soltesz E G, et al. Near-Infrared Fluorescent Type II Quantum Dots for Sentinel Lymph Node Mapping. Nature Biotechnology, 2004, 22(1): 93-97
    [87] Cai W, Shin D W, Chen X Y, et al. Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects. Nano Letters, 2006, 6(4): 669-676
    [88] Yong K T, Hu R, Roy I, et al. Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods. ACS Applied Materials & Interfaces, 2009, 1 (3): 710–719
    [89] Kim S, Lim Y T, Soltesz E G, et al. Self-Illuminating Quantum Dot Conjugatesfor in Vivo Imaging. Nature Biotechnology, 2006, 24(3): 339-343
    [90] Bakalova R, Zhelev Z, Aoki I, et al. Designing Quantum-Dot Probes. Nature Photonics, 2007, 1(9): 487-489
    [91] Cai W, Chen K, Li Z B, et al. Dual-Function Probe for PET and Near-Infrared Fluorescence Imaging of Tumor Vasculature. Journal of Nuclear Medicine, 2007, 48(11): 1862-1870
    [92] Mulder W J M, Koole R, Brandwijk P J, et al. Quantum Dots with a Paramagnetic Coating as a Bimodal Molecular Imaging Probe. Nano letters, 2006, 6(1): 1-6
    [93] Koole R, Schooneveld M M, Hilhorst J, et al. Paramagnetic Lipid-Coated Silica Nanoparticles with a Fluorescent Quantum Dot Core: A New Contrast Agent Platform for Multimodality Imaging. Bioconjugate Chemistry, 2008, 19 (12): 2471-2479
    [94] Gao J H, Zhang B, Gao Y, et al. Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction: A Simple Preparation for Multifunctional Nanostructures. Journal of the American Chemical Society, 2007, 129 (39): 11928-11935
    [95] Xie H Y, Zuo C, Liu Y, et al. Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism. Small, 2005, 1(5): 506-509
    [96] Carion O, Mahler B, Pons T, et al. Synthesis, Encapsulation, Purification and Coupling of Single Quantum Dots in Phospholipid Micelles for Their Use in Cellular and in Vivo Imaging. Nature Protocols, 2007, 2(10): 2383-2390
    [97] Depalo N, Mallardi A, Comparelli R, et al. Luminescent Nanocrystals in Phospholipid Micelles for Bioconjugation: An Optical and Structural Investigation. Journal of Colloid and Interface Science, 2008, 325(2): 558-566
    [98]李建武,萧能,余瑞元,等.生物化学实验原理和方法.第一版.北京:北京大学出版社, 1994: 404-409
    [99] Yu W W, Qu L, Guo W, et al. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chemistry of Materials, 2003, 15(14): 2854-2860
    [100]丁劲松,杨敏,陈琼.聚乙二醇衍生化磷脂与脂质体立体稳定性.生国医药工业杂志, 2004, 35(1): 55-58
    [101] Rasmussen J P, Riviere J E, Riviere N A. Variables Influencing Interactions of Untargeted Quantum Dot Nanoparticles with Skin Cells and Identification of Biochemical Modulators. Nano Letters, 2007, 7(5): 1344-1348
    [102] Hardman R A. Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Environmental Health Perspectives, 2006, 114(2): 165-172
    [103] Shiohara A, Hoshino A, Hanaki K. On the Cyto-Toxicity Caused by Quantum Dots. Microbiology and Immunology, 2004, 48(9): 669-675
    [104] Wina K Y, Feng S S. Effects of Particle Size and Surface Coating on Cellular Uptake of Polymeric Nanoparticles for Oral Delivery of Anticancer Drugs. Biomaterials, 2005, 26(15): 2713-2722
    [105] Fukushima S, Miyata K, Nishiyama N, et al. Pegylated Polyplex Micelles from Triblock Catiomers with Spatially Ordered Layering of Condensed pDNA and Buffering Units for Enhanced Intracellular Gene Delivery. Journal of the American Chemical Society, 2005, 127(9): 2810-2811
    [106] Gref R, Minamitake Y, Perrachia M T, et al. Biodegradable Long Circulating Polymeric Nanospheres. Science, 1994, 263(5153): 1600-1603
    [107]邢新丽,何晓晓,王柯敏,等.细胞吞噬表面电荷不同的硅纳米颗粒的研究.高等学校化学学报, 2006, 27(11): 2076-2078
    [108]白冬雨,马鸿达.血管生成素在血管新生中的作用.武警医学院学报, 2005, 14(4): 323-325
    [109]周继英,范洪臣.人血管生成素研究进展.生物信息学, 2006, 4(4): 182-185
    [110]韩剑锋,彭诗东,冀文茹.促血管生成素在机体和肿瘤血管形成中的作用.内蒙古医学院学报, 2007, 29(1): 70-72
    [111] Li W, Yang X H, Wang K M, et al. Real-Time Imaging of Protein Internalization Using Aptamer Conjugates. Analytical Chemistry, 2008, 80(13): 5002-5008
    [112] Nobile V, Russo N, Hu G F, et al. Inhibition of Human Angiogenin by DNA Aptamers: Nuclear Colocalization of an Angiogenin-Inhibitor Complex. Biochemistry, 1998, 37(19): 6857-6863
    [113]张雷雷,胥全彬,马清钧.血管生成素的结构与功能的研究进展.生物技术通讯, 2006, 17(2): 248-251
    [114]蒋中华,张建辉.生物分子固定化技术及其应用.北京:化学工业出版社, 1998: 91-95
    [115] Hermanson G T. Bioconjugate Techniques. New York: Academic Press, 2008: 493-495
    [116] Wu S M, Zhao X, Zhang Z L, et al. Quantum-Dot-Labeled DNA Probes for Fluorescence in Situ Hybridization (FISH) in the Microorganism Escherichiacoli. ChemPhysChem, 2006, 7(5): 1062-1067
    [117] Hu G F, Chang S I, Riordan J F, et al. An Angiogenin-Binging Protein from Endothelial Cell. Proceedings of National Academy of Sciences of the United States of America, 1991, 88(6): 2227-2231
    [118] Tsuji T, Sun Y Q, Kishimoto K, et al. Angiogenin is Translocated to the Nucleus of HeLa Cells and Is Involved in Ribosomal RNA Transcription and Cell Proliferation. Cancer Research, 2005, 65(4): 1352-1360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700