光皮树果实生物液体燃料绿色制备工艺原理与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国缺油少气,石油和食用植物油的对外依存度均己高达60%。随着国民经济的快速发展,植物油供需矛盾日益突出,采用可再生的植物油资源制备生物燃料已成为全球关注的热点。而现有植物油脂资源无法满足市场需要。因此,培育特色高含油植物资源,开发高效绿色加工技术意义重大。光皮树(Swida wilsoniana)全果含油高达30%以上,是典型的高含油木本油料植物,其油脂既可作轻化工业的原料,也是理想的生物柴油原料。遵循生态能值原理,采用绿色技术制备能源产品,构建光皮树油料资源能源化绿色转化技术体系,对于促进光皮树等能源油料植物的种植,降低石化能源消耗,维护我国能源安全,实现低碳经济目标有着重要意义。
     本论文以湖南省林科院选育出的光皮树良种(湘林G1)的果实为研究对象,以能源化利用为目的,运用生物技术、绿色化学工程技术以及生态经济能值理论进行光皮树果实中油脂的能源化转化研究。全面分析光皮树果实的基本成分,系统研究光皮树果实高效制油和油脂清洁转化制备液体燃料等绿色技术,并开展了光皮树果实能源化过程的能量平衡分析,构建出一套光皮树果能源化利用的绿色转化技术体系,为光皮树果实能源化利用提供了理论基础和技术支持。主要结果如下:
     1.系统分析了光皮树(湘林G1)果实的基本组成和脂肪酸分布规律,初步建立了光皮树果实的近红外检测模型及数据库。①光皮树果由果皮(41.32%)、种皮(49.93%)和种仁(8.75%)组成,其含油率分别为55.00%、11.53%和62.14%;不同部位油的脂肪酸组成均以油酸和亚油酸含量为主,其中果皮中油脂的脂肪酸成分主要包括棕榈酸(24.41%)、亚油酸(32.46%)、油酸(30.07%)和硬脂酸(1.64%),种皮中油脂的脂肪酸主要包括棕榈酸(12.48%)、亚油酸(54.79%)、油酸(26.93%)和硬脂酸(2.18%),种仁中油脂的脂肪酸主要包括棕榈酸(6.61%)、亚油酸(58.80%)、油酸(22.32%)和硬脂酸(2.03%)。②光皮树果实的基本质量组成为:油脂(33.95%),纤维素(29.16%)、蛋白质(7.72%)、淀粉(10.60%)、糖(3.22%)、水分(9.36%)、磷脂(0.66%)和其他成分(5.33%)。③针对光皮树果实常用检测指标(含油率、水分和热值),以46个光皮树果实为基础,建立了相应指标的近红外光谱分析模型,其中含油率的相关系数为0.99,水分的相关系数为0.95,粗蛋白的相关系数为0.91,热值的相关系数为0.96。
     2.建立了适合光皮树果实制油的“冷榨-正丁醇浸提”绿色制油新工艺,实现了光皮树油和磷脂的同步提取。①采用冷榨制油技术制备光皮树油,控制光皮树果实含水率为9.00%左右,压榨榨轴转速30-40rpm,出饼孔径为4-8mm时,经一次压榨后光皮树饼粕残油率可降低到7.00%;②以正丁醇为溶剂提取光皮树油,在提取油脂的同时,实现油脂中伴随物(如磷脂、维生素E等)的高效浸提;正丁醇提油的最佳工艺参数:浸出次数3次,浸出时间为90min,浸出温度为60℃,液料比为1.2:1,浸提率可达88.62%;③采用“纤维素酶+中性蛋白酶”复合酶体系进行光皮树果实提油,最优组合方案为:先纤维素酶3h再加蛋白酶,加酶量2.5%,酶比例4:1,酶解时间4h,提取的油脂颜色浅、杂质少、流动性好,光皮树油提取率可达80.54%;④“冷榨-正丁醇浸提”制取光皮树油,可以实现提油率达96.73%,磷脂提取率达97.69%。该组合工艺既能降低冷榨制油的能耗,又能减轻后述正丁醇提油的负荷,实现油脂和磷脂等高附加值产物的同步提取,是一种极具开发潜力的绿色制油新工艺。
     3.采用悬浮聚合法制备了用于固定化酶的含有环氧基团磁性多孔高分子微球,提高了酶促酯交换过程中酶的活性和稳定性。①采用悬浮聚合法制备了用于固定化酶的含环氧基团的磁性多孔高分子微球,粒径为4μm,粒子分布均匀,表面呈多孔结构;②以GHD(40)为载体优化了脂肪酶的固定化条件:载体/脂肪酶(m/m)=125mg/g,固定化时间为7h,酶的吸附量为118.5mg·g-1,比酶活7.56×105U/g,酶的活力回收率为0.95;③制备了三种不同的环氧值的固定化假丝酵母脂肪酶,采用单分子层吸附模型Langmiur方程拟合GHD吸附光皮树的吸附等温线,相关系数大于0.99;分析聚合物的环氧值和温度对光皮树油吸附量的影响,建立了拟合动力学二级吸附方程,相关系数大于0.999,光皮树油在固定化酶表面吸附活化能为30.44kJ/mol,和游离酶相比,固定化酶催化光皮树油酯交换的最佳反应温度从37℃提高到42℃,最适反应pH从7.2提高到7.5,重复使用12次,固定化酶的活力仍保持在92%以上;④GC-MS分析光皮树油甲酯,其主要成分是油酸甲酯(50.61%),棕榈酸甲酯(14.74%),硬脂酸甲酯(7.11%),是传统石化柴油的良好替代品。
     4.建立了催化裂化和酯化降酸相结合的植物油裂解新工艺。①在CaO中加入KF,合成了适合植物油裂解的高效固体催化剂KF/CaO,该催化剂呈层片状多孔状态,比表面积较CaO有较大的提高,同时有效的避免了碱性中心被CO2等酸性气体中和,从而提高了催化剂的活性和稳定性;②以自制KF/CaO为催化剂进行光皮树油催化裂解,最佳工艺条件为:催化剂1.0%,温度494.2℃,反应时间68.6mmin,液相收率高达84.0%以上;③针对裂解产品中具有一定的羧酸化合物,导致产品酸偏高,采用离子液体[Hnmp]+HSO4为催化剂对裂解产物进行酯化降酸,获得了质量稳定的富烃基生物液体燃料,最高酯化率达95.7%,且离子液体重复使用4次后,总体转化率仍保持在90%以上,最佳酯化工艺参数:醇油比30%,反应温度75℃,反应时间100min,催化剂2.0%。
     5.基于生态能值原理,结合投入产出模型进行了光皮树果实制备生物液体燃料过程的生命周期能量分析。结果表明:如果不考虑副产品的能量分配效益,甲酯基生物液体燃料和富烃基生物液体燃料的净能值(NEV)分别为31593.38MJ/ha和36924.16MJ,化石能效比(FER)分别为3.94和6.71;如果考虑副产品的能量分配效益,甲酯基生物液体燃料和富烃基生物液体燃料的净能值(NEV)分别为98453.66MJ/ha和99121.2MJ/ha,化石能效比(FER)分别为4.52和7.17。上述结果进一步证明了光皮树果实制备的甲酯基生物液体燃料和富烃基生物液体燃料均具有正能量效益,可以节约部分化石能源。但从能量效益的角度来说,富烃基生物液体燃料更具竞争性,现有的植物油催化裂解技术较现有的酯交换技术更适于生物液体燃料的制备。研究结果也为光皮树油料替代化石燃料的可行性研究以及光皮树能源化产品开发技术路线的选择提供了一定的借鉴作用。
China is a country short in supplies of petroleum and natural gases. The percentage of imported petrols and edible vegetable oil in China has gone up to60%in recent years. Along with the rapid development of national economy and fast depletion in fossil energy resources, however, the conflict between the supply and demand in biofuel and edible vegetable oil has become one of the key issues. As an alternative solution to energy shortage crisis, use of biofuel as a green energy resource has been received worldwide attention.To fulfill the further need in biofuel production it is thus of high importance to promote the cultivation of oil-rich plants and to develope new green technologies for biofuel processing with high efficiency. Swida wilsoniana is one of the typical plant species for biodiesel feedstock. The oil content in the whole fruit of Swida wilsoniana is higher than30%. Its oil can be converted into products in light industry and biodiesel production. Based on the principle of ecological energy value, the present study is focused on the establishment of a new green bio-energy transform technology system using the fruit of Swida wilsoniana as raw material. The results obtained from the present work will be useful with respect to the enhancement of oil-plant cultivation, reduction of fossil energy consumption, ensurence of national energy-safty and promotion of low carbon Economy.
     Along with the rapid development of national economy and fast depletion in fossil energy resources, however, the conflict between the supply and demand in biofuel and edible vegetable oil has become one of the key issues. The consumption of the edible vegetable oil in China has been increasing significantly and the proportion of the edible vegetable oil imported from overseas has amounted up to more than60%. China is a country short in supplies of petroleum and natural gases and the percentage of imported petrols in China has gone up to60%in recent years. As an alternative solution to energy shortage crisis, use of biofuel as a green energy resource has been received worldwide attention. To fulfill the further need in biofuel production it is thus of high importance to promote the cultivation of oil-rich plants and to develope new green technologies for biofuel processing with high efficiency. Swida wilsoniana is one of the typical plant species for biodiesel feedstock. The oil content in the whole fruit of Swida wilsoniana is higher than30%. Its oil can be converted into products in light industry and biodiesel production. Based on the principle of ecological energy value, the present study is focused on the establishment of a new green bio-energy transform technology system using the fruit of Swida wilsoniana as raw material. The results obtained from the present work will be useful with respect to the enhancement of oil-plant cultivation, reduction of fossil energy consumption, ensurence of national energy-safty and promotion of low carbon Economy.
     In this work, the Swida wilsoniana fruits of the improved varieties (Xianglin Gl) cultivated by the Hunan Academy of Forestry (HAF) were selected as the raw material, to explore the bio-transformation of the Swida wilsoniana fruit on the basis of bio-techniques, green chemical engineering technology and emergy theory. Grounded on the comprehensive analysis of the composition of Swida fruits, the thesis probed into the green technologies of efficient oil extraction and clean liquid fuel bioconversion. In addition, life cycle assessment of the whole procedure was carried out. A set of green conversion technology system on Swida wilsoniana fruit was build up, which provided a theoretical ground and technology support for energy-application of Swida wilsoniana fruit. The results were summerized as follows:
     1. The compounds and distribution of fatty acids in Swida wilsoniana fruit (Xianglin G1) were systematically investigated, and the near infrared NIR model and database of Swida wilsoniana fruit were built.①The whole fruit was included sarcocarp (41.32%), testa (49.93%) and kernel (8.75%). The oil content varied in the different part of fruit, which was shown as55.00%,11.53%and62.14%in sarcocarp, pit and kernel, respectively. Oleic acid and linoleic acid were the main fatty acids in fruit. The main fatty acid compounds in sarcocarp were cetylic acid (24.41%), linoleic acid (32.46%), oleic acid (30.07%) and octadecanoic acid (1.64%), respectively. The main fatty acid compounds in testa were cetylic acid (12.48%), linoleic acid (54.79%), oleic acid (26.93%) and octadecanoic acid (2.18%), respectively. The main fatty acid compounds in testa were cetylic acid (6.61%), linoleic acid (58.80%), oleic acid (22.32%) and octadecanoic acid (2.03%), respectively.②The Swida wilsoniana fruit (Xianglin G1) was composed of oil of33.95%, cellulose of29.16%, protein of7.72%, starch of10.60%, sugar of3.22%, water of9.36%, phospholipid of0.66%, and some other of5.33%.③Based on46samples of fruit, the Near Infrared Spectroscopy (NIRS) model was established with the convention properties of fruit including oil content, moisture and calorific value. The correlation coefficients of oil content, moisture, protein and calorific value were0.99,0.95,0.91and0.96, respectively.
     2. The new "cold pression-n-butyl alcohol extraction" procedure was built up in the present work.①That procedure can be carried out without preheating, which simplifying process with lower energy requirement. In addition, protein inside would be applied as an industrially feedstock. The residual oil content of once-pressing was lower than7%, when the operation condition was fruit moisture9%, pressing axle rotation speed30-40rpm, and exit diameter4-8mm.②The by-products can be extracted by n-butyl alcohol with higher efficiency during cold compressing. The optimal condition was shown as:extraction3times, extraction time90min, extraction temperature60℃and liquid/solid ratio1.2:1, in which the oil extraction rate achieved around88.62%.③The compound enzyme of "cellulose enzyme+neutral protease" was adopted to realize oil extraction from Swida wilsoniana fruit in this study. The optimal operation process was described as following:adding2.5%of protease into system after the treatment of cellulose enzyme3h with the mixing ratio of enzyme of4:1and enzymolysis time of4h. The color of extracted oil was lighter. That process is better than the other processes with less impurity and better fluidity. However, the oil extraction rate reached80.54%.④The energy consumptions of cold-pressing were decreased by "cold pression-rc-butyl alcohol extraction" with96.73%of oil extraction rate and97.69%phospholipid extraction rate, while the load of n-butyl alcohol extraction was also reduced with simultaneous extraction of oil and phospholipid. Therefore, the "cold pression-n-butyl alcohol extraction" is a promising green processing technology.
     3. The mechanism of methoxycarbonyl bio-diesel catalytically produced from Swida wilsoniana oil by CRL was studied in this work.①Porous magnetic polymer particles with epoxy group were produced for immobilized enzyme with particle diameter4μm. The surface of particles was porous with uniform distribution.②The immobilization condition of lipase was optimized with GHD(40) as carrier:lipase125mg/g, immobilization time7h, enzyme absorption118.5mg·-1, specific enzyme acitivity7.56×105U/g, and activity recovery0.95.③Three kinds of immobilized CRL with different epoxide number were made. The adsorption isotherm line was fitted by Langmiur equation of monomolecular layer, which correlation coefficient was higher than0.99. The effects of epoxide number and temperature on adsorption of Swida wilsoniana oil were researched. The fitting pseudo-second-order kinetic equation was built up with correlation coefficient higher than0.99. And for the oil of Swida wilsoniana, the surface of the immobile lipase has30.44kJ/mol activation energy of adsorption.④Compared with isolated enzyme, the optimal reaction temperature of interesterification catalyzed by immobilized enzyme was enhanced from37℃to42℃, while optimal pH was increased from7.2to7.5. After recovering12times, the acitivity of immobilized enzyme was kept over92%. However, the similar catalyzing trends were found between immobilized and isolated enzymes. That trend was shown as increasing in the initial process and then decreasing with moisture increasing.⑤As depicted by GC-MS, The main compounds in Swida wilsoniana oil methyl ester were methyloleate (50.61%), methyl hexadecanoate (14.74%), and methyl stearate (7.11%). Therefore, methyl ester from Swida wilsoniana oil should be a potential substitute for conventional fossil diesel.
     4. The catalytic pyrolysis of Swida wilsoniana oil into rich-alkyl bio-oil by alkalinity catalyst was carried out in this research. The results were described as follows:CD The composite catalysts were composed of adding KF into CaO. The lamellar structure with porosity was clearly imaged by SEM. Its specific area was enhanced significantly compared with CaO. As shown by XRD analyses, neutralization of basic sites during addition of KF was inhibited, resulting in increasing catalyst's activity and stability.②The optimal condition in KF/CaO runs were catalyst1.0%, temperature494.2℃, and reaction68.6min, in which the liquid yield reached upwards of84.0%.③There are several kinds of carboxylic acids in The pyrolysis products have several kinds of carboxylic acids resulting a high acid value. Therefore, ionic liquid [Hnmp]+HSO4-was applied as fine catalyst in order to reduce acid value of product in this study. After that treatment, the rich-alkyl bio-oils with good quality were obtained. The highest esterification rate was shown as95.7%. In addition, the total esterification rate could be kept as over90%after recovering6times. The optimal condition was alcohol/oil rate30%, reaction temperature75℃, reaction time100min, and catalyst additive2.0%.
     5. Based on the principle of eco-energy value and the input-output model, the energy life cycle analysis for biofuel from Swida wilsoniana fruits was carried out. The results showed that, before allocating co-product value, the net energy value (NEV) of carbomethoxy and rich hydrocarbon biofuel were31593.38MJ/ha and36924.16MJ, and the fossil energy ratio (FER) were3.94and6.71, respectively.And if conside the co-product value, the net energy value (NEV) of carbomethoxy and rich hydrocarbon biofuel were98453.66MJ/ha and99121.2MJ/ha, and the fossil energy ratio (FER) were4.52and7.17, respectively. And the results further demonstrated that both the carbomethoxy and the rich hydrocarbon biofuel from Swida Wilsoniana fruits have positive energy efficiency, and can save some of the fossil fuel. But from the standpoint of energy efficiency, the hydrocarbyl-rich biofuel is more competitive. Compared with the conventional transesterification technology, the catalytic pylolysis technology is more suitable for the conversion of biofuel. The research results provided some information for us to choose the emergy product or techonology which is more effective.
引文
[1]Ooi Y-S, Zakaria R, Mohamed AR, et al. Catalytic conversion of palm oil-based fatty acid mixture to liquid fuel[J]. Biomass and Bioenergy,2004,27 (5):477-484.
    [2]Hall DO, Rosillo-Calle F, Williams RH, et al. Biomass for energy:supply prospects[M]. Earthscan,1993.
    [3]Welford R. Life cycle assessment[J]. Corporate environmental management, 1999,1.
    [4]Sang OY. Biofuel production from catalytic cracking of palm oil[J]. Energy Sources,2003,25 (9):859-869.
    [5]王静平,孟绍江,李京民.木姜子属三种植物油的脂肪酸成分[J].植物学报,1983,3:245-249.
    [6]周海霞,袁丽红.能源植物的开发与利用[J].中国科技论文在线,2008.3:179-183.
    [7]梁仰贞.光皮树的栽培技术[J].中国土特产,1997,2:13.
    [8]裴会明,陈明琦.黄连木的开发利用[J].中国野生植物资源,2005,24(1):43-44.
    [9]张春强,刁其玉,屠焰,等.麻疯树籽实饲用营养价值分析[J].中国饲料,2009,21:013.
    [10]王晓春,邓世荣.北方油茶一—文冠果栽培技术[J].农业新技术,2004,3:4-5.
    [11]陈建忠,张水生,张新,等.国内外油桐发展现状与建阳市发展战略对策的探讨[J].亚热带农业研究,2009,5(1):69-72.
    [12]周繇.长白山区温带野生油脂植物资源[J].中国油脂,2003,28(5):13-17.
    [13]罗艳,刘梅.开发木本油料植物作为生物柴油原料的研究[J].中国生物工程杂志,2007,27(7):68-74.
    [14]侯元凯,刘松杨,黄琳,等.我国生物柴油树种选择与评价[J].林业科学研究,2009,22(1):7-13.
    [15]林铎清,邢福武.中国非粮生物柴油能源植物资源的初步评价[J].中国油脂,2009,34(11):1-7.
    [16]龙川.生物柴油原料树种综合评价及乌桕基FAME的开发利用[D].福州: 福建农林大学,2008.
    [17]刘光斌,黄长干,刘苑秋,等.黄连木油的提取及其制备生物柴油的研究[J].中国粮油学报,2009,24(7):84-88.
    [18]程树棋.理想的生物质液体燃料光皮树油[J].太阳能,1994,2:15-29.
    [19]贾良智,周俊,植物.中国油脂植物[M].科学出版社,1987.
    [20]王静萍,袁立明,李京民,等.光皮梾木油的嗅味及非皂化物成分[J].中国粮油学报,1995,10(2):48-52.
    [21]彭红,韩东平,刘玉环,等.光皮树籽抽出物的成分分析[J].食品科学,2010,31(12):197-199.
    [22]曾虹燕,李昌珠,蒋丽娟,等.不同方法提取光皮树籽油的GC-MS分析[J].中国生物工程杂志,2004,24(11):82-85.
    [23]曾虹燕,方芳,苏洁龙,等.超临界CO2,微波和超声波辅助提取光皮树子油工艺研究[J].中国粮油学报,2005,20(2)):67-70.
    [24]曾虹燕,曹辉,左映平,等.不同提取方法对光皮树籽油品质的影响[J].中国油料作物学报,2005,27(1):84-87.
    [25]温晓,麻明友,吴显明,等.光皮树籽油的微波提取工艺研究[J].生物质化学工程,2011,45(6):11-14.
    [26]黄志辉,李俊,李昌珠,等.光皮树果实冷榨工艺参数的提取试验[J].农业机械,2012,3:47-49.
    [27]肖志红,刘汝宽,李昌珠,等.光皮树油溶剂萃取脱酸工艺研究[J].粮油加工,2006,11:45-47.
    [28]任娜,刘玉环,韩东平,等.超声波辅助法在光皮树油脱酸工艺中的应用研究[J].粮油加工,2010(4):21-23.
    [29]邢义满,蒋崇林.光皮树油酯化制取生物柴油的中试研究[J].新能源,1997,19(4):38-40.
    [30]丁荣,钟世安,李念,等.基于氯化镁饱和溶液中固定化脂肪酶LipozymeTL IM催化光皮树油脂合成生物柴油[J].燃料化学学报,2010,38(003):287-291.
    [31]李昌珠,蒋丽娟,程树棋.四种木本植物油制取生物柴油的研究[J].生物质化学工程,2006,40(B12):51-55.
    [32]李昌珠,张爱华,肖志红,等.用碱性离子液体催化光皮树果实油制备生物柴油[J].中南林业科技大学学报,2011,31(3):38-43.
    [33]温晓,麻明友,吴显明,等.超声波辅助光皮树油酯交换制备生物柴油的研究[J].林产化学与工业,2011,31(2):58-62.
    [34]冯兵.光皮树籽生物柴油的酶促合成技术研究[D].湖南农业大学;2010.
    [35]孟中磊,周丽珠,常新民,等.促溶剂法制备光皮树油生物柴油研究[J].广西林业科学,2010,39(4):205-207.
    [36]李念,钟世安.采用固体磷钨酸铯盐催化光皮树油制备生物柴油[J].中南大学学报(自然科学版),2011,42(5)):1226-1231.
    [37]郭华,周建平,廖晓燕.油茶籽的细胞形态和成分及水酶法提取工艺[J].湖南农业大学学报:自然科学版,2007,33(1):83-86.
    [38]Tombs M. Protein bodies of the soybean[J]. Plant physiology,1967,42 (6):797-813.
    [39]SAIO K, WATANABE T. Preliminary investigation on protein bodies of soybean seeds[J]. Agricultural and Biological Chemistry,1966,30 (11):1133-1138.
    [40]Wolf W. Scanning electron microscopy of soybean protein bodies[J]. Journal of the American Oil Chemists'Society,1970,47 (3):107-108.
    [41]Ward J. Processing high oil content seeds in continuous screw presses[J]. Journal of the American Oil Chemists'Society,1976,53 (6):261-264.
    [42]Eggers R, Sievers U, Stein W. High pressure extraction of oil seed[J]. Journal of the American Oil Chemists'Society,1985,62 (8):1222-1230.
    [43]Raventos M, Duarte S, Alarcon R. Application and possibilities of supercritical CO2 extraction in food processing industry:an overview[J]. Food Science and Technology International,2002,8 (5):269-284.
    [44]Craveiro A, Matos F, Alencar J, et al. Microwave oven extraction of an essential oil[J]. Flavour and fragrance journal,1989,4 (1):43-44.
    [45]刘志强,何昭青.水酶法花生蛋白质提取及制油研究[J].中国粮油学报,1999,14(1):36-39.
    [46]Rosenthal A, Pyle D, Niranjan K. Aqueous and enzymatic processes for edible oil extraction[J]. Enzyme Microb Technol,1996,19 (6):402-420.
    [47]Sharma A, Khare S, Gupta M. Enzyme-assisted aqueous extraction of peanut oil[J]. Journal of the American Oil Chemists' Society,2002,79 (3):215-218.
    [48]倪培德,江志炜.高油分油料水酶法预处理制油新技术[J].中国油脂,2002,27(6):5-8.
    [49]谭春兰,袁永俊.水酶法在植物油脂提取中的应用[J].食品研究与开发,2006,27(7):128-130.
    [50]杜彦山,张连富.水酶法提油工艺初步研究[J].粮食与油脂,2005,6:10-12.
    [51]王瑛瑶,贾照宝,张霜玉.水酶法提油技术的应用进展[J].中国油脂,2008,33(7):24-26.
    [52]王文侠,任健.植物油水酶法浸提工艺研究进展[J].现代食品科技,2005,21(2):182-185.
    [53]郭兴凤,陈定刚,孙金全,等.水酶法提油技术概述[J].粮油加工2007,5:70-72.
    [54]Alder-Nissen JL, Gurtler H, Jensen GW, et al. Production of purified vegetable protein. Google Patents; 1984.
    [55]Olsen HA. Method of producing soy protein hydrolysate from fat-containing soy material, and soy protein hydrolysate. Google Patents; 1982.
    [56]周红芹,张向飞.高标6号溶剂油加工工艺的改进[J].石油化工设计,2009,4.
    [57]朱大沛,黄选雄.6号溶剂油浓度爆炸极限的测定[J].中国油脂,1993,4:003.
    [58]阴景喜,端木凡林.论四号溶剂浸出油脂的优点[J].中国油脂,1999,24(5):20-21.
    [59]祁鲲,王瑞元.四号溶剂浸出油脂工艺的生产安全和食品安全[J].中国油脂,2007,32(7):12-14.
    [60]刘煜,王金顺,栾小恒.4号溶剂浸出植物油工艺系统内部热交换技术[J].中国油脂,2002,27(6):16-17.
    [61]祁鲲,王瑞元.四号溶剂浸出油脂工艺的生产安全和食品安全[J].中国油脂,2007,32(7):12-14.
    [62]Reverchon E. Supercritical fluid extraction and fractionation of essential oils and related products[J]. The Journal of Supercritical Fluids,1997,10 (1):1-37.
    [63]Palmer M, Ting S. Applications for supercritical fluid technology in food processing[J]. Food chemistry, 1995,52 (4):345-352.
    [64]Milner C, Trengove R, Bignell CM, et al. Supercritical CO2 Extraction of the Essential Oils of Eucalypts:A Comparison with Other Methods[J]. Modern Methods of Plant Analysis, New Series,1997,19:141-158.
    [65]Taylor LT. Supercritical fluid chromatography for the 21st century[J]. The Journal of Supercritical Fluids, 2009,47 (3):566-573.
    [66]Cherubini F, Stromman AH. Life cycle assessment of bioenergy systems:State of the art and future challenges[J]. Bioresource Technology,2011,102 (2):437-451.
    [67]Achten WM, Almeida J, Fobelets V, et al. Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India[J]. Applied Energy,2010,87 (12):3652-3660.
    [68]Harding K, Dennis J, Von Blottnitz H, et al. A life-cycle comparison between inorganic and biological catalysis for the production of biodiesel[J]. Journal of Cleaner Production,2008,16 (13):1368-1378.
    [69]Griffiths MJ, Harrison ST. Lipid productivity as a key characteristic for choosing algal species for biodiesel production[J]. J Appl Phycol,2009,21 (5):493-507.
    [70]Sanchez F, Vasudevan PT. Enzyme catalyzed production of biodiesel from olive oil[J]. Appl Biochem Biotechnol,2006,135 (1):1-14.
    [71]Schwab A, Dykstra G, Selke E, et al. Diesel fuel from thermal decomposition of soybean oil[J]. Journal of the American Oil Chemists' Society, 1988,65 (11):1781-1786.
    [72]Schwab A, Bagby M, Freedman B. Preparation and properties of diesel fuels from vegetable oils[J]. Fuel,1987,66 (10):1372-1378.
    [73]Assessment LC. Life Cycle Assessment[J]. Inside this Issue,2006:39.
    [74]Curran MA. Environmental life-cycle assessment[J]. The International Journal of Life Cycle Assessment,1996,1 (3):179-179.
    [75]Kim S, Dale BE. Life cycle assessment of various cropping systems utilized for producing biofuels:Bioethanol and biodiesel[J]. Biomass and Bioenergy, 2005,29 (6):426-439.
    [76]Heller MC, Keoleian GA, Volk TA. Life cycle assessment of a willow bioenergy cropping system[J]. Biomass and Bioenergy,2003,25 (2):147-165.
    [77]Pioch D, Lozano P, Rasoanantoandro M, et al. Biofuels from catalytic cracking of tropical vegetable oils[J]. Oleagineux,1993,48 (6):289-292.
    [78]李胜,路明,杜风光.中国小麦燃料乙醇的能量收益[J].生态学报,2007,27(9):3794-3800.
    [79]Nielsen PM, Brask J, Fjerbaek L. Enzymatic biodiesel production: technical and economical considerations[J]. European Journal of Lipid Science and Technology,2008,110 (8):692-700.
    [80]Gunstone FD. Enzymes as biocatalysts in the modification of natural lipids[J]. Journal of the Science of Food and Agriculture,1999,79 (12):1535-1549.
    [81]Bond-Watts BB, Bellerose RJ, Chang MC. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways[J]. Nature chemical biology,2011,7 (4):222-227.
    [82]Bajaj A, Lohan P, Jha PN, et al. Biodiesel production through lipase catalyzed transesterification:an overview[J]. Journal of Molecular Catalysis B:Enzymatic, 2010,62 (1):9-14.
    [83]Courchesne NMD, Parisien A, Wang B, et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches[J]. J Biotechnol,2009,141 (1):31-41.
    [84]Haas MJ, Piazza GJ, Foglia TA. Enzymatic approaches to the production of biodiesel fuels[J]. Lipid Biotechnology,2002:587-598.
    [85]Shah S, Sharma S, Gupta M. Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil[J]. Energy & Fuels,2004,18 (1):154-159.
    [86]Marulanda VF, Anitescu G, Tavlarides LL. Investigations on supercritical transesterification of chicken fat for biodiesel production from low-cost lipid feedstocks [J]. The Journal of Supercritical Fluids,2010,54 (1):53-60.
    [87]Lotero E, Liu Y, Lopez DE, et al. Synthesis of biodiesel via acid catalysis[J]. Industrial & engineering chemistry research, 2005,44 (14):5353-5363.
    [88]Ma F, Hanna MA. Biodiesel production:a review[J]. Bioresource Technology, 1999,70 (1):1-15.
    [89]Meher L, Vidya Sagar D, Naik S. Technical aspects of biodiesel production by transesterification—a review[J]. Renewable and sustainable energy reviews, 2006,10 (3):248-268.
    [90]Marchetti J, Miguel V, Errazu A. Possible methods for biodiesel production[J]. Renewable and sustainable energy reviews,2007,11 (6):1300-1311.
    [91]Shimada Y, Watanabe Y, Sugihara A, et al. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing[J]. Journal of Molecular Catalysis B:Enzymatic,2002,17 (3):133-142.
    [92]Billaud F, Dominguez V, Broutin P, et al. Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil[J]. Journal of the American Oil Chemists'Society,1995,72 (10):1149-1154.
    [93]Tamunaidu P, Bhatia S. Catalytic cracking of palm oil for the production of biofuels:optimization studies[J]. Bioresource Technology, 2007,98 (18):3593-3601.
    [94]滕加伟,赵国良,谢在库,等.ZSM-5分子筛晶粒尺寸对C4烯烃催化裂解制丙烯的影响[J].催化学报,2004,25(8):602-606.
    [95]何蕾,杨朝合.植物油催化裂化生成烃的研究进展[J].炼油技术与工程,2007,37(1):21-24.
    [96]Twaiq FA, Mohamed AR, Bhatia S. Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios[J]. Microporous and Mesoporous Materials,2003,64 (1):95-107.
    [97]陈洁.油脂催化裂解制备液体燃料油基础研究[D].北京:中国林业科学研究院:2010.
    [98]林小羽.油脂催化裂解与非均相催化酯化制备生物燃油基础研究[D].中国林业科学研究院;2012.
    [99]徐俊明,蒋剑春,孙云娟等.介孔分子筛反应精馏催化改性生物质裂解油[J].燃料化学学报,2008,36(4):421-425.
    [100]Huo H, Wang M, Bloyd C, et al. Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels[J]. Environ Sci Technol,2009,43 (3):750-756.
    [101]Klopffer W. Life cycle assessment[J]. Environmental Science and Pollution Research,1997,4 (4):223-228.
    [102]Niederl-Schmidinger A, Narodoslawsky M. Life Cycle Assessment as an engineer's tool?[J]. Journal of Cleaner Production,2008,16 (2):245-252.
    [103]Hernandez P, Kenny P. From net energy to zero energy buildings:Defining life cycle zero energy buildings (LC-ZEB)[J]. Energy and Buildings, 2010,42 (6):815-821.
    [104]Sartori I, Hestnes AG. Energy use in the life cycle of conventional and low-energy buildings:A review article[J]. Energy and Buildings, 2007,39 (3):249-257.
    [105]Finnveden G, Johansson J, Lind P, et al. Life cycle assessment of energy from solid waste—part 1:general methodology and results[J]. Journal of Cleaner Production,2005,13 (3):213-229.
    [106]Burgess G, Fernandez-Velasco JG. Materials, operational energy inputs, and net energy ratio for photobiological hydrogen production[J]. International journal of hydrogen energy,2007,32 (9):1225-1234.
    [107]刘丽孺,赵锡晶.生命周期解释——产生环境效益的关键步骤[J].沈阳建筑工程学院学报,2001,17(4):287-289.
    [108]梅德清,袁银南,王忠,等.生物柴油燃料特性的研究[J].可再生能源,2008(5):20-22.
    [109]姚亚光,纪威,张传龙,等.餐饮业废油脂的再生利用和回收管理[J].可再生能源,2006(002):62-64.
    [110]胡志远,谭丕强,楼狄明,等.不同原料制备生物柴油生命周期能耗和排放评价[J].农业工程学报,2007,22(11):141-146.
    [111]Gnansounou E, Dauriat A, Villegas J, et al. Life cycle assessment of biofuels: Energy and greenhouse gas balances [J]. Bioresource Technology,2009,100 (21):4919-4930.
    [112]Hansen SB, Olsen SI, Ujang Z. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel[J]. Bioresour Technol,2012,104:358-366.
    [113]Khoo HH, Sharratt PN, Das P, et al. Life cycle energy and CO2 analysis of microalgae-to-biodiesel:preliminary results and comparisons [J]. Bioresour Technol,2011,102 (10):5800-5807.
    [114]Kumar S, Singh J, Nanoti SM, et al. A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India[J]. Bioresour Technol, 2012,110:723-729.
    [115]Liang S, Xu M, Zhang T. Life cycle assessment of biodiesel production in China[J]. Bioresour Technol,2013,129:72-77.
    [116]Pang SH, Frey HC, Rasdorf WJ. Life cycle inventory energy consumption and emissions for biodiesel versus petroleum diesel fueled construction vehicles[J]. Environ Sci Technol,2009,43 (16):6398-6405.
    [117]邢爱华,马捷,张英皓,等.生物柴油全生命周期资源和能源消耗分析[J].过程工程学报,2010,10(2):314-319.
    [118]Talens Peiro L, Lombardi L, Villalba Mendez G, et al. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)[J]. Energy,2010,35 (2):889-893.
    [119]Pradhan A, Shrestha D, Gerpen JV, et al. The energy balance of soybean oil biodiesel production:a review of past studies[J]. Transactions of the ASAE (American Society of Agricultural Engineers),2008,51 (1):185.
    [120]Lopez DE, Mullins JC, Bruce DA. Energy life cycle assessment for the production of biodiesel from rendered lipids in the United States[J]. Industrial & engineering chemistry research, 2010,49 (5):2419-2432.
    [121]Fore SR, Porter P, Lazarus W. Net energy balance of small-scale on-farm biodiesel production from canola and soybean[J]. Biomass and Bioenergy, 2011,35 (5):2234-2244.
    [122]Pradhan A, Shrestha D, McAloon A, et al. Energy life-cycle assessment of soybean biodiesel[J]. Agricultural Economic Repoert, 2009 (845).
    [123]Chua CBH, Lee HM, Low JSC. Life cycle emissions and energy study of biodiesel derived from waste cooking oil and diesel in Singapore[J]. The International Journal of Life Cycle Assessment, 2010,15 (4):417-423.
    [124]Weidong H, Chundu W, Weidong X, et al. The method to Evaluate Energy Value of Biofuel[J].
    [125]Rey EJ. ENERGY EFFICIENT AND GREENHOUSE GAS EFFICIENT BIOFUEL. Google Patents; 2008.
    [126]李昌珠,蒋丽娟,李培旺,等.野生木本植物油——光皮树油制取生物柴油的研究[J].生物加工过程,2005(01):42-44+53.
    [127]刘汝宽,杨喜平,王瑞霞,等.制备生物柴油的催化剂研究进展[J].中国粮油学报,2006,21(3):273-276.
    [128]Baptista P, Felizardo P, Menezes J, et al. Monitoring the quality of oils for biodiesel production using multivariate near infrared spectroscopy models[J]. Journal of Near Infrared Spectroscopy,2008,16 (5):445-454.
    [129]van de Voort FR, Sedman J, Ismail AA. Edible oil analysis by FTIR spectroscopy [J]. Laboratory Robotics and Automation, 1996,8 (4):205-212.
    [130]张晓芳,俞信,阎吉祥,等.近红外反射技术开放式检测棉籽中水分和油含量的研究[J].光谱学与光谱分析,2007,27(3):473-476.
    [131]谷利伟,赵金兰.酶技术在油脂工业中的应用[J].中国油脂,1998,23(5):43-45.
    [132]袁勤生.现代酶学[M].华东理工大学出版社,2007.
    [133]许越.化学反应动力学[M].化学工业出版社,2005.
    [134]张玉军,胡润淮,张胜利.物理化学与胶体化学.张玉军,胡润淮,张胜利,郑州:河南科学技术出版社;1998.
    [135]肖志红,刘汝宽,李昌珠,等.光皮树油溶剂萃取脱酸工艺研究[J].粮油加工,2007(11):45-46.
    [136]雕鸿荪.油料预处理及压榨工艺学[M].江西科学技术出版社,1985.
    [137]张蕾.纤维素酶发酵及酶法提取光皮树油工艺的研究[D].中南林业科技大学:2012.
    [138]申爱荣,谭著明,蒋丽娟,等.不同提油方法对制取光皮树油的影响[J].中南林业科技大学学报:自然科学版,2010,30(011):129-135.
    [139]Adachi S, Kobayashi T. Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent[J]. J Biosci Bioeng,2005,99 (2):87-94.
    [140]Sabally K, Karboune S, St-Louis R, et al. Lipase-catalyzed transesterification of dihydrocaffeic acid with flaxseed oil for the synthesis of phenolic lipids[J]. J Biotechnol,2006,127 (1):167-176.
    [141]Goujard L, Villeneuve P, Barea B, et al. A spectrophotometric transesterification-based assay for lipases in organic solvent[J]. Analytical biochemistry,2009,385 (1):161-167.
    [142]Azocar L, Ciudad G, Heipieper HJ, et al. Biotechnological processes for biodiesel production using alternative oils[J]. Appl Microbiol Biotechnol, 2010,88 (3):621-636.
    [143]陈静,陈余,鹿刘奇,等.固定化Bacillus thuringiensis ZJOU-010壳聚糖酶的研究[J].食品科学,2010,31(23):326-330.
    [144]Modi MK, Reddy JR, Rao BV, et al. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor[J]. Bioresour Technol, 2007,98 (6):1260-1264.
    [145]Lozano P, Garcia-Verdugo E, Bernal JM, et al. Immobilised lipase on structured supports containing covalently attached ionic liquids for the continuous synthesis of biodiesel in scCO2[J]. ChemSusChem,2012,5 (4):790-798.
    [146]宣锋.双底物诱导脂肪酶构象刻录的催化及吸附性能研究[D]:浙江大学;2007.
    [147]Guo Z, Bai S, Sun Y. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres[J]. Enzyme Microb Technol,2003,32 (7):776-782.
    [148]Chen Y. Energy science & technology in China: A roadmap to 2050[M]. Springer,2010.
    [149]Cai M. Rock Mechanics:Achievements and Ambitions[M]. CRC Press,2011.
    [150]中华人民共和国国家质量监督检验检疫总局.GB/T 2589-2008综合能耗计算通则[S].北京:中国标准出版社,2008
    [151]Panichelli L, Dauriat A, Gnansounou E. Life cycle assessment of soybean-based biodiesel in Argentina for export[J]. The International Journal of Life Cycle Assessment,2009,14 (2):144-159.
    [152]Yee KF, Tan KT, Abdullah AZ, et al. Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability[J]. Applied Energy, 2009,86:S189-S196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700